
Computer	Science
for	Cambridge	International	AS	&	A	Level

Sylvia	Langfield	&	Dave	Duddell

Contents

Part	1:	Theory	fundamentals

Part	2:	Fundamental	problem-solving	and	programming	skills

Part	3:	Advanced	theory

Part	4:	Further	problem-solving	and	programming	skills

Chapter	1 Information	representation

Chapter	2 Communication	and	networking	technologies

Chapter	3 Hardware

Chapter	4 Logic	gates	and	logic	circuits

Chapter	5 Processor	fundamentals

Chapter	6 Assembly	language	programming

Chapter	7 Monitoring	and	control	systems

Chapter	8 System	software

Chapter	9 Security,	privacy	and	data	integrity

Chapter	10	Ethics	and	ownership

Chapter	11	Databases

Chapter	12	Algorithm	design	and	problem-solving

Chapter	13	Data	types	and	structures

Chapter	14	Programming	and	data	representation

Chapter	15	Software	development

Chapter	16	Data	representation

Chapter	17	Communication	and	Internet	technologies

Chapter	18	Hardware	and	virtual	machines

Chapter	19	Logic	circuits	and	Boolean	algebra

Chapter	20	System	software

Chapter	21	Security

Chapter	22	Artificial	Intelligence	(AI)

Chapter	23	Algorithms

Chapter	24	Recursion

Chapter	25	Programming	paradigms

Chapter	26	File	processing	and	exception	handling

Chapter	27	Object-oriented	programming	(OOP)

Chapter	28	Low-level	programming

Chapter	29	Declarative	programming

Acknowledgements

Introduction

This	full-colour,	illustrated	textbook	has	been	written	by	experienced	authors	specifically	for	the
Cambridge	International	AS	&	A	Level	Computer	Science	syllabus	(9618)	for	examination	from	2021.	It
is	based	on	the	first	edition	by	the	same	authors	for	the	previous	Cambridge	International	AS	&	A	Level
Computer	Science	syllabus	(9608).	There	are	substantial	changes,	the	most	important	being	the
inclusion	of	the	topic	of	Artificial	Intelligence	(See	Chapter	22)	and	the	replacement	of	the	Pascal
programming	language	by	the	Java	programming	language.

The	presentation	of	the	chapters	in	this	book	reflects	the	content	of	the	syllabus:

The	book	is	divided	into	four	parts,	each	of	which	is	closely	matched	to	the	corresponding	part	of
the	syllabus.

Each	chapter	defines	a	set	of	learning	objectives	which	closely	match	the	learning	objectives	set	out
in	the	syllabus.

The	chapters	in	Parts	1	and	3	have	been	written	with	emphasis	on	the	promotion	of	knowledge	and
understanding.	The	chapters	in	Parts	2	and	4	have	been	written	with	an	emphasis	on	problem
solving	and	programming.

The	key	concepts	for	Cambridge	International	AS	&	A	Level	Computer	Science	are:

Computational	thinking
Computational	thinking	is	a	set	of	skills	such	as	abstraction,	decomposition	and	algorithmic	thinking.
Chapter	12	(Algorithm	design	and	problem-solving),	Chapter	15	(Software	development)	and	Chapter
23	(Algorithms)	concentrate	on	this	key	concept.

Programming	paradigms
A	programming	paradigm	is	a	way	of	thinking	about	or	approaching	problems.	Most	of	the
programming	in	this	book	follows	the	imperative	(procedural)	paradigm.	Chapter	25	(Programming
paradigms)	gives	an	overview	of	other	paradigms,	while	Chapter	6	(Assembly	language	programming),
Chapter	28	(Low-level	programming),	Chapter	27	(Object	Oriented	Programming)	and	Chapter	29
(Declarative	programming)	give	an	insight	into	these	paradigms.

Communication
Communication	in	this	context	ranges	from	the	internal	transfer	of	data	within	a	computer	system	to
the	transfer	of	data	across	the	internet.	See	Chapter	2	(Communication	and	networking	technologies)
and	Chapter	17	(Communication	and	internet	technologies).

Computer	architecture	and	hardware
Computer	architecture	is	the	design	of	the	internal	operation	of	a	computer	system.	Computer	systems
consist	of	hardware	(internal	components	and	peripherals)	and	software	that	makes	the	hardware
functional.	See	Chapter	3	(Hardware),	Chapter	4	(Logic	gates	and	logic	circuits),	Chapter	8	(System
software),	Chapter	18	(Hardware	and	virtual	machines),	Chapter	19	(Logic	circuits	and	Boolean
algebra)	and	Chapter	20	(System	software).

Data	representation	and	structures
An	understanding	of	binary	numbers	and	how	they	can	be	interpreted	in	different	ways	is	covered	in
Chapter	1	(Information	representation)	and	Chapter	16	(Data	representation).	Chapter	11	covers
databases.	Chapter	13	(Data	types	and	structures)	and	Chapter	14	(Programming	and	data
representation)	show	how	data	can	be	organised	for	efficient	use	and	storage.

The	chapters	in	Parts	1	and	3	have	a	narrative	which	involve	a	number	of	interdependent	topics.	We
would	encourage	learners	to	read	the	whole	chapter	first	before	going	back	to	revisit	the	individual
sections.

The	chapters	in	Parts	2	and	4	contain	many	more	tasks.	We	would	encourage	learners	to	approach
these	chapters	step-by-step.	Whenever	a	task	is	presented,	this	should	be	carried	out	before
progressing	further.

In	particular,	Chapter	12	(Algorithm	design	and	problem-solving)	may	be	worked	through	in	parallel
with	Chapter	14	(Programming	and	data	representation).	For	example,	Task	14.03	is	based	on	Worked
Example	12.03.	After	studying	this	worked	example,	learners	may	wish	to	cover	the	first	part	of
Chapter	14	and	write	the	program	for	Task	14.03.	This	will	give	the	learner	the	opportunity	to	test	their
understanding	of	an	algorithm	by	implementing	it	in	their	chosen	programming	language.	Then	further
study	of	Chapter	12	is	recommended	before	attempting	further	tasks	in	Chapter	14.

How	to	use	this	book

This	book	contains	a	number	of	features	to	help	you	in	your	study.

Learning	objectives	–	each	chapter
begins	with	a	short	list	of	the	learning
objectives	and	concepts	that	are
explained	in	it.

Task	–
exercises	for
you	to	test	your
skills.

Question	–	questions	for	you
to	test	your	knowledge	and
understanding.

Discussion	Point	–	discussion	points	intended	for	class
discussion.

Reflection	Point	–	opportunities	for	you	to	check	your
understanding	of	the	topic	that	has	just	been	covered.

Extension	Question	–	extended	questions	for	consideration	of	more	advanced	aspects	or	topics
beyond	the	immediate	scope	of	the	Cambridge	International	AS	&	A	Level	syllabus.

Worked	Example	–	step-by-step	examples	of	solving	problems

or	implementing	specific	techniques.

Tip	–	quick
notes	to
highlight
key	facts
and
important
points.

Summary	–	these	appear	at
the	end	of	each	chapter	to
help	you	review	what	you
have	learned

Exam-style	Questions	–	these
aim	to	test	your	skills,	knowledge
and	understanding	using	exam-
style	questioning.

Part	1
Theory	fundamentals

Chapter	1:
Information	representation

1.01	Number	systems
Denary	numbers
As	a	child	we	first	encounter	the	numbers	that	we	use	in	everyday	life	when	we	are	learning	to	count.
Specifically,	we	learn	to	count	using	1,	2,	3,	4,	5,	6,	7,	8,	9,	10.	This	gives	us	ten	different	symbols	to
represent	each	individual	digit.	This	is	therefore	a	base-10	number	system.	Numbers	in	this	system	are
called	denary	numbers	or,	more	traditionally,	decimal	numbers.

When	a	number	is	written	down	the	value	that	it	represents	is	defined	by	the	place	values	of	the	digits
in	the	number.	This	can	be	illustrated	by	considering	the	denary	number	346	which	is	interpreted	as
shown	in	Table	1.01.

Place	value 102	=	100 101	=	10 100	=	1

Digit 3 4 6

Product	of	digit	and	place	value 300 40 6

Table	1.01	Use	of	place	values	in	the	representation	of	a	denary	number

You	can	see	that	starting	from	the	right-hand	end	of	the	number	(which	holds	the	least	significant	digit),
the	place	value	increases	by	the	power	of	the	base	number.

Binary	numbers
The	binary	number	system	is	base-2.	Each	binary	digit	is	written	with	either	of	the	symbols	0	and	1.	A
binary	digit	is	referred	to	as	a	bit.

As	with	a	denary	number,	the	value	of	a	binary	number	is	defined	by	place	values.	For	example,	see
Table	1.02	for	the	binary	number	101110.

Place	value 25	=	32 24	=	16 23	=	8 22	=	4 21	=	2 20	=	1

Digit 1 0 1 1 1 0

Product	of	digit	and	place
value 32 8 4 2 0

Table	1.02	Use	of	place	values	in	the	representation	of	a	binary	number

By	adding	up	the	values	in	the	bottom	row	you	can	see	that	the	binary	number	101110	has	a	value
which	is	equivalent	to	the	denary	number	46.

You	must	be	able	to	use	the	binary	number	system	in	order	to	understand	computer	systems.	This	is
because	inside	computer	systems	there	is	no	attempt	made	to	represent	ten	different	digits	individually.
Instead,	all	computer	technology	is	engineered	with	components	that	represent	or	recognise	only	two
states:	‘on’	and	‘off’.	To	match	this,	all	software	used	by	the	hardware	uses	binary	codes	which	consist
of	bits.	The	binary	code	may	represent	a	binary	number	but	this	does	not	have	to	be	the	case.

Binary	codes	are	most	often	based	on	the	use	of	one	or	more	groups	of	eight	bits.	A	group	of	eight	bits
is	called	a	byte.

Hexadecimal	numbers
These	are	base-16	numbers	where	each	hexadecimal	digit	is	represented	by	one	of	the	following
symbols:	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.	The	symbols	A	through	to	F	represent	the	denary	values	10
through	to	15.	The	value	of	a	number	is	defined	by	place	values.	For	example,	see	Table	1.03	for	the
hexadecimal	number	2A6.

Place	value 162	=	256 161	=	16 160	=	1

Digit 2 A 6

Product	of	digit	and	place	value 512 160 6

Table	1.03	Use	of	place	values	in	the	representation	of	a	hexadecimal	number

Adding	up	the	values	in	the	bottom	row	shows	that	the	equivalent	denary	number	is	678.

In	order	to	explain	why	hexadecimal	numbers	are	used	we	need	first	to	define	the	nibble	as	a	group	of
four	bits.

A	nibble	can	be	represented	by	one	hexadecimal	digit.	This	means	that	each	byte	of	binary	code	can	be
written	as	two	hexadecimal	digits.	Two	examples	are	shown	in	Table	1.04	together	with	their	denary
equivalent.

Binary Hexadecimal Denary

00001010 0A 10

11111111 FF 255

Table	1.04	Examples	of	a	byte	represented	by	two	hexadecimal	digits

Note	here	that	if	you	were	converting	the	binary	number	1010	to	a	hexadecimal	number	as	an	exercise
on	a	piece	of	paper	you	would	not	bother	with	including	leading	zeros.	However,	a	binary	code	must	not
include	blanks;	all	positions	in	the	byte	must	have	either	a	0	or	a	1.	This	is	followed	through	in	the
hexadecimal	representation.

One	example	when	you	will	see	hexadecimal	representations	of	bytes	is	when	an	error	has	occurred
during	the	execution	of	a	program.	A	memory	dump	could	be	provided	which	has	a	hexadecimal
representation	of	the	content	of	some	chosen	part	of	the	memory.	Another	use	is	when	the	bytes	contain
binary	numbers	in	the	charts	that	define	character	codes.	This	is	discussed	later	in	this	chapter.

In	the	character	code	charts	and	in	other	online	sources	you	may	see	references	to	octal	numbers	which
are	base-8.	You	can	ignore	these.

Converting	between	binary	and	denary	numbers
One	method	for	converting	a	binary	number	to	a	denary	number	is	to	add	up	the	place	values	for	every
digit	that	has	a	value	1.	This	was	illustrated	in	Table	1.02.

An	alternative	method	is	shown	in	Worked	Example	1.01.

WORKED	EXAMPLE	1.01

To	carry	out	the	conversion	you	start	at	the	most	significant	bit	and	successively	multiply	by	two
and	add	the	result	to	the	next	digit.	The	following	shows	the	method	being	used	to	convert	the
binary	number	11001	to	the	denary	number	25:

1 × 2 = 2

add	2	to	1,	then 2 × 3 = 6

add	6	to	0,	then 2 × 6 = 12

add	12	to	0,	then 2 × 12 = 24

add	24	to	1	to	give	25.

To	convert	a	denary	number	to	binary	begin	by	identifying	the	largest	power	of	2	that	has	a	value	less
than	the	denary	number.	You	can	then	write	down	the	binary	representation	of	this	power	of	2	value.
This	will	be	a	1	followed	by	the	appropriate	number	of	zeros.

Now	subtract	the	power	of	two	value	from	the	denary	number.	Then	identify	the	largest	power	of	2
value	that	is	less	than	the	remainder	from	the	subtraction.	You	can	now	replace	a	zero	in	the	binary
representation	with	a	1	for	this	new	power	of	2	position.

Repeat	this	process	until	you	have	accounted	for	the	full	denary	number.

For	example,	for	the	denary	number	78	the	largest	power	of	two	value	less	than	this	is	64	so	you	can
start	by	writing	down	1000000.	The	remainder	after	subtracting	64	from	78	is	14.	The	largest	power	of
two	value	less	than	this	is	8	so	the	replacement	of	a	zero	by	1	gives	1001000.	Repeating	the	process
finds	values	of	4	then	2	so	the	final	answer	is	1001110.

An	alternative	approach	is	shown	in	Worked	Example	1.02.

WORKED	EXAMPLE	1.02

A	useful	way	to	convert	a	denary	value	to	its	binary	equivalent	is	the	procedure	of	successive
division	by	two	with	the	remainder	written	down	at	each	stage.	The	converted	number	is	then
given	as	the	set	of	remainders	in	reverse	order.

This	can	be	illustrated	by	the	conversion	of	denary	246	to	binary:

246 ÷ 2 → 123 with	remainder	0

123 ÷ 2 → 61 with	remainder	1

61 ÷ 2 → 30 with	remainder	1

30 ÷ 2 → 15 with	remainder	0

15 ÷ 2 → 7 with	remainder	1

7 ÷ 2 → 3 with	remainder	1

3 ÷ 2 → 1 with	remainder	1

1 ÷ 2 → 0 with	remainder	1

Thus,	the	binary	equivalent	of	denary	246	is	11110110.

	TIP
To	check	that	an	answer	with	eight	bits	is	sensible,	remember	that	the	maximum	denary
value	possible	in	seven	bits	is	27	–	1	which	is	127	whereas	eight	bits	can	hold	values	up	to
28	–	1	which	is	255.

Conversions	for	hexadecimal	numbers
It	is	possible	to	convert	a	hexadecimal	number	to	denary	by	using	the	method	shown	in	Table	1.03.
However,	if	there	are	more	than	a	few	digits,	the	numbers	involved	in	the	conversion	become	very
large.	Instead,	the	sensible	approach	is	to	first	convert	the	hexadecimal	number	to	a	binary	number
which	can	then	be	converted	to	denary.

To	convert	a	hexadecimal	number	to	binary,	each	digit	is	treated	separately	and	converted	into	a	4-bit
binary	equivalent,	remembering	that	F	converts	to	1111,	E	converts	to	1110	and	so	on.

To	convert	a	binary	number	to	hexadecimal	you	start	with	the	four	least	significant	bits	and	convert
them	to	one	hexadecimal	digit.	You	then	proceed	upwards	towards	the	most	significant	bit,	successively
taking	groupings	of	four	bits	and	converting	each	grouping	to	the	corresponding	hexadecimal	digit.

TASK	1.01
Convert	each	of	the	denary	numbers	96,	215	and	374	into	hexadecimal	numbers.

Convert	each	of	the	hexadecimal	numbers	B4,	FF	and	3A2C	to	denary	numbers.

Question	1.01
Does	a	computer	ever	use	hexadecimal	numbers?

1.02	Numbers	and	quantities
There	are	several	different	types	of	numbers	within	the	denary	system.	Examples	of	these	are	provided
in	Table	1.05.

Type	of	number Examples Comments

Integer 3	or	47 A	whole	number	used	for	counting

Signed	integer −3	or	47
The	positive	number	has	an	implied	+
sign

Fraction 2/3	or	52/17 Rarely	used	in	computer	science

A	number	with	a	whole
number	part	and	a	fractional
number	part

−37.85	or	2.83
The	positive	number	has	an	implied	+
sign

A	number	expressed	in
exponential	notation

−3.6	×	108	or	4.2	×	10–9
The	value	can	be	positive	or	negative
and	the	exponent	can	be	positive	or
negative

Table	1.05	Different	ways	to	express	a	value	using	the	denary	number	system

We	will	focus	on	how	large	values	are	represented.	If	we	have	a	quantity	that	includes	units	of
measurement,	it	can	be	written	in	three	different	ways.	For	example,	a	distance	could	be	written	in	any
one	of	these	three	ways:

23	567	m

23.567	×	103	m

23.567	km

The	second	example	has	used	an	exponential	notation	to	define	the	magnitude	of	the	value.	The	third
example	has	added	a	prefix	to	the	unit	to	define	this	magnitude.	We	read	this	as	23.567	kilometres.

The	‘kilo’	is	an	example	of	a	decimal	prefix.	There	are	four	decimal	prefixes	commonly	used	for	large
numbers.	These	are	shown	in	Table	1.06.

Decimal	prefix	name Symbol	used Factor	applied	to	the	value

kilo k 103

mega M 106

giga G 109

tera T 1012

Table	1.06	The	decimal	prefixes

Unfortunately,	for	a	long	time	the	computing	world	used	these	prefix	names	but	with	a	slightly	different
definition.	The	value	for	210	is	1024.	Because	this	is	close	to	1000,	computer	scientists	decided	that
they	could	use	the	kilo	prefix	to	represent	1024.	So,	for	example,	if	a	computer	system	had	the
following	values	quoted	for	the	processor	speed	and	the	size	of	the	memory	and	of	the	hard	disk:

 

Processor	speed 1.6	GHz

Size	of	RAM 8	GB

Size	of	hard	disk 400	GB

The	prefix	G	would	represent	109	for	the	processor	speed	but	would	almost	certainly	represent	1024	×
1024	×	1024	for	the	other	two	values.

This	unsatisfactory	situation	has	now	been	resolved	by	the	definition	of	a	new	set	of	names	which	can
be	used	to	define	a	binary	prefix.	A	selection	of	these	is	shown	in	Table	1.07.

Binary	prefix	name Symbol	used Factor	applied	to	the	value

kibi Ki 210

mebi Mi 220

gibi Gi 230

tebi Ti 240

Table	1.07	Some	examples	of	binary	prefixes

When	a	number	or	a	quantity	is	presented	for	a	person	to	read	it	is	best	presented	with	either	one
denary	digit	or	two	denary	digits	before	the	decimal	point.	If	a	calculation	has	been	carried	out,	the
initial	result	found	may	not	match	this	requirement.	A	conversion	of	the	presented	value	will	be	needed
by	choosing	a	sensible	magnitude	factor.	For	example,	consider	the	following	two	answers	calculated
for	the	size	of	a	file:

34	560	bytes

Here,	a	conversion	to	kibibytes	would	be	sensible	using	the	calculation:

344560B=345601024KiB=33.75	KiB

3	456	000	bytes

Here,	a	conversion	to	mebibytes	would	be	sensible	using	the	calculation:

3456000B=(34560001024)1024MiB=3.296	MiB

If	a	calculation	is	to	be	performed	with	values	quoted	with	different	magnitude	factors	there	must	first
be	conversions	to	ensure	all	values	have	the	same	magnitude	factor.	For	example,	if	you	needed	to	know
how	many	files	of	size	2.4	MiB	could	be	stored	on	a	4	GiB	memory	stick	there	should	be	a	conversion	of
the	GiB	value	to	the	corresponding	MiB	value.

The	calculation	would	be:

(4×1024)MiB2.4MiB=1076

a

b

1.03	Internal	coding	of	numbers
The	discussion	in	this	chapter	relates	only	to	the	coding	of	integer	values.	The	coding	of	non-integer
numeric	values	(real	numbers)	is	considered	in	Chapter	16	(Section	16.03).

Coding	for	integers
Computers	need	to	store	integer	values	for	a	number	of	purposes.	Sometimes	only	a	simple	integer	is
stored,	with	the	understanding	that	it	is	a	positive	number.	This	is	stored	simply	as	a	binary	number.
The	only	decision	to	be	made	is	how	many	bytes	should	be	used.	If	the	choice	is	to	use	two	bytes	(16
bits)	then	the	range	of	values	that	can	be	represented	is	0	to	(216	–	1)	which	is	0	to	65	535.

However,	in	many	cases	we	need	to	identify	whether	the	number	is	positive	or	negative,	so	we	use	a
signed	integer.	A	signed	integer	can	just	have	the	binary	code	for	the	value	with	an	extra	bit	to	define
the	sign.	This	is	referred	to	as	‘sign	and	magnitude	representation’.	For	this	the	convention	is	to	use	a	0
to	represent	+	and	a	1	to	represent	–.	A	few	examples	of	this	are	shown	in	Table	1.08.

However,	there	are	a	number	of	disadvantages	to	using	this	format,	so	signed	integers	are	usually	in
two’s	complement	form.	Here	we	need	two	definitions.

The	one’s	complement	of	a	binary	number	is	defined	as	the	binary	number	obtained	if	each	binary
digit	is	individually	subtracted	from	1.	This	means	that	each	0	is	switched	to	1	and	each	1	switched	to	0.
The	two’s	complement	is	defined	as	the	binary	number	obtained	if	1	is	added	to	the	one’s	complement
number.

If	you	need	to	convert	a	binary	number	to	its	two’s	complement	form,	you	can	use	the	method	indicated
by	the	definition	but	there	is	a	quicker	method.	For	this	you	start	at	the	least	significant	bit	and	move
left	ignoring	any	zeros	up	to	the	first	1,	which	you	also	ignore.	Finally	you	change	any	remaining	bits
from	0	to	1	or	from	1	to	0.

For	example,	expressing	the	number	10100100	in	two’s	complement	form	leaves	the	right-hand	100
unchanged,	then	the	remaining	10100	changes	to	01011,	so	the	result	is	01011100.

To	represent	a	positive	denary	integer	value	as	the	equivalent	two’s	complement	binary	form,	the
process	is	as	follows.

Use	one	of	methods	from	Section	1.01	to	convert	the	denary	value	to	a	binary	value.

Add	a	0	in	front	of	this	binary	value.

To	represent	a	negative	denary	integer	value	as	the	equivalent	two’s	complement	binary	form	the
process	is	as	follows.

Disregard	the	sign	and	use	one	of	methods	from	Section	1.01	to	convert	the	denary	value	to	a
binary	value.

Add	a	0	in	front	of	this	binary	value.

Convert	this	binary	value	to	its	two’s	complement	form.

A	few	simple	examples	of	two’s	complement	representations	are	shown	in	Table	1.08.

To	convert	a	two’s	complement	binary	number	representing	a	positive	value	into	a	denary	value,	the
leading	zero	is	ignored	and	one	of	the	methods	in	Section	1.01	is	applied	to	convert	the	remaining
binary.

There	are	two	alternative	methods	for	converting	a	two’s	complement	binary	number	representing	a
negative	number	into	a	denary	value.	These	are	illustrated	in	Worked	Example	1.03.

WORKED	EXAMPLE	1.03

Methods	for	converting	a	negative	number	expressed	in	two’s	complement	form	to	the
corresponding	denary	number

Consider	the	two’s	complement	binary	number	10110001.

Method	1.	Convert	to	the	corresponding	positive	binary	number	then	convert	to	denary	before
adding	the	minus	sign

Converting	10110001	to	two’s	complement	leaves	unchanged	the	1	in	the	least	significant	bit
position	then	changes	all	of	the	remaining	bits	to	produce	01001111.

You	ignore	the	leading	zero	and	apply	one	of	the	methods	from	Section	1.01	to	convert	the
remaining	binary	to	denary	which	gives	79.

You	add	the	minus	sign	to	give	−79.

Method	2.	Sum	the	individual	place	values	but	treat	the	most	significant	bit	as	a	negative	value

You	follow	the	approach	illustrated	in	Table	1.02	to	convert	the	original	binary	number	10110001
as	follows:

Place
value

−27

=
−128

26

=
64

25

=
32

24

=
16

23

=
8

22

=
4

21

=
2

20

=
1

Digit 1 0 1 1 0 0 0 1

Product −128 0 32 16 0 0 0 1

You	now	add	the	values	in	the	bottom	row	to	get	−79.

Some	points	to	note	about	two’s	complement	representation	are	as	follows.

There	is	only	one	representation	of	zero.

Starting	from	the	lowest	negative	value,	each	successive	higher	value	is	obtained	by	adding	1	to	the
binary	code.	In	particular,	when	all	digits	are	1	the	next	step	is	to	roll	over	to	an	all-zero	code.	This
is	the	same	as	any	digital	display	would	do	when	each	digit	has	reached	its	maximum	value.

Just	adding	a	leading	zero	to	an	unsigned	binary	value	converts	it	to	the	two’s	complement
representation	of	the	corresponding	positive	number

You	use	a	two’s	complement	conversion	to	change	the	sign	of	a	number	from	positive	to	negative	or
from	negative	to	positive.	We	say	that	the	two’s	complement	values	are	self-complementary.

You	can	add	any	number	of	leading	zeros	to	a	representation	of	a	positive	value	without	changing
the	value.

You	can	add	any	number	of	leading	ones	to	a	representation	of	a	negative	value	without	changing
the	value.

Signed	denary	number	to	be
represented

Sign	and	magnitude
representation

Two’s	complement
representation

7 0111 0111

1 0001 0001

0 0000 0000

–0 1000 Not	represented

–1 1001 1111

–7 1111 1001

–8 Not	represented 1000

Table	1.08	Representations	of	signed	integers

	TIP
If	you	are	converting	a	negative	denary	number	into	two’s	complement	you	begin	by
converting	the	denary	value	to	a	binary	value.	Then	you	must	not	forget	to	add	a	leading
zero	before	taking	the	two's	complement	to	convert	the	positive	value	to	a	negative	value.

TASK	1.02
Take	the	two’s	complement	of	the	binary	code	for	–7	and	show	that	you	get	the	code	for	+7.

TASK	1.03
Convert	the	two’s	complement	number	1011	to	the	denary	equivalent.	Then	do	the	same	for
111011	and	convince	yourself	that	you	get	the	same	value.

Discussion	Point:
What	is	the	two’s	complement	of	the	binary	value	1000?	Are	you	surprised	by	this?

Binary	arithmetic
Before	considering	the	addition	of	binary	numbers	it	is	useful	to	recall	how	we	add	two	denary
numbers.	Two	rules	apply.	The	first	rule	is	that	the	process	is	carried	out	starting	with	addition	of	the
two	least	significant	digits	and	then	working	right	to	left.	The	second	rule	is	that	if	an	addition	produces
a	value	greater	than	9	there	is	a	carry	of	1.	For	example	in	the	addition	of	48	to	54,	the	first	step	is
adding	8	to	4	to	get	2	with	a	carry	of	1.	Then	5	is	added	to	4	plus	the	carried	1	to	give	0	with	carry	1.
The	rules	produce	102	for	the	sum	which	is	the	correct	answer.

For	binary	addition,	starting	at	the	least	significant	position	still	applies.	The	rules	for	the	addition	of
binary	digits	are:

0	+	0	=	0

0	+	1	=	1

1	+	1	=	0	with	a	carry	of	1

1	+	1	+	0	=	0	with	a	carry	of	1

1	+	1	+	1	=	1	with	a	carry	of	1

The	last	two	rules	are	used	when	a	carried	1	is	included	in	the	addition	of	two	digits.

As	an	example,	the	addition	of	the	binary	equivalent	of	denary	14	to	the	binary	equivalent	of	denary	11
can	be	examined.

1 0 1 1

+ 1 1 1 0

1 1 0 0 1

The	steps	followed	from	right	to	left	are:

1	+	0	=	1	with	no	carry

1	+	1	=	0	with	carry	1

0	+	1	+	carried	1	=	0	with	carry	1

1	+	1	+	carried	1	=	1	with	carry	1

The	rules	have	correctly	produced	the	5-bit	answer	which	is	the	binary	equivalent	of	25.	In	a	paper
exercise	like	this	these	rules	for	addition	will	always	produce	the	correct	answer.

Again	for	subtraction	we	can	first	consider	how	this	is	done	for	denary	numbers.	As	for	addition	the
process	starts	with	the	least	significant	digits	and	proceeds	right	to	left.	The	special	feature	of
subtraction	is	the	“borrowing”	of	a	1	from	the	next	position	when	a	subtracting	digit	is	larger	than	the
digit	it	is	being	subtracted	from.

For	example	in	subtracting	48	from	64	the	first	step	is	to	note	that	8	is	larger	than	4.	Therefore	1	has	to
be	borrowed	as	10.	The	10	added	to	4	gives	14	and	8	subtracted	from	this	gives	6.	When	we	proceed	to
the	next	digit	subtraction	we	first	have	to	reduce	the	6	to	5	because	of	the	borrow.	So	we	have
subtraction	of	4	from	5	leaving	1.	The	answer	for	the	subtraction	is	16.

For	binary	subtraction,	starting	at	the	least	significant	position	still	applies.	The	rules	for	the
subtraction	of	binary	digits	are:

0	–	0	=	0

0	–	1	=	1	after	a	borrow

1	–	0	=	1

1	–	1	=	0

As	an	example,	the	subtraction	of	the	binary	equivalent	of	denary	11	from	the	binary	equivalent	of
denary	14	can	be	examined.

1 1 1 0

− 1 0 1 1

0 0 1 1

The	steps	followed	from	right	to	left	are:

1	is	larger	than	0	so	1	is	borrowed	giving	subtraction	of	1	from	10	leaving	1

Because	of	the	borrow	the	1	is	reduced	to	0	so	that	1	is	to	be	subtracted	from	0.	This	requires	a
further	borrow	giving	subtraction	of	1	from	10	leaving	1

Because	of	the	borrow	the	1	is	reduced	to	0	leaving	subtraction	of	0	from	0

1	–	1	gives	0

The	answer	is	the	binary	value	for	denary	3.

When	binary	addition	is	carried	out	by	a	computer	using	internally	stored	numbers	there	is	a	major
difference.	This	arises	from	the	fact	that	the	storage	unit	will	always	have	a	defined	number	of	bits.	For
example,	in	the	above	addition,	if	binary	values	were	limited	to	being	stored	in	a	nibble	the	result	of	the
addition	would	be	incorrectly	stored	as	1001.	This	is	an	example	of	an	overflow.	The	value	produced	is
too	large	to	be	stored.

When	the	values	in	a	computer	system	are	stored	in	two’s	complement	form	this	problem	has	a
characteristic	behaviour.

In	the	following	addition	where	+63	is	added	to	+63	there	is	no	problem;	the	answer	is	correctly
obtained	as	+126:

0 0 1 1 1 1 1 1

+ 0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 0

However,	if	the	binary	for	+96	is	added	to	+96	the	result	is	as	follows:

0 1 1 0 0 0 0 0

+ 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

The	overflow	means	that	the	answer	has	a	leading	1,	which	causes	a	computer	system	to	interpret	the
answer	as	a	negative	number.

A	similar	problem	can	occur	when	two	negative	values	are	added.	For	example	the	addition	of	−96	to
the	same	value	results	in	the	following:

1 0 1 0 0 0 0 0

+ 1 0 1 0 0 0 0 0

(1) 0 1 0 0 0 0 0 0

This	time	there	has	been	a	carry	when	the	most	significant	bits	were	added	and	the	result	obtained	is	a
positive	number.

Clearly	we	need	the	processor	to	detect	overflow	and	output	an	error	message.	There	is	a	discussion	of
how	a	processor	can	detect	overflow	in	Chapter	6	(Section	6.07).

One	of	the	advantages	of	using	two’s	complement	representations	is	that	it	simplifies	the	process	of
subtracting	one	number	from	another.	The	number	being	subtracted	is	converted	to	its	two’s
complement	form,	which	is	then	added	to	the	other	number.

TASK	1.04
Using	a	byte	to	represent	each	value,	carry	out	the	subtraction	of	denary	35	from	denary	67
using	binary	arithmetic	with	two’s	complement	representations.

Binary	coded	decimal	(BCD)
One	exception	to	grouping	bits	in	bytes	to	represent	integers	is	the	binary	coded	decimal	(BCD)
scheme.	This	is	useful	in	applications	that	require	single	denary	digits	to	be	stored	or	transmitted.	The
BCD	code	uses	a	nibble	to	represent	a	denary	digit.	We	consider	the	simple	scheme	where	the	digits	are
coded	as	the	binary	values	from	0000	to	1001.	The	remaining	codes	1010	to	1111	do	not	have	any
meaning.

If	a	denary	number	with	more	than	one	digit	is	to	be	converted	to	BCD	there	has	to	be	a	group	of	four
bits	for	each	denary	digit.	There	are,	however,	two	options	for	BCD;	the	first	is	to	store	one	BCD	code	in
one	byte,	leaving	four	bits	unused.	The	other	option	is	packed	BCD	where	two	4-bit	codes	are	stored	in
one	byte.	Thus,	for	example,	the	denary	digits	8503	could	be	represented	by	either	of	the	codes	shown
in	Figure	1.01.

One	BCD	digit	per	byte  00001000 00000101 00000000 00000011

Two	BCD	digits	per	byte		 10000101 00000011

Figure	1.01	Alternative	BCD	representations	of	the	denary	digits	8503

There	are	a	number	of	applications	where	BCD	can	be	used.	The	obvious	type	of	application	is	where
denary	digits	are	to	be	displayed,	for	instance	on	the	screen	of	a	calculator	or	in	a	digital	time	display.	A
somewhat	unexpected	application	is	for	the	representation	of	currency	values.	When	a	currency	value	is
written	in	a	format	such	as	$300.25	it	is	as	a	fixed-point	decimal	number	(ignoring	the	dollar	sign).	It
might	be	expected	that	such	values	would	be	stored	as	real	numbers	but	this	cannot	be	done	accurately
(this	type	of	problem	is	discussed	in	more	detail	in	Chapter	16	(Section	16.03)).	One	solution	to	the
problem	is	to	store	each	denary	digit	as	a	BCD	code.

Let's	consider	how	BCD	arithmetic	might	be	performed	by	a	computer	if	fixed-point	decimal	values	for
currency	were	stored	as	BCD	values.	Here	is	an	example	of	addition.

Figure	1.02	Incorrect	addition	using	BCD	coding

We	will	assume	a	two-byte	packed	BCD	representation.	The	first	byte	represents	two	denary	digits	for
the	whole	part	of	the	number	and	the	second	byte	represents	two	denary	digits	for	the	fractional	part.	If
the	two	values	are	$0.26	and	$0.85	then	the	result	of	the	addition	should	be	$1.11.	This	would	involve	a
carry	from	the	first	decimal	place	to	the	whole	number	1.	However,	applying	simple	binary	addition	of
the	BCD	codes	would	produce	the	result	shown	in	Figure	1.02.

The	additions	for	the	fractional	parts	have	produced	values	corresponding	to	the	denary	values	10	and
11	but	a	BCD	value	is	supposed	to	be	a	single	digit.	The	error	has	resulted	in	no	carry	to	the	whole
number	column.

We	need	the	processor	to	recognise	that	an	impossible	value	has	been	produced	and	apply	a	method	to
correct	this.	The	solution	is	to	add	0110	whenever	the	problem	is	detected.	This	is	illustrated	in	Figure
1.03.

Figure	1.03	Use	of	the	correction	value	to	perform	BCD	addition

The	steps	shown	in	Figure	1.03	are	as	follows.

Starting	with	the	least	significant	nibble,	adding	0110	to	0101	gives	1011	which	is	recognised	as
being	incorrect.

The	0110	correction	value	is	added	to	produce	10001.

The	0001	is	stored	and	the	leading	1	is	carried	to	the	next	nibble.

In	the	first	decimal	position	adding	0100	to	1000	then	adding	the	carry	bit	1	gives	1011	which	is
recognised	as	being	incorrect.

The	0110	correction	is	added	to	produce	10001.

The	0001	is	stored	and	the	leading	1	is	carried	to	the	next	nibble.

In	this	example	the	two	whole	number	nibbles	have	zero	values	so	adding	these	has	no	effect.

1.04	Internal	coding	of	text
To	store	text	in	a	computer,	we	need	a	coding	scheme	that	provides	a	unique	binary	code	for	each
distinct	individual	component	item	of	the	text.	Such	a	code	is	referred	to	as	a	character	code.	There
have	been	many	different	examples	of	character	coding	schemes	throughout	the	history	of	computing.

ASCII	code
The	scheme	which	has	been	used	for	the	longest	time	is	the	ASCII	(American	Standard	Code	for
Information	Interchange)	coding	scheme.	The	7-bit	version	of	the	code	(often	referred	to	as	US	ASCII)
was	standardised	many	years	ago	by	ANSI	(American	National	Standards	Institute).	The	codes	are
always	presented	in	a	table.	Table	1.09	shows	an	edited	version	of	a	typical	table.	The	first	column
contains	the	binary	code	which	would	be	stored	in	one	byte,	with	the	most	significant	bit	set	to	zero	and
the	remaining	bits	representing	the	character	code.	The	second	column	shows	the	hexadecimal
equivalent.

Binary	code Hexadecimal	equivalent Character Description

00000000 00 NUL Null	character

00000001 01 SOH Start	of	heading

00100000 20 Space

00100001 23 # Number

00110000 30 0 Zero

00110001 31 1 One

01000001 41 A Uppercase	A

01000010 42 B Uppercase	B

01100001 61 a Lowercase	a

01100010 62 b Lowercase	b

Table	1.09	Some	examples	of	ASCII	codes	stored	in	one	byte	with	the	remaining,	most	significant	bit	set
to	zero

A	full	table	would	show	the	27	(128)	different	codes	available	for	a	7-bit	code.

	TIP
Do	not	try	to	remember	any	of	the	individual	codes

You	need	to	remember	these	key	facts	about	the	ASCII	coding	scheme.

A	limited	number	of	the	codes	represent	non-printing	or	control	characters;	these	were	introduced
to	assist	in	data	transmission	or	for	data	handling	at	a	computer	terminal.

The	majority	of	the	codes	are	for	characters	that	would	be	found	in	an	English	text	and	which	are
available	on	a	standard	keyboard.

These	include	upper-	and	lower-case	letters,	punctuation	marks,	denary	digits	and	arithmetic
symbols.

The	codes	for	numbers	and	for	letters	are	in	sequence	so	that,	for	example,	if	1	is	added	to	the	code
for	seven,	the	code	for	eight	is	produced.

The	codes	for	the	upper-case	letters	differ	from	the	codes	for	the	corresponding	lower-case	letters
only	in	the	value	of	bit	5,	which	allows	a	simple	conversion	from	upper	to	lower	case	or	the	reverse.
(Don’t	forget	that	the	least	significant	bit	is	bit	0.)

Note	that	this	coding	for	numbers	is	exclusively	for	use	in	the	context	of	stored,	displayed	or	printed
text.	All	of	the	other	coding	schemes	for	numbers	are	for	internal	use	in	a	computer	system	and	would
not	be	used	in	a	text.

Although	a	standard	version	of	ASCII	has	been	created,	different	versions	of	7-bit	ASCII	are	tailored	to
different	software	or	different	countries.	Mostly,	the	coding	for	the	printable	characters	has	remained
unchanged.	A	notable	exception	was	the	use	in	some	countries	of	the	code	00100001	to	represent	a
currency	symbol	rather	than	#.	However,	because	most	of	the	control	characters	became	of	limited	use,
there	were	versions	of	ASCII	that	used	these	codes	to	produce	small	graphic	icons.	For	example,	the
code	00000001	would	show	 .

Extended	ASCII	is	a	code	that	uses	all	eight	bits	in	a	byte.	The	most	used	standardised	version	is	often
referred	to	as	ISO	Latin-1.	The	name	Latin-1	reflects	the	fact	that	many	of	the	new	character	definitions
are	for	accented	or	otherwise	modified	alphabetic	characters	found	in	European	languages,	for	example
Ç	or	ü.	As	with	the	7-bit	code,	there	are	many	variations	of	the	standard	code.

Question	1.02
Many	years	ago,	a	byte	was	defined	as	six	bits.	If	a	character	was	to	be	represented	by	one	byte,	which
characters	would	you	expect	to	be	representable	and	which	ones	would	you	expect	to	be	unavailable?

Unicode
Although	ASCII	codes	are	widely	used,	they	do	not	cover	all	the	characters	needed	for	some	uses.	For
this	reason,	new	coding	schemes	have	been	developed	and	continue	to	be	developed	further.	The
discussion	here	describes	one	of	the	Unicode	schemes.	It	should	be	noted	that	Unicode	codes	have	been
developed	in	tandem	with	the	Universal	Character	Set	(UCS)	scheme,	standardised	as	ISO/IEC	10646.

The	aim	of	Unicode	is	to	be	able	to	represent	any	possible	text	in	code	form.	In	particular,	this	includes
all	languages	in	the	world.	The	most	popular	version	of	Unicode	which	is	discussed	here	is	named	UTF-
8.	The	inclusion	of	8	in	the	name	indicates	that	this	version	of	the	standard	includes	codes	defined	by
one	byte	in	addition	to	codes	using	two,	three	and	four	bytes.

Figure	1.04	shows	the	structure	of	the	codes.	The	1	byte	code	reproduces	7-bit	ASCII.	Because	the	byte
has	the	most	significant	bit	set	to	0	there	can	be	no	confusion	with	any	byte	which	is	part	of	a	multiple
byte	code.	Note	that	for	the	two-byte,	three-byte	and	four-byte	representations	all	continuing	bytes
have	the	two	most	significant	bits	set	to	10.	Whenever	a	byte	has	the	most	significant	bits	set	to	11
there	will	be	at	least	one	continuation	byte	following.

0???????

110????? 10??????

1110???? 10?????? 10??????

11110??? 10?????? 10?????? 10??????

Figure	1.04	Byte	formats	for	Unicode	UTF-8

The	number	of	codes	available	is	determined	by	the	number	of	bits	that	are	not	pre-defined	by	the
format.	For	example,	there	are	eleven	bits	free	to	identify	codes	in	the	2-byte	format.	This	allows	211	=
2048	different	codes.

Unicode	has	its	own	special	terminology	and	symbolism.	A	character	code	is	referred	to	as	a	‘code
point’.	In	any	documentation	a	code	point	is	identified	by	U+	followed	by	a	4-digit	hexadecimal	number.
The	code	points	U+0000	to	U+00FF	define	characters	which	are	a	duplicate	of	those	in	the	standard
Latin-1	scheme.	The	binary	codes	corresponding	to	U+0000	to	U+007F	use	one	byte	only	and	range
from	00000000	through	to	01111111.	Then	the	binary	codes	for	U+0080	to	U+00FF	require	two	bytes
and	range	from	11000000	for	the	first	byte	followed	by	10000000	for	the	second	byte	through	to
11000001	followed	by	10111111.

1.05	Images
Images	can	be	stored	in	a	computer	system	for	the	eventual	purpose	of	displaying	the	image	on	a
screen	or	for	presenting	it	on	paper,	usually	as	a	component	of	a	document.	Such	an	image	can	be
created	by	using	an	appropriate	graphics	package.	Alternatively,	when	an	image	already	exists
independently	of	the	computer	system,	the	image	can	be	captured	by	using	photography	or	by
scanning.

Vector	graphics
In	an	image	that	is	created	by	a	drawing	package	or	a	computer-aided	design	(CAD)	package	each
component	is	an	individual	drawing	object.	The	image	is	then	stored,	usually	as	a	vector	graphic	file.

We	do	not	need	to	consider	how	an	image	of	this	type	would	be	created.	We	do	need	to	consider	how
the	data	is	stored	after	the	image	has	been	created.	A	vector	graphic	file	contains	a	drawing	list.	The
list	contains	a	command	for	each	object	included	in	the	image.	Each	command	has	a	list	of	attributes,
each	attribute	defines	a	property	of	the	object.	The	properties	include	the	basic	geometric	data	such
as,	for	a	circle,	the	position	of	the	centre	and	its	radius.	In	addition,	properties	are	defined	such	as	the
thickness	and	style	of	a	line,	the	colour	of	a	line	and	the	colour	that	fills	the	shape.	An	example	of	what
could	be	created	as	a	vector	graphic	file	is	shown	in	Figure	1.05.

TASK	1.05
Construct	a	partial	drawing	list	for	the	graphic	shown	in	Figure	1.05.	You	can	take	measurements
from	the	image	and	use	the	bottom	left	corner	of	the	box	as	the	origin	of	a	coordinate	system.	You
can	invent	your	own	format	for	the	drawing	list.

Figure	1.05	A	simple	example	of	a	vector	graphic	image

The	most	important	property	of	a	vector	graphic	image	is	that	the	dimensions	of	the	objects	are	not
defined	explicitly	but	instead	are	defined	relative	to	an	imaginary	drawing	canvas.	In	other	words,	the
image	is	scalable.	Whenever	the	image	is	to	be	displayed	the	file	is	read,	the	appropriate	calculations
are	made	and	the	objects	are	drawn	to	a	suitable	scale.	If	the	user	then	requests	that	the	image	is
redrawn	at	a	larger	scale	the	file	is	read	again	and	another	set	of	calculations	are	made	before	the
image	is	displayed.	This	avoids	image	distortion,	such	as	the	image	appearing	squashed	or	stretched.

Note	that	a	vector	graphic	file	can	only	be	displayed	directly	on	a	graph	plotter,	which	is	an	expensive
specialised	piece	of	hardware.	For	the	image	to	appear	correctly	on	other	types	of	display,	the	vector
graphic	file	often	has	to	be	converted	to	a	bitmap.

Bitmaps
Most	images	do	not	consist	of	geometrically	defined	shapes,	so	a	vector	graphic	representation	is
inappropriate.	Instead,	generally	an	image	is	stored	as	a	bitmap.	Typical	uses	are	when	capturing	an
existing	image	by	scanning	or	perhaps	by	taking	a	screen-shot.	Alternatively,	an	image	can	be	created
by	using	a	simple	graphics	package.

The	fundamental	concept	underlying	the	creation	of	a	bitmap	file	is	that	the	picture	element	(pixel)	is

the	smallest	identifiable	component	of	a	bitmap	image.	The	image	is	stored	as	a	two-dimensional	matrix
of	pixels.	The	pixel	itself	is	a	very	simple	construct;	it	has	a	position	in	the	matrix	and	it	has	a	colour.	It
does	not	matter	whether	each	pixel	is	a	small	rectangle,	a	small	circle	or	a	dot.

The	scheme	used	to	represent	the	colour	has	to	be	defined.	The	simplest	option	is	to	use	one	bit	to
represent	the	colour,	so	that	the	pixel	is	either	black	or	white.	Storage	of	the	colour	in	four	bits	allows
simple	greyscale	colouring.	At	least	eight	bits	per	pixel	are	necessary	to	provide	a	sufficient	range	of
colours	to	provide	a	reasonably	realistic	representation	of	any	image.	The	number	of	bits	per	pixel	is
sometimes	referred	to	as	the	colour	depth.

An	alternative	definition	is	the	bit	depth.	Although	these	terms	are	sometimes	used	interchangeably,
bit	depth	is	best	defined	as	the	number	of	bits	used	to	store	each	of	the	red,	green	and	blue	primary
colours	in	the	RGB	colour	scheme.

A	colour	depth	of	8	bits	per	pixel	provides	256	different	colours.	A	bit	depth	of	8	bits	per	primary	colour
provides	256	×	256	×	256	=	16	777	216	different	colours.	The	eye	cannot	distinguish	this	number	of
different	colours.	However,	this	many	are	needed	if	an	image	contains	areas	of	gradually	changing
colour	such	as	in	a	picture	of	the	sky.	If	a	lower	bit	depth	is	used	the	image	will	show	bands	of	colour.

We	also	need	to	decide	which	resolution	to	use	for	the	image,	which	can	be	represented	as	the	product
of	the	number	of	pixels	per	row	times	the	number	of	rows.	When	considering	resolution	it	is	important
to	distinguish	between	an	image	resolution,	as	defined	in	a	bitmap	file,	and	a	screen	resolution	for	a
particular	monitor	screen	that	might	be	used	to	display	the	image.	Both	of	these	have	to	be	considered
if	a	screen	display	is	being	designed.

A	bitmap	file	does	not	define	the	physical	size	of	a	pixel	or	of	the	whole	image.	When	the	image	is
scaled	the	number	of	pixels	in	it	does	not	change.	If	a	well-designed	image	is	presented	on	a	suitable
screen	the	human	eye	cannot	distinguish	the	individual	pixels.	However,	if	the	image	is	magnified	too
far	the	individual	pixels	will	be	seen.	This	is	illustrated	in	Figure	1.06	which	shows	an	original	small
image,	a	magnified	version	of	this	small	image	and	a	larger	image	created	with	a	more	sensible,	higher
resolution.

Figure	1.06	(a)	a	bitmap	logo;	(b)	an	over-magnified	version	of	the	image;	(c)	a	sensible	larger	version

File	size	is	always	an	issue	with	an	image	file.	A	large	file	occupies	more	memory	space	and	takes
longer	to	display	or	to	be	transmitted	across	a	network.	Usually,	a	vector	graphic	file	uses	considerably
less	memory	space	than	a	corresponding	bitmap	file.

You	can	calculate	the	size	of	a	bitmap	graphic	knowing	the	resolution	and	the	colour	depth.	As	an
example,	consider	that	a	bitmap	graphic	is	needed	to	fill	a	laptop	screen	where	the	resolution	is	1366
by	768.	If	we	want	colour	depth	of	24	then	the	number	of	bits	we	need	is:

1366	×	768	×	24	=	25	178	112	bits

The	result	of	this	calculation	shows	the	number	of	bits,	but	a	size	is	always	quoted	as	a	number	of	bytes
or	multiples	of	bytes.	For	our	bitmap	graphic:

25	178	112	bits =	25	178	112	÷	8	=	3	147	264	bytes

  =	3	147	264	÷	1024	=	3073.5	kibibytes	(3073.5	KiB)

  =	3073.5	÷	1024	=	approximately	3	MiB

Note	that	this	calculation	has	assumed	that	the	colour	depth	specifies	the	total	number	of	bits	used	to
define	each	pixel.	If	the	information	given	was	that	the	bit	depth	was	eight,	then	the	calculation	would
use	8	+	8	+	8	for	the	number	of	bits	per	pixel.

WORKED	EXAMPLE	1.04

You	have	been	asked	to	calculate	a	value	for	the	minimum	size	of	a	bitmap	file.	The	bitmap	is	to	use
a	bit	depth	of	8	and	the	bitmap	is	to	be	printed	with	72	dpi	(dots	per	inch)	and	to	have	dimensions
5	inches	by	3	inches.

We	use	the	information	provided	about	the	colour	depth	or	the	bit	depth	to	give	the	number	of	bits
per	pixel.	In	this	case	the	bit	depth	is	8,	which	means	8	bits	for	each	of	the	RGB	components,	so	24
bits	are	needed	for	one	pixel.

Let’s	state	that	72	dpi	means	72	pixels	per	inch.

So,	the	number	of	pixels	per	row	is	5	×	72	=	360

And	the	number	of	pixels	per	column	is	3	×	72	=	216

Therefore,	the	total	number	of	pixels	is	360	×	216	=	77	760

The	total	number	of	bits	is	this	value	multiplied	by	24.	However,	we	want	the	size	in	bytes	not	bits,
so	we	multiply	by	3	because	there	are	8	bits	in	a	byte.	So,	we	get:

77	760	×	3	=	233	280	bytes.

We	can	quote	this	in	kibibytes	by	dividing	by	1024:

233	280	/	1024	=	227.8	KiB

A	bitmap	file	has	to	store	the	pixel	data	that	defines	the	graphic,	but	the	file	must	also	have	a	file
header	that	contains	information	on	how	the	graphic	has	been	constructed.	Because	of	this,	the	bitmap
file	size	is	larger	than	the	size	of	the	graphic	alone.	At	the	very	least	the	header	will	define	the	colour
depth	or	bit	depth	and	the	resolution.

The	following	are	considerations	when	justifying	the	use	of	either	a	bit	map	or	a	vector	graphic	for	a
specific	task.

A	vector	graphic	is	chosen	if	a	diagram	is	needed	to	be	constructed	for	part	of	an	architectural,
engineering	or	manufacturing	design.

If	a	vector	graphic	file	has	been	created	but	there	is	a	need	to	print	a	copy	using	a	laser	or	inkjet
printer	the	file	has	first	to	be	converted	to	a	bitmap.

A	digital	camera	automatically	produces	a	bitmap.

A	bitmap	file	is	the	choice	for	insertion	of	an	image	into	a	document,	publication	or	web	page.

1.06	Sound
Natural	sound	consists	of	variations	in	pressure	which	are	detected	by	the	human	ear.	A	typical	sound
contains	a	large	number	of	individual	waves,	each	with	a	defined	frequency.	The	result	is	a	wave	form	in
which	the	amplitude	of	the	sound	varies	in	a	continuous	but	irregular	pattern.

If	we	want	to	store	sound	or	transmit	it	electronically	the	original	analogue	sound	signal	has	to	be
converted	to	a	binary	code.	The	measured	sound	values	are	input	to	a	sound	encoder	which	has	two
components.	The	first	is	a	band-limiting	filter.	This	is	needed	to	remove	high-frequency	components.	A
human	ear	cannot	detect	these	very	high	frequencies	and	they	could	cause	problems	for	the	coding	if
not	removed.	The	other	component	in	the	encoder	is	an	analogue-to-digital	converter	(ADC)	which
converts	the	analogue	data	to	digital	data.

Figure	1.07	shows	the	sampling	operation	of	the	ADC.	The	amplitude	of	the	wave	(the	red	line)	has	to
be	sampled	at	regular	intervals.	The	blue	vertical	lines	indicate	the	sampling	times.	The	amplitude
cannot	be	measured	exactly;	instead	the	amplitude	is	approximated	by	the	closest	of	the	defined
amplitudes	represented	by	the	horizontal	lines.	In	Figure	1.07,	sample	values	1	and	4	will	be	an
accurate	estimate	of	the	actual	amplitude	because	the	wave	is	touching	an	amplitude	line.	In	contrast,
samples	5	and	6	will	not	be	accurate	because	the	actual	amplitude	is	approximately	half	way	between
the	two	closest	defined	values.

To	code	sound,	we	need	to	make	two	decisions.	The	first	is	the	number	of	bits	we	will	use	to	store	the
amplitude	values,	which	defines	the	sampling	resolution.	If	we	use	only	three	bits	then	eight	levels
can	be	defined	as	shown	in	Figure	1.07.	If	too	few	are	used	there	will	be	a	significant	error	when	the
closest	amplitude	in	the	scale	of	values	dictated	by	the	sampling	resolution	is	used	as	the	approximation
for	the	real	value.	In	practice,	16	bits	provides	reasonable	accuracy	for	most	digitised	sound.

We	also	need	to	choose	the	sampling	rate,	which	is	the	number	of	samples	taken	per	second.	This
should	be	in	accordance	with	Nyquist’s	theorem	which	states	that	sampling	must	be	done	at	a
frequency	at	least	twice	the	highest	frequency	of	the	sound	in	the	sample.

Figure	1.07	ADC	sampling

Once	again	file	size	can	be	an	issue.	An	increased	sampling	rate	and	an	increased	sampling	resolution
will	both	cause	an	increase	in	file	size.

1.07	Compression	techniques
Larger	files	require	larger	storage	capacity	but	more	importantly,	larger	files	have	lower	transmission
or	download	rates.	For	this	reason,	compression	techniques	are	often	used	to	reduce	file	size.

There	are	two	categories	of	compression.	The	first	is	lossless	compression	where	the	file	size	is
reduced	but	no	information	is	lost.	The	process	can	be	reversed	to	re-create	the	original	file.	The
second	is	lossy	compression	where	the	file	size	is	reduced	with	some	loss	of	information	and	the	exact
original	file	can	never	be	recovered.	In	many	applications	a	combination	of	lossless	and	lossy	methods
are	used.

We	could	use	the	same	type	of	lossless	file	compression	for	everything,	because	all	files	contain	binary
codes.	A	good	compression	application	will	recognise	patterns	in	files	that	it	can	compress,	without	any
knowledge	of	what	file	type	the	code	represents.	However,	most	compression	techniques	have	been
developed	to	work	with	a	particular	type	of	file.

A	common	lossless	compression	technique	is	run-length	encoding.	This	works	particularly	well	with	a
bitmap	file.	The	idea	is	that	compression	converts	sequences	of	the	same	byte	value	into	a	code	that
defines	the	byte	value	and	the	number	of	times	it	is	repeated	(the	count).

For	example,	the	sequence	of	the	same	four	bytes:

01100110 01100110 01100110 01100110

could	be	replaced	by:

00000100 01100110

which	says	that	there	is	a	run	of	four	of	the	bytes.

However,	this	is	not	the	full	story	because	in	this	simple	form	it	is	not	obvious	which	byte	represents	the
number	(count)	in	the	sequence.	There	are	a	number	of	methods	used	to	distinguish	the	count	byte
from	a	data	byte,	but	we	do	not	need	to	go	into	the	details.

If	a	file	contains	text,	then	compression	must	be	lossless	because	any	loss	of	information	would	lead	to
errors	in	the	text.	One	possible	compression	method	is	called	Huffman	coding.	The	procedure	used	to
carry	out	the	compression	is	quite	detailed,	but	the	principle	is	straightforward.	Instead	of	having	each
character	coded	in	one	byte,	the	text	is	analysed	to	find	the	most	often	used	characters.	These	are	then
given	shorter	codes.	The	original	stream	of	bytes	becomes	a	bit	stream.

A	possible	set	of	codes	if	a	text	contained	only	eight	different	letters	is	shown	in	Table	1.10.	The
important	point	to	note	here	is	the	prefix	property.	None	of	the	codes	begins	with	the	sequence	of	bits
representing	a	shorter	code.	This	means	that	there	can	be	no	ambiguity	when	the	transmitted
compressed	file	has	to	be	converted	back	to	the	original	text.

Code Character

		10 e

		01 t

	111 o

	110 h

0001 l

0000 p

0011 w

0010 z

Table	1.10	An	example	of	Huffman	coding

Huffman	coding	can	also	be	used	for	compressing	a	sound	file.	This	is	effective	because	some	values	for

the	amplitude	occur	far	more	often	than	others	do.

If	a	vector	graphic	file	needs	to	be	compressed	it	is	best	converted	to	a	Scalable	Vector	Graphics
format.	This	uses	a	markup	language	description	of	the	image	which	is	suitable	for	lossless
compression.

Lossy	compression	can	be	used	in	circumstances	where	a	sound	file	or	an	image	file	can	have	some	of
the	detailed	coding	removed	or	modified.	This	can	happen	when	it	is	likely	that	the	human	ear	or	eye
will	hardly	notice	any	difference.	One	method	for	lossy	compression	of	a	sound	file	takes	advantage	of
the	fact	that	the	successive	sampled	values	are	unlikely	to	change	very	much.	The	file	of	individual
sample	amplitudes	can	be	converted	to	a	file	of	amplitude	differences.	Compression	is	achieved	by
using	a	lower	sample	resolution	to	store	the	differences.	An	alternative	is	to	convert	the	sampled
amplitudes	that	represent	time	domain	data	and	transform	them	to	a	frequency	domain	representation.
The	values	for	frequencies	that	would	be	barely	audible	are	then	re-coded	with	fewer	bits	before	the
data	is	transformed	back	to	the	original	time	domain	form.

For	a	bitmap	a	simple	lossy	compression	technique	is	to	establish	a	coding	scheme	with	reduced	colour
depth.	Then	for	each	pixel	in	the	original	bitmap	the	code	is	changed	to	the	one	in	the	new	scheme
which	represents	the	closest	colour.

Extension	Question	1.01
Graphic	files	can	be	stored	in	a	number	of	formats.	For	example,	JPEG,	GIF,	PNG	and	TIFF	are	just	a
few	of	the	possibilities.	What	compression	techniques,	if	any,	do	these	use?

Reflection	Point:
Can	you	recall	the	different	possibilities	for	what	one	byte	might	be	coded	to	represent?

Summary
A	binary	code	or	a	binary	number	can	be	documented	as	a	hexadecimal	number.
Internal	coding	of	signed	integers	is	usually	based	on	a	two’s	complement	representation.
Binary	addition	can	cause	overflow.
BCD	is	a	convenient	coding	scheme	for	single	denary	digits.
ASCII	and	Unicode	are	standardised	coding	schemes	for	text	characters.
An	image	can	be	stored	either	in	a	vector	graphic	file	or	in	a	bitmap	file.
An	ADC	works	by	sampling	a	continuous	waveform.
Lossless	compression	allows	an	original	file	to	be	recovered	by	a	decoder;	lossy	compression
irretrievably	loses	some	information.

■
■
■
■
■
■
■
■

Exam-style	Questions

[2]

[2]

[1]

[3]

[2]

[3]

[2]

[2]

[2]

[2]

[1]

[2]

[2]

[2]

[5]

[1]

[2]

A	file	contains	binary	coding.	The	following	are	two	successive	bytes	in	the	file:	10010101	and
00110011

One	possibility	for	the	information	stored	is	that	the	two	bytes	together	represent	one	unsigned
integer	binary	number.

Calculate	the	denary	number	corresponding	to	this.

Calculate	the	hexadecimal	number	corresponding	to	this.

Give	one	example	of	when	a	hexadecimal	representation	is	used.

Another	possibility	for	the	information	stored	is	that	the	two	bytes	individually	represent	two
signed	integer	binary	numbers	in	two’s	complement	form.

State	which	byte	represents	a	negative	number	and	explain	the	reason	for	your	choice.

Calculate	the	denary	number	corresponding	to	each	byte.

Give	two	advantages	of	representing	signed	integers	in	two’s	complement	form	rather	than	using
a	sign	and	magnitude	representation.

Give	three	different	examples	of	other	options	for	the	types	of	information	that	could	be
represented	by	two	bytes.	For	each	example,	state	whether	a	representation	requires	two	bytes
each	time,	just	one	byte	or	only	part	of	a	byte	each	time.

A	designer	wishes	to	include	some	multimedia	components	on	a	web	page.

If	the	designer	has	some	images	stored	in	files	there	are	two	possible	formats	for	the	files.

Describe	the	approach	used	if	a	graphic	is	stored	in	a	vector	graphic	file.

Describe	the	approach	used	if	a	graphic	is	stored	in	a	bitmap	file.

State	which	format	gives	better	image	quality	if	the	image	has	to	be	magnified	and	explain
why.

The	designer	is	concerned	about	the	size	of	some	bitmap	files.

If	the	resolution	is	to	be	640	×	480	and	the	colour	depth	is	to	be	16,	calculate	an	approximate
size	for	the	bitmap	file.	State	the	answer	using	sensible	units. 

Explain	why	this	calculation	only	gives	an	approximate	file	size.

The	designer	decides	that	the	bitmap	files	need	compressing.

Explain	how	a	simple	form	of	lossless	compression	could	be	used.

Explain	one	possible	approach	to	lossy	compression	that	could	be	used.

An	audio	encoder	is	to	be	used	to	create	a	recording	of	a	song.	The	encoder	has	two	components.

One	of	the	components	is	an	analogue-to-digital	converter	(ADC).

Explain	why	this	is	needed.

Two	important	factors	associated	with	the	use	of	an	ADC	are	the	sampling	rate	and	the
sampling	resolution.	Explain	the	two	terms.	Sketch	a	diagram	if	this	will	help	your
explanation.

The	other	component	of	an	audio	encoder	has	to	be	used	before	the	ADC	is	used.

Identify	this	component.

Explain	why	it	is	used.

Using	two’s	complement,	show	how	the	following	denary	numbers	could	be	stored	in	an	8-bit
register:

124                        

1

a

i

ii

b

c

i

ii

d

e

2

a

i

ii

iii

b

i

ii

c

i

ii

3

a

i

ii

b

i

ii

4 a i

[2]

[2]

[1]

[2]

[4]

[2]

[2]

[3]

–77                        

Convert	the	two	numbers	in	part	(a)	(i)	into	hexadecimal.

Binary	Coded	Decimal	(BCD)	is	another	way	of	representing	numbers.

Write	the	number	359	in	BCD	form.

Describe	a	use	of	BCD	number	representation.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	13	Q1	June	2015

Sound	can	be	represented	digitally	in	a	computer.

Explain	the	terms	sampling	resolution	and	sampling	rate.

The	following	information	refers	to	a	music	track	being	recorded	on	a	CD:

music	is	sampled	44	100	times	per	second

each	sample	is	16	bits

each	track	requires	sampling	for	left	and	right	speakers.

Calculate	the	number	of	bytes	required	to	store	one	second	of	sampled	music.	Show	your
working.

A	particular	track	is	four	minutes	long.

Describe	how	you	would	calculate	the	number	of	megabytes	required	to	store	this	track.

When	storing	music	tracks	in	a	computer,	the	MP3	format	is	often	used.	This	reduces	file	size	by
about	90%.

Explain	how	the	music	quality	is	apparently	retained.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q4	November	2015

ii

b

i

ii

5 a

b

i

ii

c

Chapter	2:
Communication	and	networking	technologies

2.01	The	evolution	of	the	purpose	and	benefits	of	networking
Wide	area	network	(WAN)
During	the	1970s	it	would	be	normal	for	a	large	organisation	to	have	a	computer.	This	computer	would
be	a	mainframe	or	minicomputer.	The	computer	could	have	been	running	a	time-sharing	operating
system	with	individual	users	accessing	the	computer	using	a	terminal	connected	to	the	computer	with	a
cable.	Technology	was	developed	that	allowed	computers	in	different	organisations	to	be	networked
using	what	would	now	be	described	as	a	wide	area	network	(WAN).	In	a	WAN,	the	networked
computers	could	be	thousands	of	kilometres	apart.

The	benefits	of	having	the	computers	connected	by	a	WAN	were:

a	‘job’	could	be	run	on	a	remote	computer	that	had	the	required	application	software

a	data	archive	that	was	stored	on	a	remote	computer	could	be	accessed

a	message	could	be	transmitted	electronically	to	a	user	on	a	remote	computer.

Today,	a	typical	WAN	is	characterised	by	the	following.

It	will	be	used	by	an	organisation	or	a	company	to	connect	sites	or	branches.

It	will	not	be	owned	by	the	organisation	or	company.

It	will	be	leased	from	a	public	switched	telephone	network	company	(PSTN).

A	dedicated	communication	link	will	be	provided	by	the	PSTN.

The	transmission	medium	will	be	fibre-optic	cable.

Transmission	within	the	WAN	will	be	from	switch	to	switch.

A	switch	will	connect	the	WAN	to	each	site.

There	will	not	be	any	end-systems	connected	directly	to	the	WAN.

Local	area	network	(LAN)
In	the	1980s	the	arrival	of	the	microcomputer	or	personal	computer	(PC)	changed	computing.	In	an
organisation,	a	user	could	have	their	own	computer	on	their	desk.	Initially	this	was	used	as	a	stand-
alone	system.	However,	very	soon	the	decision	would	be	made	to	connect	the	PCs	a	local	area
network	(LAN).	It	was	called	a	local	area	network	because	it	typically	connected	PCs	that	were	in	one
room	or	in	one	building	or	on	one	site.

The	benefits	of	connecting	PCs	in	a	LAN	included	the	following.

The	expense	of	installing	application	software	on	each	individual	PC	could	be	saved	by	installing	the
software	on	an	application	server	attached	to	the	LAN	instead.

A	file	server	could	be	attached	to	the	LAN	that	allowed	users	to	store	larger	files	and	also	allowed
files	to	be	shared	between	users.

Instead	of	supplying	individual	printers	to	be	connected	to	a	user’s	PC,	one	or	more	printers	could
be	attached	to	a	print	server	that	was	connected	to	the	LAN;	these	could	be	higher	quality	printers.

Managers	in	organisations	could	use	electronic	mail	to	communicate	with	staff	rather	than	sending
round	memos	on	paper.

The	‘paper-less	office’	became	a	possibility,	where	files	were	to	be	stored	in	digital	form	on	a	file
server	rather	than	as	paper	copies	in	a	filing	cabinet.

Today,	a	typical	LAN	is	characterised	by	the	following.

It	will	be	used	by	an	organisation	or	a	company	within	a	site	or	branch.

It	will	be	owned	by	the	organisation	or	company.

It	will	be	one	of	many	individual	LANS	at	one	site.

The	transmission	medium	will	be	twisted	pair	cable	or	WiFi.

The	LAN	will	contain	a	device	that	allows	connection	to	other	networks.

There	will	be	end-systems	connected	which	will	be	user	systems	or	servers.

Discussion	Point:
If	a	print	server	was	attached	to	a	network,	what	functionality	could	it	provide?

Internet	working
The	1990s	can	be	said	to	be	when	the	modern	era	of	computing	and	network	use	started,	with	the
beginning	of	widespread	use	of	the	Internet.	The	word	Internet	is	a	shortened	form	of	the	term
‘internetwork’,	which	describes	a	number	of	networks	all	connected	together.	LANs	are	connected	to
WANs	which	are	in	turn	connected	to	the	Internet	to	allow	access	to	resources	world-wide.	The	other
technologies	defining	the	modern	era,	namely	mobile	devices	and	wireless	networking,	started	to
become	commonly	used	in	the	2000s.

The	purpose	and	benefits	of	networking	have	not	changed	but	their	scale	and	scope	has	increased
enormously.	In	particular,	people	now	have	full	access	to	networks	from	their	personal	devices.

The	client-server	model
The	client-server	model	(or	architecture)	was	first	used	in	large	organisations	when	they	had	installed
internal	networks.	Typically,	the	organisation	would	have	individual	LANs	connected	via	an
organisation-wide	WAN.	An	individual	LAN	might	have	had	an	application	server	attached.	The
organisation	was	likely	to	need	a	powerful	central	computer.	The	central	computer	could	be	connected
to	the	WAN	as	a	server.	It	would	probably	not	have	individual	users	connected	to	it	directly.	A	PC,
attached	to	a	LAN,	could	access	the	server	as	a	client.

The	client-server	mode	of	operation	nowadays	is	different.	The	client	is	a	web	browser	connected	to	the
Internet.	The	server	is	a	web	server	hosted	on	the	Internet.

The	server	provides	an	application	and	the	client	uses	the	application.	There	are	two	options	for	how
the	client	functions.

A	thin-client	is	one	which:

chooses	an	application	to	run	on	the	server

sends	input	data	to	the	server	when	requested	by	the	application

receives	output	from	the	application.

A	thick-client	is	one	which:

chooses	an	application	provided	by	the	server

possibly	carries	out	some	processing	before	running	the	application	on	the	server	and	also	after
receiving	output	from	the	application

alternatively,	possibly	downloads	the	application	from	the	server	and	runs	the	application	itself.

	TIP
In	thick-client	mode	the	processing	on	the	client	can	be	controlled	by	the	use	of	a
scripting	language.	You	do	not	need	to	know	any	details	of	this.

The	client-server	approach	is	the	choice	in	the	following	circumstances.

The	server	stores	a	database	which	is	accessed	from	the	client	system.

The	server	stores	a	web	application	which	allows	the	client	system	to	find	or,	sometimes,	supply
information.

The	server	stores	a	web	application	which	allows	the	client	system	to	carry	out	an	e-commerce	or
financial	transaction.

File	sharing
If	a	user	uploads	files	to	a	file	server	then	the	client-server	operation	can	be	used	by	another	user	to
download	these	from	the	server.

An	alternative	mode	of	operation	for	sharing	files	is	peer-to-peer	networking.	Instead	of	having	one
server	that	many	clients	access,	a	peer-to-peer	network	operates	with	each	peer	(networked	computer)
storing	some	of	the	files.	Each	peer	can	therefore	act	as	a	client	and	request	a	file	from	another	peer	or
it	can	act	as	a	server	when	another	peer	requests	the	download	of	a	file.

The	peer-to-peer	model	has	several	advantages	compared	to	client-server	file	downloading:

it	avoids	the	possibility	of	congestion	on	the	network	when	many	clients	are	simultaneously
attempting	to	download	files

parts	of	a	file	can	be	downloaded	separately

the	parts	are	available	from	more	than	one	host.

The	client-server	model	has	the	following	advantages.

It	allows	an	organisation	to	control	the	downloading	and	use	of	files.

The	files	can	be	better	protected	from	malware	attacks	because	the	files	are	stored	on	one	server
which	will	be	regularly	scanned	using	appropriate	anti-virus	software.

2.02	Network	topologies
There	are	five	requirements	for	a	data	communications	system:	a	sender,	a	receiver,	a	transmission
medium,	a	message	and	a	protocol	(see	Chapter	17	for	details	about	protocols).	A	transmission	medium
can	be	air	(e.g.	for	WiFi)	or	cables	(e.g.	for	Ethernet).	Data	can	be	sent	through	the	medium	in	different
modes:

simplex	mode	where	data	flow	is	one-way	only

half	duplex	where	data	can	flow	either	way	but	not	simultaneously

full	duplex	where	simultaneous	both-ways	data	flow	is	possible.

A	‘message’	is	any	type	of	data,	which	can	be	sent	as	either:

a	broadcast,	which	is	a	one-to-all	communication	(as	used	traditionally	for	radio	and	television)

a	multicast,	which	is	from	one	source	to	many	destinations

a	unicast,	which	is	a	one-to-one	communication.

A	data	communications	system	may	consist	of	a	single	isolated	network.	There	are	several	possibilities
for	the	topology	of	an	isolated	network.	The	simplest	of	these	is	where	two	systems	are	connected	by	a
network	link	as	shown	in	Figure	2.01.	This	is	an	example	of	a	point-to-point	connection,	which	is	a
dedicated	link.	Transmission	might	be	simplex	or	duplex	and	a	message	can	only	be	unicast.

Figure	2.01	A	point-to-point	network

Early	LAN	topologies	used	either	a	ring	or	a	bus	topology.	We	don’t	need	to	cover	the	ring	topology	as
it	is	not	used	very	often	now.	A	bus	topology	has	only	one	link	but	it	is	shared	by	a	number	of	end-
systems	and	is	therefore	described	as	a	multi-point	connection.	The	configuration	is	shown	in	Figure
2.02.	There	is	no	direct	connection	between	any	pair	of	end-systems.	A	message	must	therefore	be
broadcast	even	though	it	might	only	be	intended	for	one	end-system.	The	topology	is	resilient	because
a	fault	in	an	end-system	or	in	the	link	to	it	does	not	affect	the	use	of	the	network	by	the	other	end-
systems.

Figure	2.02	A	bus	network

An	example	of	a	fully-connected	mesh	topology	is	shown	in	Figure	2.03.	In	this	configuration,	each
end-system	has	a	point-to-point	connection	to	each	of	the	other	end-systems.	Transmission	is	duplex;
messages	might	be	unicast,	multicast	or	broadcast.

Figure	2.03	A	mesh	network.

Figure	2.03	shows	end-systems	connected	in	a	mesh	topology	but	this	is	unrealistic	because	of	the
amount	of	cabling	required.	A	mesh	topology	can	be	used	when	individual	LAN	switches	are	connected
in	a	network.	The	topology	is	essential	for	the	connection	of	routers	within	the	infrastructure	of	the
Internet.

The	final	possibility	is	a	star	topology	which	is	shown	in	Figure	2.04.

Figure	2.04	A	star	topology

Figure	2.04	could	have	been	drawn	so	that	it	looked	like	a	star	but	has	been	drawn	to	show	the	physical
configuration	that	is	used	in	a	real	life	installation.	In	a	star	topology,	each	end-system	has	a	point-to-
point	connection	to	the	central	device.	Transmission	is	duplex	and	messages	from	the	central	device
might	be	unicast,	multicast	or	broadcast.	As	with	the	bus	topology,	the	failure	of	an	end-system,	or	its
link,	leaves	the	other	end-systems	unaffected.	However,	the	central	device	must	not	fail.

In	the	bus	topology	most	of	the	end-systems	might	be	user	workstations	and	the	others	are	servers.
However,	in	the	star	topology,	the	end-systems	might	be	user	workstations	or	servers	but	the	central
device	is	different.	It	is	a	specialised	device	with	the	purpose	of	connecting	other	devices	in	the
network.	Currently,	the	star	topology	is	the	usual	way	to	configure	a	network.	There	are	several	reasons
for	this.	The	most	important	is	that	the	central	device	can	be	used	to	connect	the	network	to	other
networks	and,	in	particular,	to	the	Internet.

Discussion	Point:
Which	network	topologies	have	you	used?	You	might	wish	to	defer	this	discussion	until	you	have	read
about	network	devices	later	in	this	chapter.

In	a	situation	where	several	LANs	are	connected,	they	can	have	different	topologies	or	supporting
technologies.	This	collection	of	LANs	then	becomes	a	hybrid	network.	A	special	connecting	device	is
needed	to	ensure	that	the	hybrid	network	is	fully	functional.	It	is	often	an	advantage	to	be	able	to
connect	a	new	topology	LAN	to	existing	LANs	where	it	is	not	sensible	or	not	possible	to	use	the	existing
topology	for	the	new	LAN.	An	example	is	when	a	wired	LAN	is	already	installed	but	a	new	wireless	LAN
is	to	be	connected	to	it.

2.03	Transmission	media
Cable
A	network	cable	can	be	twisted	pair,	coaxial	or	fibre-optic.	The	twisted	pair	and	coaxial	cables	both	use
copper	for	the	transmission	medium.	In	discussing	suitability	for	a	given	application	there	are	a	number
of	factors	to	consider.	One	of	these	is	the	cost	of	the	cable	and	connecting	devices.	Another	is	the	best
bandwidth	that	can	be	achieved.	The	bandwidth	governs	the	possible	data	transmission	rate.	There	are
then	two	factors	that	can	cause	poor	performance:	the	likelihood	of	interference	affecting	transmitted
signals	and	the	extent	of	attenuation	(deterioration	of	the	signal)	when	high	frequencies	are
transmitted.	These	factors	will	dictate	whether	repeaters	or	amplifiers	are	needed	in	transmission	lines
and	how	many	will	be	needed.	Table	2.01	shows	some	comparisons	of	the	different	cable	types.

Twisted	pair Coaxial Fibre-optic

Cost Lowest Higher Highest

Bandwidth	or	data	rate Lowest Higher Much	higher

Attenuation	at	high	frequency Affected Most	affected Least	affected

Interference Worst	affected Less	affected Least	affected

Need	for	repeaters More	often More	often Less	often

Table	2.01	Comparisons	between	cable	types

You	need	to	understand	that	for	each	of	the	three	types	of	cabling	there	are	defined	standards	for
different	grades	of	cable	which	must	be	considered	when	you	decide	which	type	of	cable	to	use.	Fibre-
optic	cable	performs	best	but	costs	more	than	the	other	kinds.	For	a	new	installation	the	improved
performance	of	fibre-optic	cable	is	likely	to	be	the	factor	that	governs	your	choice.	However,	where
copper	cable	is	already	installed	the	cost	of	replacement	by	fibre-optic	cable	may	not	be	justified.

Figure	2.05	One	cable	with	four	twisted	pairs	with	differing	twist	rates	to	reduce	interference

Currently,	twisted	pair	cable	is	normally	used	to	connect	telephone	handsets	to	telephone	lines.	This
type	of	cable	is	illustrated	in	Figure	2.05.	It	is	also	the	technology	of	choice	for	high-speed	local	area
networks.

Question	2.01
Twisted	pair	cable	can	be	shielded	or	unshielded.	What	are	the	options	for	this?	How	does	shielding
affect	the	use	of	the	cable?

Coaxial	cable	is	used	extensively	by	cable	television	companies	and	in	metropolitan	area	networks.	It	is
not	usually	used	for	long-distance	telephone	cabling.	Fibre-optic	cable	is	the	technology	of	choice	for
long-distance	cabling.	As	shown	in	Figure	2.06,	coaxial	cable	is	not	bundled	but	a	fibre-optic	cable
contains	many	individual	fibres.

Figure	2.06	(a)	Coaxial	cable	and	(b)	a	bundled	fibre-optic	cable

Wireless
The	alternative	to	cable	is	wireless	transmission.	The	three	options	here	are	radio,	microwave	or
infrared.	These	are	all	examples	of	electromagnetic	radiation;	the	only	intrinsic	difference	between	the
three	types	is	the	frequency	of	the	waves.

Figure	2.07	Frequency	ranges	and	frequency	dependency	of	factors	affecting	wireless	transmission

When	making	a	choice	of	which	wireless	option	to	use	you	need	to	consider	all	of	the	same	factors	that
were	discussed	when	comparing	different	kinds	of	cable.	In	addition,	the	ability	of	the	radiation	to
transmit	through	a	solid	barrier	is	an	important	factor.	Also,	the	extent	to	which	the	transmission	can	be
focused	in	a	specific	direction	needs	to	be	considered.	Figure	2.07	shows	the	approximate	frequency
ranges	for	the	three	types	of	radiation.	The	factors	listed	on	the	left	increase	in	the	direction	of	the
arrows.	The	bandwidth	increases	through	radio	and	microwave	to	infrared	but	the	ability	of	the	waves
to	penetrate	solid	objects	is	greatest	for	radio	waves.	Interference	is	not	consistently	affected	by	the
frequency.

The	increased	attenuation	for	infrared	transmission,	which	has	the	highest	frequency,	means	that	it	is
only	suitable	for	indoor	applications.	The	fact	that	it	will	not	penetrate	through	a	wall	is	then	of	benefit
because	the	transmission	cannot	escape	and	cause	unwanted	interference	elsewhere.	For	most
applications,	microwave	transmission	is	the	best	option	because	it	has	a	better	bandwidth	compared	to
that	available	using	radio	waves.

Comparing	cable	and	wireless	transmission
It	is	worth	noting	that	cables	are	often	referred	to	as	‘guided	media’	and	wireless	as	‘unguided	media’.
This	is	slightly	misleading	because	only	radio	wave	transmission	fits	the	description	of	unguided.	It	is
possible	with	microwaves	or	infrared	to	direct	a	transmission	towards	a	particular	receiver	(as
suggested	in	Figure	2.07).

There	are	other	points	to	consider	when	we	compare	the	relative	advantages	of	transmission	through	a
cable	or	wireless	transmission.

The	use	of	certain	wireless	transmission	frequencies	is	regulated	by	government	agencies	and	so
permission	has	to	be	obtained	before	wireless	transmission	is	used.

Outside	these	frequencies,	no	permission	is	needed	to	use	the	air	for	transmission	but	cables	can
only	be	laid	in	the	ground	with	the	permission	of	landowners.

For	global	communications,	the	two	competing	technologies	are:	transmission	through	fibre-optic
cables	laid	underground	(or	on	the	sea	bed)	and	satellite	transmission	(discussed	later	in	this
section).

Interference	is	much	more	significant	for	wireless	transmission	and	its	extent	is	dependent	on
which	frequencies	are	being	used	for	different	applications.

Repeaters	are	needed	less	often	for	wireless	transmission.

Mobile	(cell)	phones	now	dominate	Internet	use	and	for	these,	only	wireless	transmission	is
possible.

For	home	or	small	office	use,	wired	or	wireless	transmission	is	equally	efficient;	often,	not	having	to
install	cables	favours	wireless	connections	for	a	small	network.

Satellites	are	components	of	modern	communication	systems.	Figure	2.08	shows	the	altitudes
(distances	above	Earth)	of	three	different	types	of	satellite.	The	Van	Allen	belts	are	areas	containing
high	levels	of	electrically	charged	particles,	which	interfere	with	satellites.

Figure	2.08	Satellite	altitudes

The	highest	altitude	satellites	are	in	geostationary	Earth	orbit	(GEO)	over	the	equator	and	these	are
used	to	provide	long-distance	telephone	and	computer	network	communication.	‘Geostationary’	means
that	the	satellite	orbits	at	the	same	speed	as	the	Earth	spins,	so	from	a	point	on	the	Earth	the	satellite
always	appears	to	be	at	the	same	point	in	the	sky.	Only	three	GEO	satellites	are	needed	for	full	global
coverage.	Closer	to	Earth	are	a	group	of	medium-Earth-orbit	(MEO)	satellites	some	of	which	provide
the	global	positioning	system	(GPS).	Ten	MEO	satellites	are	needed	for	global	coverage.	Finally,	low-
Earth-orbit	(LEO)	satellites	work	in	‘constellations’	to	supplement	the	mobile	phone	networks.	Fifty
LEO	satellites	are	needed	for	full	global	coverage	but	currently	there	are	several	hundred	LEO
satellites	in	orbit.

A	satellite	can	act	as	a	component	in	a	network	and	can	directly	connect	with	ground-based
components.	These	ground-based	components	can	be	much	further	apart	than	in	a	network	with	no
satellites.	The	disadvantage	of	satellites	is	that	the	greater	transmission	distance	causes	transmission
delays,	which	can	cause	technical	problems	for	the	network.

TASK	2.01
Calculate	the	approximate	time	taken	for	a	transmission	from	the	surface	of	the	Earth	to	a
medium-Earth-orbit	satellite.	(Take	the	speed	of	light	to	be	300	000	km	per	second.)

The	use	of	satellites	in	networks	tends	to	be	for	specialised	applications	such	as	the	Global	Positioning
System	(GPS)	or	for	Internet	use	in	remote	locations.	At	one	stage,	a	lot	of	Internet	communication	was
expected	to	make	use	of	satellites,	but	the	development	of	high-speed	fibre-optic	cabling	at	relatively
low	cost	has	reduced	the	need	for	satellites.

2.04	LAN	hardware
Wired	LANs
In	the	early	years,	coaxial	cable	was	used	for	LANs.	Nowadays,	twisted	pair	cables	are	probably	the
most	widely	used	networking	connections,	and	fibre-optic	cables	are	becoming	more	common.	In	a	bus
configuration	the	bus	will	consist	of	a	series	of	sockets	linked	by	cables.	The	ends	of	the	bus	have
terminators	attached	that	prevent	signals	from	reflecting	back	down	the	bus.	Each	end-system	(which	is
either	a	user	workstation	or	a	server),	has	a	short	length	of	cable	with	an	RJ-45	connector	at	each	end.
One	end	is	plugged	into	a	bus	socket	and	the	other	end	is	plugged	into	the	LAN	port	of	the	end-system.

In	a	star	configuration	each	end-system	has	the	same	type	of	cable	with	the	same	connectors	but	the
cable	tends	to	be	much	longer	because	it	has	to	plug	into	a	socket	on	the	central	device.

A	bus	can	be	extended	by	linking	two	bus	cables	using	a	repeater.	A	repeater	is	needed	because	over
long	distances,	signals	become	attenuated	(reduced	in	strength),	making	communication	unreliable.	A
repeater	receives	an	input	signal	and	generates	a	new	full-strength	signal.	Sometimes	a	bus	network	is
constructed	in	what	are	called	segments.	Two	segments	are	connected	using	a	bridge.	The	bridge
stores	the	network	addresses	for	the	end-systems	in	the	two	segments	it	connects.

The	LAN	port	on	an	end-system	is	connected	to	a	Network	Interface	Card	(NIC).	The	NIC	is
manufactured	with	a	unique	network	address	that	is	used	to	identify	the	end-system	in	which	it	has
been	installed.	The	addressing	system	is	discussed	in	Chapter	17	(Section	17.05).	For	a	star	network,
the	central	device	might	be	a	hub,	a	switch	or	a	router.	The	switch	is	by	far	the	most	likely.	A	switch	is
a	connecting	device	that	can	direct	a	communication	to	a	specific	end-system.	There	is	discussion	of
how	it	functions	in	Section	2.05.	The	router	is	discussed	later	in	this	chapter	and	also	in	Chapter	17.

Wireless	LANs
WiFi	(WLAN	in	some	countries)	is	a	term	used	to	describe	wireless	Ethernet.	Its	formal	description	is
IEEE	802.11.	This	is	a	wireless	LAN	standard	that	uses	radio	frequency	transmission.	The	central
device	in	a	WiFi	LAN	is	a	Wireless	Access	Point	(WAP).	This	can	be	an	end-system	in	a	wired
network.	The	WAP	can	communicate	with	an	end-system	in	the	WiFi	LAN	provided	that	the	end-system
has	a	Wireless	Network	Interface	Card	(WNIC)	installed.

2.05	Ethernet
Ethernet	is	one	of	the	two	dominant	technologies	in	the	modern	networked	world.	It	is	primarily
focused	on	LANs.	Although	Ethernet	was	first	devised	in	the	1970s	independently	of	any	organisation,	it
was	later	adopted	for	standardisation	by	the	Institute	of	Electrical	and	Electronics	Engineers	(IEEE).	In
particular	it	was	their	802	committee	that	took	responsibility	for	the	development	of	the	protocol.	The
standard	for	a	wired	network	is	denoted	as	IEEE	802.3	which	is	sometimes	used	as	an	alternative	name
for	Ethernet.	The	standard	has	so	far	evolved	through	five	generations:	standard	or	traditional,	fast,
gigabit,	10	gigabit	and	100	gigabit.	The	gigabit	part	of	the	name	indicates	its	data	transfer	speed
capability.

Original	(or	‘legacy’)	Ethernet	was	implemented	on	a	LAN	configured	either	as	a	bus	or	as	a	star	with	a
hub	as	the	central	device.	In	either	topology,	a	transmission	was	broadcast	type.	Any	message	would	be
made	available	to	all	of	the	end-systems	without	any	controlled	communication	exchange	between	any
pair	of	end-systems.	For	each	message	received	an	end-system	had	to	check	the	destination	address
defined	in	the	message	to	see	if	it	was	the	intended	recipient.

The	use	of	a	shared	medium	for	message	transmission	has	the	potential	for	messages	to	be	corrupted
during	transmission.	If	two	end-systems	were	to	transmit	messages	at	the	same	time	there	would	be
what	is	described	as	a	‘collision’.	This	is	when	the	voltages	associated	with	the	transmission	interfere
with	each	other	causing	corruption	of	the	individual	messages.	The	method	adopted	for	dealing	with
this	was	CSMA/CD	(carrier	sense	multiple	access	with	collision	detection).	This	relied	on	the	fact	that	if
a	message	was	being	transmitted	there	was	a	voltage	level	on	the	Ethernet	cable	which	could	be
detected	by	an	end-system.

The	transmitter	uses	the	following	procedure.

Although	there	might	be	some	legacy	Ethernet	LANs	still	operating,	modern	Ethernet	is	switched.	The
star	configuration	has	a	switch	as	the	central	device.	The	switch	controls	transmission	to	specific	end-
systems.	Each	end-system	is	connected	to	the	switch	by	a	full-duplex	link,	so	no	collision	is	possible
along	that	link.	Because	there	might	be	high	levels	of	activity	the	switch	needs	to	be	able	to	store	an
incoming	message	in	a	buffer	until	the	cable	is	free	for	the	transmission	to	take	place.	Since	collisions
are	now	impossible,	CSMA/CD	is	no	longer	needed.	Some	further	details	concerning	Ethernet	are
provided	in	Chapter	17	(Section	17.04).

Discussion	Point:
Carry	out	some	research	about	the	different	versions	of	Ethernet.	Which	version	is	implemented	for	the
systems	you	use?	For	how	long	will	it	give	sufficient	performance?

Check	the	voltage	on	the	transmission	medium.

If	this	indicates	activity,	wait	a	random	time	before	checking	again.

If	no	activity	is	detected,	start	transmission.

Continuously	check	for	a	collision.

If	no	collision	is	detected,	continue	transmission.

If	a	collision	is	detected,	stop	transmission	of	the	message	and	transmit	a	jamming	signal	to	warn	all
end-stations;	after	a	random	time,	try	again.

1

2

3

4

5

6

2.06	The	Internet	infrastructure
To	describe	the	Internet	as	a	WAN	pays	little	attention	to	its	size	and	complexity.	The	Internet	is	the
biggest	internetwork	in	existence.	Furthermore,	it	has	never	been	designed	as	a	single	‘whole’;	it	has
just	evolved	to	reach	its	current	form	and	is	still	evolving	towards	whatever	future	form	it	will	take.

Internet	Service	Provider	(ISP)
One	of	the	consequences	of	the	Internet	not	having	been	designed	is	that	there	is	no	agreed	definition
of	its	structure.	However,	there	is	a	hierarchical	aspect	to	the	structure	(meaning	that	there	are	several
distinct	‘levels’	within	the	structure).	For	example,	the	initial	function	of	an	Internet	Service	Provider
(ISP)	was	to	give	Internet	access	to	an	individual	or	company.	This	function	is	now	performed	by	what
we	can	call	an	‘access	ISP’.	These	access	ISPs	then	connect	to	what	we	can	call	‘middle	tier’	or	regional
ISPs,	which	in	turn	are	connected	to	tier	1	(or	‘backbone’)	ISPs.	An	ISP	is	a	network	and	connections
between	ISPs	are	handled	by	Internet	Exchange	Points	(IXPs).	The	tier	1	ISPs	are	at	the	top	of	the
hierarchy,	along	with	major	Internet	content	providers.

Discussion	Point:
How	many	ISPs	or	major	Internet	content	providers	are	you	familiar	with?

Router
We	can	also	think	of	the	Internet	in	terms	of	the	connections	that	carry	the	most	traffic,	which	consist	of
a	set	of	fibre-optic	cables	laid	under	the	sea	and	across	land,	which	can	be	described	as	a	‘mesh’
structure.	This	mesh	of	cables	contains	many	points	where	the	cables	connect	together,	which	we	call
nodes.	At	every	node	is	a	device	called	the	router.	Routers	are	found	not	only	in	the	general	‘mesh’	of
the	Internet	but	also	within	the	ISP	networks.	Each	router	is	connected	to	several	other	routers	and	its
function	is	to	choose	the	best	route	for	a	transmission.	The	details	of	how	a	router	works	are	discussed
in	Chapter	17	(Section	17.05).

Question	2.02
How	near	are	you	to	an	under-the-sea	Internet	fibre-optic	cable?

Public	switched	telephone	network	(PSTN)
Communication	systems	that	were	not	originally	designed	for	computer	networking	provide	significant
infrastructure	support	for	the	Internet.	The	longest	standing	example	is	what	is	often	referred	to	as
POTS	(plain	old	telephone	service)	but	is	more	formally	described	as	a	PSTN	(public	switched	telephone
network).	There	is	some	discussion	about	how	PSTNs	provide	that	support	in	Chapter	17.	During	the
early	years	of	networking	the	telephone	network	carried	analogue	voice	data.	However,	digital	data
could	be	transmitted	provided	that	a	modem	was	used	to	convert	the	digital	data	to	analogue	signals.
Another	modem	was	used	to	reverse	the	process	at	the	receiving	end.	Such	so-called	‘dial-up’
connections	provided	modest-speed,	shared	access	when	required.	However,	an	organisation	could
instead	pay	for	a	leased	line	service	that	provided	a	dedicated,	permanently	connected	link	with
guaranteed	transmission	speed.	Typically,	organisations	made	use	of	leased	lines	to	establish	WANs	(or
possibly	MANs	(metropolitan	area	networks)).

More	recently,	the	PSTNs	have	upgraded	their	main	communication	lines	to	fibre-optic	cable	employing
digital	technology.	This	has	allowed	them	to	offer	improved	leased	line	services	to	ISPs	but	has	also
given	them	the	opportunity	to	provide	their	own	ISP	services.	In	this	role	they	provide	two	types	of
service.	The	first	is	a	broadband	network	connection	for	traditional	network	access.	The	second	is	WiFi
hotspot	technology,	where	an	access	point	as	described	in	Section	2.04	has	a	connection	to	a	wired
network	providing	Internet	access.

Cell	phone	network
For	users	of	devices	with	mobile	(cell)	phone	capability	there	is	an	alternative	method	for	gaining
Internet	access.	This	is	provided	by	mobile	phone	companies	acting	as	ISPs.	The	mobile	phone,

equipped	with	the	appropriate	software,	communicates	with	a	standard	cell	tower	to	access	the
wireless	telephone	network,	which	in	turn	provides	a	connection	to	the	Internet.

2.07	Applications	that	make	use	of	the	Internet
The	World	Wide	Web	(WWW)
It	is	common	practice	to	talk	about	‘using	the	web’	or	‘using	the	Internet’	as	though	these	were	just	two
different	ways	of	saying	the	same	thing.	This	is	not	true.	The	Internet	is,	as	has	been	described	above,
an	Internetwork.	By	contrast,	the	World	Wide	Web	(WWW)	is	a	distributed	application	which	is	available
on	the	Internet.

Specifically,	the	web	consists	of	an	enormous	collection	of	websites	each	having	one	or	more	web
pages.	The	special	feature	of	a	web	page	is	that	it	can	contain	hyperlinks	which,	when	clicked,	give
direct	and	essentially	immediate	access	to	other	web	pages.

Cloud	computing
Cloud	computing	is	the	provision	of	computing	services	usually	via	the	Internet.	An	organisation	may
choose	to	establish	its	own	private	cloud.	In	this	case	there	are	three	possible	approaches:

The	organisation	takes	full	responsibility	for	creating	and	managing	the	cloud	installed	on-site	and
connected	to	a	private	network

The	organisation	outsources	to	a	third-party	the	creation	and	management	of	an	on-site	installation
connected	to	a	private	network

The	organisation	outsources	the	creation	and	management	of	an	Internet	accessible	system	by	a
third-party.

The	alternative	is	a	public	cloud.	This	is	created,	managed	and	owned	by	a	third-party	cloud	service
provider.

The	services	provided	by	a	cloud	are	familiar	ones	provided	by	file	servers	and	application	servers.
They	are	accessible	via	a	browser	and	therefore	accessible	from	any	suitable	device	in	any	location.	A
public	cloud	can	be	accessed	by	an	individual	user	or	by	an	organisation.	One	major	difference	is	the
scale	of	the	systems.	The	provision	is	established	using	large	mainframe	computers	or	server	farms.
The	services	provided	can	be	characterised	as	being	one	of:

infrastructure	provision

platform	provision

software	provision

Many	of	the	advantages	to	a	cloud	user	arise	from	the	fact	that	the	cloud	does	not	have	the	limitations
that	the	systems	already	available	have.	For	the	infrastructure	provision,	the	advantages	include	the
better	performance	when	running	software	and	the	increased	storage	capacity.	For	the	platform
provision,	the	cloud	can	offer	facilities	for	software	development	and	testing.	For	the	software
provision,	the	cloud	will	be	able	to	run	applications	that	require	high	performance	systems.
Alternatively,	it	could	be	that	the	costs	to	a	company	of	buying	and	installing	a	software	package
themselves	would	be	far	too	high.	The	other	advantage	is	the	familiar	one	with	regard	to	outsourcing.
The	cloud	user	no	longer	needs	technical	expertise.

The	disadvantages	to	a	cloud	user	relate	to	the	use	of	a	public	cloud.	The	cloud	service	provider	has
complete	access	to	all	of	the	data	stored	on	the	cloud.	The	cloud	user	cannot	be	sure	that	their	data	is
not	being	shared	with	third-parties.	This	is	a	concern	with	regard	to	data	privacy.	The	security	of	the
data	stored	is	an	issue;	the	cloud	service	provider	is	being	relied	on	to	ensure	data	cannot	be	lost.

Bit	streaming
Streaming	media	make	use	of	the	Internet	for	leisure	activities	like	listening	to	music	or	watching	a
video.	But	what	is	a	‘bit	stream’?	In	general,	before	data	is	transmitted	it	is	stored	in	bytes	which	can	be
transmitted	one	after	the	other	as	a	‘byte	stream’.	Because	of	the	file	sizes	involved,	streamed	media	is

always	compressed	to	a	sequence	of	bits	-	a	‘bit	stream’.	Generic	compression	techniques	mentioned	in
Chapter	1	(Section	1.07)	can	convert	the	byte	stream	to	a	bit	stream	with	fewer	bits	overall.	For	the
decoding	process	at	the	receiver	end	to	work	properly,	the	data	must	be	transferred	as	a	bit	stream.

For	one	category	of	streaming	media,	the	source	is	a	website	that	has	the	media	already	stored.	One
option	in	this	case	is	for	the	user	to	download	a	file	then	listen	to	it	or	watch	it	at	some	future
convenient	time.	However,	when	the	user	does	not	wish	to	wait	that	long	there	is	the	streaming	option.
This	option	is	described	as	viewing	or	listening	on	demand.	In	this	case	the	delivery	of	the	media	and
the	playing	of	the	media	are	two	separate	processes.	The	incoming	media	data	are	received	into	a
buffer	created	on	the	user’s	computer.	The	user’s	machine	has	media	player	software	that	takes	the
media	data	from	the	buffer	and	plays	it.

The	other	category	of	streaming	media	is	real-time	or	live	transmission.	In	this	case	the	content	is
being	generated	as	it	is	being	delivered	such	as	when	viewing	a	sporting	event.	At	the	receiver	end	the
technology	is	the	same	as	before.	The	major	problem	is	at	the	delivery	end	because	a	very	large	number
of	users	may	be	watching	simultaneously.	The	way	this	is	managed	now	is	to	transmit	the	media	initially
to	a	large	number	of	content	provider	servers	which	then	transmit	onwards	to	individual	users.

A	crucial	point	with	media	streaming	is	whether	the	technology	has	sufficient	power	to	provide	a
satisfactory	user	experience.	When	the	media	is	created	it	is	the	intention	that	the	media	is	to	be
delivered	to	the	user	at	precisely	the	same	speed	as	used	for	its	creation;	a	song	that	lasted	four
minutes	when	sung	for	the	recording	would	sound	very	peculiar	if,	when	it	is	received	by	a	user,	it	lasts
six	minutes.	The	process	of	delivering	the	content	is	determined	by	the	bit	rate.	For	example,	a
relatively	poor-quality	video	can	be	delivered	at	a	bit	rate	of	300	kbps	but	a	reasonably	good-quality
audio	file	only	requires	delivery	at	128	kbps.	Figure	2.09	shows	a	simple	schematic	diagram	of	the
components	involved	in	the	streaming.

Figure	2.09	Schematic	diagram	of	bit	streaming

The	buffer	must	deliver	the	data	to	the	user,	at	the	correct	bit	rate	for	the	media	being	used.	Data
which	is	sent	into	the	buffer	should	be	sent	at	a	higher	rate	to	allow	for	unexpected	delays.	The	media
player	continuously	monitors	how	full	the	buffer	is	and	controls	the	bit	rate	in	relation	to	the	defined
high-	and	low-water	marks.	It	is	essential	to	have	a	buffer	size	that	is	sufficiently	large	for	it	never	to
get	filled.

The	rate	of	transmission	to	the	buffer	is	limited	by	the	bandwidth	of	the	network	connection.	For	a
connection	via	a	PSTN,	a	broadband	link	is	essential.	For	good-quality	movie	presentation	the
broadband	requirement	is	about	2.5	Mbps.	Because	this	will	not	be	available	for	all	users	it	is	often	the
practice	that	an	individual	video	is	made	available	at	different	levels	of	compression.	The	most	highly
compressed	version	will	be	the	poorest	quality	but	the	bit	rate	may	be	sufficiently	low	for	a	reasonable
presentation	with	a	relatively	low	bandwidth	Internet	connection.

TASK	2.02
Consider	a	bit-streaming	scenario	for	a	video	where	the	following	values	apply:

the	buffer	size	is	1	MiB

the	low-water	mark	is	set	at	100	KiB

the	high-water	mark	is	set	at	900	KiB

the	incoming	data	rate	is	1	Mbps

the	video	display	rate	is	300	Kbps.

Assume	that	the	video	is	playing	and	that	the	buffer	content	has	dropped	to	the	low-water	mark.
The	media	player	sets	the	controls	for	data	input	to	begin	again.

Calculate	the	amount	of	data	that	will	be	input	to	the	buffer	in	two	seconds	and	the	amount	of
data	that	will	be	removed	from	the	buffer	in	the	same	time	period.

Repeat	the	calculation	for	4,	6,	8,	10	and	12	seconds.

From	this	data,	estimate	when	the	buffer	will	have	filled	up	to	the	high-water	mark.

Assuming	that	the	incoming	transmission	is	halted	at	this	time,	calculate	how	long	it	will	be
before	the	buffer	content	has	again	fallen	to	the	low-water	mark	level.

2.08	IP	addressing
The	Internet	requires	technical	protocols	to	function.	A	protocol	suite	called	TCP/IP	is	used	as	a
standard	(see	Chapter	17).	One	aspect	of	this	is	IP	addressing,	which	is	used	to	define	from	where	and
to	where	data	is	being	transmitted.

IPv4	addressing
Currently	the	Internet	uses	Internet	Protocol	version	4	(IPv4)	addressing.	IPv4	was	devised	in	the	late
1970s,	before	the	invention	of	the	PC	and	the	mobile	phone.	IPv4	provides	for	a	large	but	limited
number	of	addresses	for	devices,	which	is	no	longer	enough	to	cover	all	the	devices	expected	to	use	the
Internet	in	future.

The	IPv4	addressing	scheme	is	based	on	32	bits	(four	bytes)	being	used	to	define	an	IPv4	address.	It	is
worth	putting	this	into	context.	The	32	bits	allow	232	different	addresses.	For	big	numbers	like	this	it	is
worth	remembering	that	210	is	approximately	1000	in	denary	so	the	32	bits	provide	for	approximately
four	billion	addresses.	The	population	of	the	world	is	about	seven	billion	and	it	is	estimated	that
approaching	half	of	the	world’s	population	has	Internet	access.	From	this	we	can	see	that	if	there	was	a
need	to	supply	one	IP	address	per	Internet	user	the	scheme	would	just	about	be	adequate.	However,
things	are	not	that	simple.

The	original	addressing	scheme	was	designed	on	the	basis	of	a	hierarchical	address	with	a	group	of	bits
defining	a	network	(a	netID)	and	another	group	of	bits	defining	a	host	on	that	network	(a	hostID).	The
aim	was	to	assign	a	unique,	universally	recognised	address	for	each	device	on	the	Internet.	The
separation	into	two	parts	allows	the	initial	transmission	to	be	routed	according	to	the	netID.	The	hostID
only	needs	to	be	examined	on	arrival	at	the	identified	network.	Before	proceeding,	it	is	important	to
note	that	the	term	‘host’	is	a	little	misleading	because	some	devices,	particularly	routers,	have	more
than	one	network	interface	and	each	interface	requires	a	different	IP	address.

The	other	feature	of	the	original	scheme	was	that	allocated	addresses	were	based	on	the	concept	of
different	classes	of	networks.	There	were	five	classes;	we	are	going	to	look	at	the	first	three	classes.
The	structures	used	for	the	addresses	are	shown	in	Table	2.02.

Class Class	identifier Number	of	bits	for	netID Number	of	bits	for	hostID

Class	A  	0  7 24

Class	B 	 10 14 16

Class	C 110 21 	8

Table	2.02	Address	structure	for	three	classes	of	IPv4	address

It	can	be	seen	from	Table	2.02	that	the	most	significant	bit	or	bits	identify	the	class.	A	group	of	the	next
most	significant	bits	define	the	netID	and	the	remaining,	least	significant,	bits	define	the	hostID.	The
reasoning	behind	this	was	straightforward.	The	largest	organisations	would	be	allocated	to	Class	A.
There	could	only	be	27	i.e.	128	of	these	but	there	could	be	224	distinct	hosts	for	each	of	them.	This
compared	with	221	(approximately	two	million)	organisations	that	could	be	allocated	to	Class	C	but	each
of	these	could	only	support	28	i.e.	256	hosts.

The	problems	with	this	scheme	arose	once	LANs	supporting	PCs	became	commonplace.	The	number	of
Class	B	netIDs	available	was	insufficient	but	if	organisations	were	allocated	to	Class	C	the	number	of
hostIDs	available	was	too	small.	There	have	been	a	number	of	different	modifications	made	available	to
solve	this	problem.

Before	considering	some	of	these,	the	representation	used	for	an	IP	address	needs	to	be	introduced.
During	transmission,	the	technology	is	based	on	the	32-bit	binary	code	for	the	address;	to	make	it
simpler	for	users,	we	write	the	address	using	decimal	numbers	separated	by	dots.	Each	byte	is	written
as	the	denary	equivalent	of	the	binary	number	represented	by	the	binary	code.	For	example,	the	32	bit
code:

  10000000	00001100	00000010	00011110

is	written	in	dotted	decimal	notation	as:

128.12.2.30

Discussion	Point:
There	were	options	available	when	the	dotted	decimal	notation	was	chosen.	Can	you	identify	these?

Classless	inter-domain	routing	(CIDR)
The	first	approach	developed	for	improving	the	addressing	scheme	is	called	‘classless	inter-domain
routing’	(CIDR).	This	retains	the	concept	of	a	netID	and	a	hostID	but	removes	the	rigid	structure	and
allows	the	split	between	the	netID	and	the	hostID	to	be	varied	to	suit	individual	need.	The	simple
method	used	to	achieve	this	is	to	add	an	8-bit	suffix	to	the	address	that	specifies	the	number	of	bits	for
the	netID.	If,	for	instance,	we	define	the	suffix	as	21,	that	means	that	21	bits	are	used	for	the	netID	and
there	are	11	bits	remaining	(of	a	32-bit	address)	to	specify	hostIDs	allowing	211	(i.e.	2048)	hosts.	One
example	of	an	IP	address	using	this	scheme	is	shown	in	Figure	2.10.	The	21	bits	representing	the	netID
have	been	highlighted.	The	remaining	11	bits	represent	the	hostID	which	would	therefore	have	the
binary	value	11000001110.

Figure	2.10	A	CIDR	IPv4	address

Note	that	with	this	scheme	there	is	no	longer	any	need	to	use	the	most	significant	bit	or	bits	to	define
the	class.	However,	it	does	allow	already	existing	Class	A,	B	or	C	addresses	to	be	used	with	suffixes	8,
16	or	24,	respectively.

TASK	2.03
Create	an	example	of	the	binary	code	for	a	Class	C	address	expressed	in	CIDR	format.	Give	the
corresponding	dotted	decimal	representation.

Sub-netting
Sub-netting	is	a	different	approach.	It	allows	a	more	efficient	use	of	a	hostID	by	applying	a	structure	to
it.

To	illustrate	an	example	of	this	we	can	consider	a	medium-sized	organisation	with	about	150	employees
each	with	their	own	computer	workstation.	Let’s	assume	that	there	are	six	individual	department	LANs
and	one	head-office	LAN.	Figure	2.11	shows	a	schematic	diagram	of	how	the	LANs	would	be	connected
to	the	Internet	if	the	original	scheme	were	used.	Note	that	the	diagram	has	been	simplified	by	showing
the	LANs	connected	to	a	gateway.	This	is	a	device	that	connects	networks	with	different	protocols.	For
the	connection	to	the	Internet	the	gateway	would	either	first	connect	to	a	router	or	have	the	capability
to	act	as	a	router	itself.

The	organisation	would	need	seven	individual	Class	C	netIDs;	one	for	each	LAN.	Each	of	these	would
point	to	one	of	the	LAN	gateways.	The	netID	for	each	LAN	would	be	identified	by	the	first	24	bits	of	the
IPv4	address,	leaving	8	bits	for	the	hostID.	This	would	mean	256	individual	codes	for	identifying
different	workstations	on	just	one	LAN.	For	the	seven	LANs	the	total	number	of	workstations	that	could
be	identified	would	be:

256	×	7	=	1792

Since	the	organisation	only	has	150	workstations	in	total,	there	are	1642	unused	addresses.	Not	only
would	these	be	unused	they	would	be	unavailable	for	use	by	any	other	organisation.

Figure	2.11	Connecting	LANs	using	the	original	classful	IPv4	scheme

The	sub-netting	solution	for	this	organisation	would	require	allocating	just	one	Class	C	netID.	For
example,	the	IP	addresses	allocated	might	be	194.10.9.0	to	194.10.9.255	where	the	netID	comprises	the
first	three	bytes,	represented	by	the	decimal	values	194,	10	and	9.

The	sub-netting	now	works	by	having	a	defined	structure	for	the	256	codes	constituting	the	hostID.	A
sensible	solution	for	this	organisation	is	to	use	the	top	three	bits	as	a	code	for	the	individual	LANs	and
the	remaining	five	bits	as	codes	for	the	individual	workstations.	Figure	2.12	shows	a	schematic	diagram
of	this	arrangement.

Figure	2.12	Connecting	LANs	using	sub-netting

On	the	Internet,	all	of	the	allocated	IP	addresses	have	a	netID	pointing	to	the	router.	The	router	then
has	to	interpret	the	hostID	to	direct	the	transmission	to	the	appropriate	workstations	on	one	of	the
LANS	via	a	gateway.	Examples	of	workstation	identification:

hostID	code	00001110	would	be	the	address	for	workstation	14	on	the	head	office	LAN	0	(LAN	000)

hostID	code	01110000	would	be	the	address	for	workstation	16	on	LAN	3	(LAN	011).

With	150	workstations	the	organisation	hasn’t	used	all	of	the	256	allocated	IP	addresses.	However,
there	are	only	106	unused	which	is	a	reasonable	number	to	have	available	in	case	of	future	expansion.
Only	one	netID	has	been	used	leaving	the	other	six	that	might	have	been	used	still	available	for	other
organisations	to	use.

Network	address	translation	(NAT)
The	final	scheme	to	be	considered	is	different	in	that	it	deviates	from	the	principle	that	every	IP	address
should	be	unique.	In	this	scheme,	provision	has	been	made	for	large	organisations	to	have	private
networks	(intranets)	which	use	the	same	protocols	as	those	used	for	the	Internet.	One	justification	for

using	a	private	network	has	always	been	that	this	provides	extra	security	because	of	the	isolation	from
the	Internet.	However,	this	is	no	longer	normal	practice.	Organisations	want	private	networks	but	they
also	want	Internet	connectivity.

The	solution	for	dealing	with	the	addressing	is	to	use	network	address	translation	(NAT).	Figure	2.13
shows	a	schematic	diagram	of	how	this	can	be	used.

Figure	2.13	An	intranet	connected	to	the	Internet	using	a	NAT	box

The	NAT	box	has	one	IP	address	which	is	visible	over	the	Internet	and	so	can	be	used	as	a	sending
address	or	as	a	receiving	address.	Internally	the	IP	addresses	have	to	be	chosen	from	one	of	the	three
ranges	of	IP	addresses	shown	in	Table	2.03	that	have	been	allocated	for	such	networks.	(You	do	not
need	to	remember	these	numbers!)

Lower	bound Upper	bound

10.0.0.0 10.255.255.255

172.16.0.0 172.31.255.255

192.168.0.0 192.168.255.255

Table	2.03	IPv4	addresses	to	be	used	in	private	networks

The	important	point	is	that	each	address	can	be	simultaneously	used	by	any	number	of	different	private
networks.	There	is	no	knowledge	of	such	use	on	the	Internet	itself	or	in	any	other	private	network.	The
interface	in	the	NAT	box	has	software	installed	to	examine	each	incoming	or	outgoing	transmission.
There	can	be	a	security	check	before	an	incoming	transmission	is	directed	to	the	correct	internal
address.	The	diagram	shows	undefined	arrows	from	the	router	connected	to	the	NAT	box.	These
indicate	that	the	network	structure	within	the	organisation	could	take	many	different	forms.

Static	and	dynamic	IP	addresses
As	discussed	in	Section	2.06,	when	a	user	wishes	to	have	a	connection	to	the	Internet	the	connection	is
handled	by	an	Internet	Service	Provider.	The	ISP	will	have	available	a	large	number	of	hostIDs.
However,	the	number	of	users	that	the	ISP	is	supporting	could	very	likely	be	larger	than	the	total
number	of	addresses	available.	Fortunately	for	the	ISP	and	for	an	individual	user	many	of	these
potential	users	will	not	be	engaged	in	Internet	interaction.	The	normal	practice	is	for	the	ISP	to	create	a
‘dynamic	address’	for	a	user.	This	is	one	that	the	ISP	is	free	to	change	if	it	suits	but	more	importantly
the	address	is	available	for	re-allocation	once	a	user	disconnects	from	the	Internet.	The	alternative	is	a
‘static	address’	which	never	changes	and	can	be	provided	if	a	user	is	prepared	to	pay	an	extra	charge.

Discussion	Point:
Can	you	find	out	which	IP	addressing	scheme	is	being	used	when	you	are	connected	to	the	Internet?

IPv6	addressing
Today	there	are	combinations	of	IPv4	approaches	in	use	and	these	allow	the	Internet	to	continue	to
function.	Respected	sources	argue	that	this	cannot	continue	beyond	the	current	decade.	There	must
soon	be	a	migration	to	IP	version	6	(IPv6),	which	uses	a	128-bit	addressing	scheme	allowing	2128

different	addresses,	a	huge	number!	In	practice,	this	will	allow	more	complex	structuring	of	addresses.
Documenting	these	addresses	is	going	to	be	difficult.	The	addresses	are	written	in	a	colon	hexadecimal

notation.	The	code	is	broken	into	16-bit	parts,	with	each	part	represented	by	four	hexadecimal
characters.	Fortunately,	some	abbreviations	are	allowed.	A	few	examples	are	given	in	Table	2.04.

IPv6	address Comment

68E6:7C48:FFFE:FFFF:3D20:1180:695A:FF01 A	full	address

72E6::CFFE:3D20:1180:295A:FF01 :0000:0000:	has	been	replaced	by	::

6C48:23:FFFE:FFFF:3D20:1180:95A:FF01 Leading	zeros	omitted

::192.31.20.46 An	IPv4	address	used	in	IPv6

Table	2.04	Some	examples	of	IPv6	addresses

Extension	Question	2.01
If	IPv6	addressing	is	used,	how	many	addresses	would	be	available	per	square	metre	of	the	Earth’s
surface?	Do	you	think	there	will	be	enough	to	go	round?

2.09	Domain	names
In	everyday	use	of	the	Internet,	a	user	needs	to	identify	a	particular	web	page	or	email	box.	As	users,
we	would	much	prefer	not	to	identify	each	IP	address	using	its	dotted	decimal	value!	To	get	round	this
problem	the	domain	name	service	(DNS,	also	known	as	domain	name	system)	was	invented	in
1983.	The	DNS	service	allocates	readable	domain	names	for	Internet	hosts	and	provides	a	system	for
finding	the	IP	address	for	an	individual	domain	name.

The	system	is	set	up	as	a	hierarchical	distributed	database	which	is	installed	on	a	large	number	of
domain	name	servers	covering	the	whole	of	the	Internet.	The	domain	name	servers	are	connected	in	a
hierarchy,	with	powerful	root	servers	at	the	top	of	the	hierarchy	supporting	the	whole	Internet.	The	root
servers	are	replicated,	meaning	that	multiple	copies	of	all	their	data	are	kept	at	all	times.	DNS	name
space	is	then	divided	into	non-overlapping	zones.	Each	zone	has	a	primary	name	server	with	the
database	stored	on	it.	Secondary	servers	get	information	from	this	primary	server.

As	a	result,	the	naming	system	is	hierarchical.	There	are	more	than	250	top-level	domains	which	are
either	generic	(e.g.	.com,	.edu,	and	.gov)	or	represent	countries	(e.g.	.uk	and	.nl).

The	domain	name	is	included	in	a	universal	resource	locator	(URL),	which	identifies	a	web	page,	or	an
email	address.	A	domain	is	named	by	the	path	upward	from	it.	For	example,	.eng	.cisco.com.	refers	to
the	.eng	subdomain	in	the	.cisco	domain	of	the	.com	top-level	domain.

Looking	up	a	domain	name	to	find	an	IP	address	is	called	‘name	resolution’.	For	such	a	query	there	are
three	possible	outcomes.

If	the	domain	is	under	the	control	of	the	server	to	which	the	query	is	sent	then	an	authoritative	and
correct	IP	address	is	returned.

If	the	domain	is	not	under	the	control	of	the	server,	an	IP	address	can	still	be	returned	if	it	is	stored
in	a	cache	of	recently	requested	addresses	but	it	might	be	out	of	date.

If	the	domain	in	the	query	is	remote	then	the	query	is	sent	to	a	root	server	which	can	provide	an
address	for	the	name	server	of	the	appropriate	top-level	domain.	This	in	turn	can	provide	the
address	for	the	name	server	in	the	next	lower	domain.	This	continues	until	the	query	reaches	a
name	server	that	can	provide	an	authoritative	IP	address.

Reflection	Point:
In	several	places	you	have	been	asked	to	carry	out	some	research.	Are	you	using	the	most	efficient
search	methods?	Specifically,	how	could	they	be	improved?

Summary
Client-server	and	peer-to-peer	networking	are	options	for	file	sharing.
The	star	topology	is	the	one	most	commonly	used	for	a	LAN.
The	main	transmission	media	are	copper	(twisted	pair,	coaxial)	cables,	fibre-optic	cables	and
wireless	(radio,	microwave,	infrared).
Factors	to	consider	when	choosing	a	medium	are	bandwidth,	attenuation,	interference	and	the
need	for	repeaters.
CSMA/CD	(carrier	sense	multiple	access	with	collision	detection)	has	been	used	to	detect	and
avoid	message	collisions	in	shared	media.
The	Internet	is	the	largest	internetwork	in	existence.
ISPs	provide	access	to	the	Internet.
Internet	infrastructure	is	supported	by	PSTNs	and	cell	phone	companies.
The	World	Wide	Web	is	a	distributed	application	accessible	on	the	Internet.
The	current	Internet	addressing	scheme	is	IPv4,	with	IPv6	a	future	contender.
The	DNS	resolves	a	domain	name	to	an	IP	address.

■
■
■

■

■

■
■
■
■
■
■

Exam-style	Questions

[2]

[4]

[2]

[1]

[1]

[3]

[1]

[2]

[4]

[2]

[2]

[3]

[2]

[6]

[2]

[4]

[4]

[2]

A	new	company	has	been	established.	It	has	bought	some	new	premises	which	consist	of	a	number
of	buildings	on	a	single	site.	It	has	decided	that	all	of	the	computer	workstations	in	the	different
buildings	need	to	be	networked.	They	are	considering	ways	in	which	the	network	might	be	set	up.

One	option	they	are	considering	is	to	use	cabling	for	the	network	and	to	install	it	themselves.

Name	the	three	types	of	cabling	that	they	might	consider.

Explain	two	factors,	other	than	cost,	that	they	need	to	consider	when	choosing	suitable
cabling.

Another	option	they	are	considering	is	to	use	wireless	technology	for	at	least	part	of	the	network.

Explain	one	option	that	might	be	suitable	for	wireless	networking.

Identify	one	advantage,	other	than	cost,	of	using	wireless	rather	than	cable	networking.

Identify	one	disadvantage	(other	than	cost)	of	using	wireless	rather	than	cable	networking.

The	final	option	they	are	considering	is	to	use	the	services	of	a	PSTN.

Define	what	a	PSTN	is	or	does.

Explain	how	a	PSTN	could	provide	a	network	for	the	company.

The	Domain	Name	System	is	vitally	important	for	Internet	users.

Name	the	type	of	software	used	by	the	system	and	the	type	of	hardware	on	which	the
software	is	installed.

Name	two	types	of	application	that	use	the	Domain	Name	System	and	for	each	give	a	brief
description	of	how	it	is	used.

In	the	classful	IPv4	addressing	scheme,	the	32-bit	binary	code	for	the	address	has	the	top	(most
significant)	bit	set	to	0	if	it	is	of	class	A,	the	top	two	bits	set	to	10	if	class	B	or	the	top	three	bits
set	to	110	if	class	C.	In	a	document	an	IPv4	address	has	been	written	as	205.124.16.152.

Give	the	name	for	this	notation	for	an	IP	address	and	explain	how	it	relates	to	the	32-bit
binary	code. 

Identify	the	class	of	the	address	and	explain	your	reason.

Explain	why	an	IPv4	address	defines	a	netID	and	a	hostID.

If	the	CIDR	scheme	for	an	IPv4	address	is	used	the	IP	address	205.124.16.152	would	be	written
as:

205.124.16.152/24

State	the	binary	code	for	the	hostID	in	this	address,	with	a	reason.

A	user	watches	a	video	provided	by	a	website	that	uses	on-demand	bit	streaming.

Describe	the	measures	needed	to	ensure	that	the	video	does	not	periodically	pause	when	it	is	being
watched. 

Describe	where	private	IP	addresses	can	be	used.

Explain	how	it	can	be	ensured	that	private	and	public	IP	addresses	are	not	used	in	the	wrong
context.

An	IP	address	has	the	following	value:

11.64.255.90

Write	the	above	IP	address	in	hexadecimal.

Explain	the	format	of	an	IP	address.

Study	the	following	sentence:

1

a

i

ii

b

i

ii

iii

c

i

ii

2 a

i

ii

b

i

ii

iii

c

3

4 a

b

5 a

i

ii

b

[4]

[1]

[2]

[4]

“When	a	user	enters	a	URL	into	their	web	browser,	the	DNS	service	locates	the	required
resource.”

Explain	how	a	URL	and	DNS	are	used	to	locate	a	resource.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q9	June	2015

Access	to	World	Wide	Web	content	uses	IP	addressing.

State	what	IP	stands	for.

The	following	table	shows	four	possible	IP	addresses.

Indicate	for	each	IP	address	whether	it	is	valid	or	invalid	and	give	a	reason.

Address Denary/Hexadecimal Valid	or	Invalid Reason

3.2A.6AA.BBBB Hexadecimal

2.0.255.1 Denary

6.0.257.6 Denary

A.78.F4.J8 Hexadecimal

Describe	two	differences	between	public	and	private	IP	addresses.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	11	Q7	June	2016

6

a

b

c

Chapter	3:
Hardware

3.01	Overview	of	computer	system	hardware	functionality
A	computer	system	has	to	support	three	major	areas	of	operational	capability:

the	processing	of	data

the	storage	of	data

the	input	and	output	of	data.

At	the	heart	of	the	system	the	processing	of	data	is	carried	out	by	the	CPU	(Central	Processing	Unit).
The	workings	of	the	CPU	are	the	subject	of	Chapter	5	and	will	not	be	discussed	further	here.

Data	storage
The	terminology	used	in	the	computer	literature	to	describe	components	for	storing	data	is	not	always
consistent.	One	variation	is	to	distinguish	between	memory	as	the	component	which	the	processor	can
access	directly	and	the	(file-)	store	used	for	long-term	storage.	An	alternative	is	to	describe	the	memory
as	primary	storage	and	the	remainder	as	secondary	storage.

Whatever	names	are	used,	the	memory	hierarchy	is	a	useful	concept	when	we	choose	the	components
to	be	used	in	a	computer	system	for	data	storage.	Figure	3.01	shows	a	version	of	this	hierarchy	that
includes	the	trends	in	the	important	factors	that	affect	our	choice.	The	factors	increase	in	the	direction
of	the	arrow.	The	register	is	a	component	within	the	CPU	that	has	the	fastest	access	speed.	The	cache
memory	has	faster	access	speed	than	that	of	main	memory,	particularly	when	the	cache	is	a	built-in	part
of	the	CPU	chip.

Figure	3.01	Trends	in	the	factors	affecting	the	choice	of	memory	components

Computer	users	would	really	like	to	have	a	large	amount	of	primary	storage	that	costs	little	and	allows
quick	access.	This	is	not	possible;	the	fastest	components	cost	more	and	have	limited	capacity.	In
practice,	the	choice	made	is	a	compromise.	It	could	be	argued	that	there	is	a	need	for	secondary
storage	because	the	use	of	primary	storage	alone	would	be	far	too	expensive.	However,	it	is	more
sensible	simply	to	recognise	that	long-term	storage	of	data	requires	separate	dedicated	components.

An	alternative	approach	when	choosing	a	storage	medium	or	device	is	to	consider	which	of	the
following	applies:

it	is	an	integral	part	of	the	system,	to	which	the	user	cannot	normally	get	access	–	the	options	here
are	a	hard	disk	or	solid-state	drive

it	is	an	individual	item	that	can	be	inserted	into	a	drive	which	is	part	of	the	computer	system	or
which	can	be	connected	to	it	–	could	be	a	floppy	disk,	optical	disc	or	magnetic	tape	cartridge

it	is	a	peripheral	device	that	can	be	connected	to	the	system	when	needed	–	there	are	many
possibilities	here	including	a	hard	drive,	a	memory	stick	or	a	memory	card

it	is	a	portable	item	that	the	user	can	carry	around	with	them	for	attaching	to	different	systems;
possibly	used	for	personal	backup	–	usually	a	flash	memory	stick	nowadays	but	a	floppy	disk	or
optical	disc	is	an	alternative

it	is	remote	from	the	system,	possibly	accessible	via	a	network	connection;	often	used	for	backup	–
cloud	storage	is	one	option,	but	others	are	magnetic	tape,	RAID	(Redundant	Arrays	of	Independent
Disks)	or	SAN	(Storage-Area	Network).

Data	output
For	data	output	from	a	computer	system	the	following	options	are	available:

screen	display

hardcopy	using	a	printer	or	plotter

virtual	headset	display

a	speaker

writing	to	any	of	the	data	storage	devices	described	earlier

transmission	on	a	network	link.

Data	input
For	the	input	of	data	to	a	computer	system	the	following	are	among	the	options	available:

keyboard	or	keypad	entry	by	a	user

user	interaction	with	a	screen	using	screen	icons	or	menus;	possibly	using	a	pointing	device	and
possibly	involving	the	use	of	a	touch	screen

a	user	using	a	game	controller

a	user	using	a	scanner

a	user	using	a	microphone	in	tandem	with	voice	recognition	software

reading	from	any	of	the	storage	devices	described	earlier

transmission	on	a	network	link.

Note	that	input	and	output	in	a	computer	system	are	controlled	by	an	I/O	sub-system.	This	handles	data
input	to	or	output	from	the	computer	system	as	well	as	data	read	from	or	written	to	the	internal	hard
disk	or	solid-state	drive.

3.02	Embedded	systems
Much	of	the	hardware	in	Section	3.01	relates	to	what	we	can	call	a	general-purpose	computer	system.
We	also	need	to	consider	embedded	computer	systems	because	there	are	many	more	of	these	systems
in	use	than	there	are	general-purpose	systems.	Any	manufactured	item	that	has	mechanical	or
electrical	parts	will	almost	certainly	contain	one	or	more	embedded	systems.

An	embedded	system	must	still	contain	a	processor,	memory	and	an	I/O	capability.	If	these	are
constructed	on	one	chip	this	is	called	a	microcontroller.	For	some	applications	the	system	will	have
input	and	output	solely	associated	with	the	internal	workings	of	the	host	system.	In	other	cases,
perhaps	when	serving	a	monitoring	or	control	function,	there	might	be	input	from	within	the	system	but
some	output	is	provided	to	the	user.	Alternatively,	the	embedded	system	can	provide	a	full	user
interface	as,	for	example,	in	a	mobile	phone.

The	major	advantage	of	embedded	systems	is	that	they	are	special-purpose;	possibly	performing	only	a
single	function.	This	function	is	likely	to	be	required	in	a	wide	variety	of	different	manufactured
products.	Mass	production	of	an	embedded	system	brings	economies	of	scale:	the	more	we	make,	the
cheaper	they	become.	During	the	early	years	of	their	use,	embedded	systems	had	the	disadvantage	that
programming	was	difficult	because	the	memory	space	available	to	store	a	program	was	limited.	For	this
reason,	programs	had	to	be	short.	In	addition,	there	was	the	disadvantage	that	if	errors	were	found
following	installation	then	new	chips	had	to	be	manufactured	and	used	to	replace	the	faulty	ones.	In
modern	systems	these	problems	are	less	likely,	but	a	new	problem	has	developed.	Embedded	systems
are	now	part	of	what	is	called	the	IoT	(Internet	of	Things).	More	and	more	embedded	systems	are	being
installed	with	a	network	connection.	This	can	greatly	improve	the	usefulness	of	a	product,	for	example
by	providing	information	and	updates	to	the	owner.	However,	this	accessibility	via	a	network	is	a
security	concern.	Embedded	systems	are	less	likely	to	be	protected	against	unlawful	actions	than
general-purpose	systems.

Discussion	Point:
How	might	useful	information	from	an	embedded	system	installed	in	a	domestic	appliance	be
communicated	over	a	network	to	the	owner	of	the	appliance?

3.03	Memory	components
The	components	that	make	up	the	main	memory	of	a	general-purpose	computer	system	are	called
random-access	memory	(RAM).	The	name	has	been	chosen	because	such	memory	can	be	accessed	at
any	location	independently	of	which	previous	location	was	used.	Because	of	this	it	might	have	been
better	called	‘direct-access	memory’.	Another	possible	name	would	be	‘read–write	memory’	because
RAM	can	be	repeatedly	read	from	or	written	to.	A	key	feature	of	RAM	is	that	it	is	volatile,	which	means
that	when	the	computer	system	is	switched	off	the	contents	of	the	memory	are	lost.

There	are	two	general	types	of	RAM	technology.	Dynamic	RAM	(DRAM)	is	constructed	from	capacitors
that	leak	electricity	and	therefore	need	regularly	recharging	(every	few	milliseconds)	to	maintain	the
identity	of	the	data	stored.	Static	RAM	(SRAM)	is	constructed	from	flip-flops	that	continue	to	store	data
indefinitely	while	the	computer	system	is	switched	on.	The	circuits	and	logic	for	flip-flops	are	discussed
in	Chapter	19	(Section	19.02)).

The	major	difference	between	the	two	types	of	RAM	is	that	DRAM	requires	fewer	electronic
components	per	bit	stored.	This	means	DRAM	is	cheaper	to	make	and	has	a	higher	density	for	data
storage.	The	major	advantage	of	SRAM	is	that	it	provides	shorter	access	time.	In	a	general-purpose
computer	system,	it	is	normal	practice	for	main	memory	to	be	constructed	from	DRAM	but	for	cache
memory	to	be	provided	by	SRAM	because	of	the	faster	access	speed.	By	contrast,	embedded	systems
that	need	RAM	with	only	limited	capacity	often	use	SRAM	for	this.

The	second	category	of	memory	component	is	called	read-only	memory	(ROM).	Again,	this	name	does
not	give	a	full	picture	of	the	characteristics	of	this	type	of	component.	ROM	shares	the	random-access
or	direct-access	properties	of	RAM.	However,	as	the	name	implies	it	cannot	be	written	to	when	in	use
within	the	computer	system.	The	other	key	feature	is	that	the	data	in	ROM	is	not	lost	when	the
computer	system	is	switched	off;	the	memory	is	non-volatile.

	TIP
The	word	volatile	has	several	meanings.	Try	to	remember	that	volatile	memory	no	longer
stores	data	when	the	system	is	switched	off.

ROM	has	specialised	uses	for	the	storage	of	data	or	programs	that	are	going	to	be	used	unchanged	over
and	over	again.	In	a	general-purpose	system	the	most	important	use	is	in	storing	the	bootstrap
program.	This	is	a	program	that	runs	immediately	when	a	system	is	switched	on.	There	are	a	number	of
other	uses	for	ROM	in	such	a	system,	some	of	which	we	will	see	later	in	this	book.	In	addition,	ROM	is
used	in	many	embedded	systems.

There	are	four	different	types	of	ROM.

In	the	simplest	type	of	ROM	the	programs	or	data	are	installed	as	part	of	the	manufacturing	process.
If	different	contents	are	needed	the	chip	must	be	replaced.

An	alternative	is	Programmable	ROM	(PROM).	The	manufacturer	of	the	chip	supplies	chips	to	a
system	builder.	The	system	builder	installs	the	program	or	data	into	the	chips.	This	allows	the
system	builder	to	test	some	samples	of	programmed	chip	before	committing	the	whole	batch	to	be
programmed.	As	with	the	simplest	type	of	ROM,	the	program	or	data	once	installed	cannot	be
changed.

A	more	flexible	type	of	ROM	is	Erasable	PROM	(EPROM).	The	installed	data	or	program	can	be
erased	(using	ultraviolet	light)	and	new	data	or	a	new	program	can	be	installed.	However,	this
reprogramming	usually	requires	the	chip	to	be	removed	from	the	circuit.

The	most	flexible	type	of	ROM	is	Electrically	Erasable	PROM	(EEPROM).	As	the	name	suggests,	this
works	in	a	similar	way	to	EPROM,	except	an	electrical	signal	can	be	used	to	remove	existing	data.
This	has	the	major	advantage	that	the	chip	can	remain	in	the	circuit	while	the	contents	are	changed.
However,	the	chip	is	still	used	as	read-only.

1

2

3

4

Discussion	Point:
Can	you	find	out	what	memory	components	are	in	the	computer	system	you	are	using	and	any	details
about	them	such	as	the	type	and	storage	capacity?

Buffers
Whenever	data	has	to	be	transferred	from	one	part	of	a	computer	system	to	another,	a	problem	occurs
if	the	data	can	be	sent	more	quickly	than	it	can	be	received.	The	solution	to	the	problem	is	to	use	a
buffer.	Data	enters	a	buffer	before	being	transmitted	to	its	destination.	The	buffer	functions	as	a	queue
so	the	data	emerges	in	the	order	that	it	has	entered	the	buffer.	Typically,	the	buffer	is	created	in	the
computer	memory.

Question	3.01
Can	you	think	of	examples	of	data	transfer	that	would	need	a	buffer?

3.04	Secondary	storage	devices
Before	discussing	storage	devices,	we	should	introduce	some	terminology.	For	any	hardware	device,
whether	an	integral	part	of	the	computer	system	or	a	connected	peripheral,	its	operation	requires
appropriate	software	to	be	installed.	This	software	is	referred	to	as	the	‘device	driver’.	This	should	not
be	confused	with	the	term	‘drive’	associated	specifically	with	a	storage	device.	The	term	‘drive’	initially
referred	to	the	hardware	that	housed	a	storage	medium	and	physically	transferred	data	to	it	or	read
data	from	it.	However,	as	so	often	happens,	such	distinctions	are	often	ignored.	As	a	result,	for	example,
references	to	a	‘hard	disk’,	a	‘hard	disk	drive’	or	to	a	‘hard	drive’	have	the	same	meaning.

Magnetic	media
Magnetic	media	have	been	the	mainstay	of	filestore	technology	for	a	very	long	time.	The	invention	of
magnetic	tape	for	sound	recording	pre-dates	the	invention	of	the	computer	by	many	years.	As	a	result,
magnetic	tape	was	the	first	storage	device.	In	contrast,	the	hard	disk	was	specifically	invented	for
computer	storage.	The	hard	disk	also	used	magnetisation	to	write	data,	and	arrived	a	few	years	after
magnetic	tape	was	first	used	for	storage.

For	either	type	of	magnetic	medium	the	interaction	with	it	is	controlled	by	a	read	head	and	a	write
head.	A	read	head	uses	the	basic	law	of	physics	that	a	state	of	magnetisation	will	affect	an	electrical
property;	a	write	head	uses	the	reverse	law.	Although	they	are	separate	devices	the	two	heads	are
combined	in	a	read–write	head.	The	two	alternative	states	of	magnetisation	are	interpreted	as	a	1	or	0.

A	schematic	diagram	of	a	hard	disk	is	shown	in	Figure	3.02.	Points	to	note	about	the	physical
construction	are:

there	is	more	than	one	platter	(disk)

each	platter	has	a	read–write	head	for	each	side

the	platters	spin	in	unison	(all	together	and	at	the	same	speed)

the	read–write	heads	are	attached	to	actuator	arms	which	allow	the	heads	to	move	over	the
surfaces	of	the	platters

the	motion	of	each	read–write	head	is	synchronised	with	the	motion	of	the	other	heads

a	cushion	of	air	ensures	that	a	head	does	not	touch	a	platter	surface.

Figure	3.02	A	schematic	drawing	of	the	components	of	a	hard	disk	drive

Data	are	stored	in	concentric	tracks	(tracks	sharing	the	same	centre).	Each	track	consists	of	a	sequence
of	bits.	These	are	formatted	into	sectors	where	each	sector	contains	a	defined	number	of	bytes.	The
sector	becomes	the	smallest	unit	of	storage.	Because	the	movement	of	the	heads	is	synchronised,	the
same	tracks	on	different	disks	can	have	related	data	stored	on	them.	These	are	accessible	by	just	one

movement	of	the	head.	The	collection	of	tracks	is	referred	to	as	a	‘cylinder’.

To	store	a	file,	a	sufficient	number	of	sectors	have	to	be	allocated	but	these	might	or	might	not	be	next
to	each	other.	As	files	are	created	and	subsequently	deleted	or	edited	the	use	of	the	sectors	becomes
increasingly	fragmented,	which	degrades	the	performance	of	the	disk.	A	defragmentation	program	can
reorganise	the	allocation	of	sectors	to	files	to	restore	performance.	This	is	discussed	in	Chapter	8
(Section	8.03).

A	hard	drive	is	considered	to	be	a	direct-access	read–write	device	because	any	sector	can	be	chosen	for
reading	or	writing.	However,	the	data	in	a	sector	has	to	be	read	sequentially	(in	order).

This	is	only	a	simplified	explanation	of	hard	drive	technology.	There	are	several	issues	that	arise	when
making	hard	drives.	For	example,	the	length	of	a	track	on	the	disk	gets	larger	as	you	move	from	centre
to	edge.	Manufacturers	have	to	take	account	of	this	in	their	designs,	otherwise	the	data	storage
capacity	will	be	less	than	it	potentially	might	be.

Optical	media
As	with	the	magnetic	tape	medium,	optical	storage	was	developed	from	existing	technology	not
associated	with	computing	systems.	The	compact	disc	(CD)	evolved	into	CD	digital	audio	(CD-DA)	and
this	became	the	technology	used	in	the	CD-ROM.	This	was	extensively	used	for	distributing	software
but	was	of	no	value	as	a	replacement	for	the	floppy	disk.	The	read–write	version	(CD-RW)	which	came
later	finally	meant	CD	was	a	complete	alternative	to	floppy	disks.	However,	the	CD	has	now	given	way
to	the	DVD	(originally	‘digital	video	disc’	but	later	renamed	as	‘digital	versatile	disc’).	The	latest	and
most	powerful	technology	is	the	Blu-ray	disc	(BD).

A	schematic	diagram	of	a	design	for	an	optical	disc	drive	is	shown	in	Figure	3.03.	This	is	equipped	to
read	a	CD	with	infrared	laser	light	of	wavelength	780	nm	or	a	DVD	with	red	laser	light	of	wavelength
680	nm.

Figure	3.03	A	schematic	drawing	of	an	optical	disc	drive

We	can	ignore	the	finer	details	of	the	construction	of	the	drive	and	concentrate	on	the	principles	of	how
it	operates.	The	important	features	for	the	process	of	reading	data	from	the	disc	are	as	follows.

The	optical	disc	has	one	spiral	track	running	from	the	inner	extreme	of	the	surface	to	the	outer
edge.

During	operation,	the	disc	spins.

Simultaneously	the	laser	moves	across	ensuring	that	it	is	continuously	focused	on	the	spiral	track.

The	track	on	the	surface	of	the	disc	has	what	are	referred	to	as	‘pits’	and	‘lands’.

The	laser	beam	is	reflected	from	the	surface	of	the	disc.

The	difference	between	the	reflection	from	a	pit	compared	to	that	from	a	land	can	be	detected.

This	difference	in	the	intensity	of	the	light	the	detector	receives	can	be	interpreted	as	either	a	1	or	a
0	to	allow	a	binary	code	to	be	read	from	the	disc.

For	CD-RW	and	DVD-RW	technologies,	the	reflective	surface	is	a	special	alloy	material.	When	data	is
being	written	to	the	disc	(the	‘burn’	process)	the	heat	generated	by	the	absorption	of	the	laser	light
changes	the	material	to	liquid	form.	Depending	on	the	intensity	of	the	laser	light	the	material	reverts	to
either	a	crystalline	or	an	amorphous	solid	form	when	it	cools.	When	the	disc	is	read,	the	laser	light	is
reflected	from	the	crystalline	solid	but	not	from	the	amorphous	solid,	allowing	the	coding	of	a	1	or	0.

Despite	there	being	only	one	track	the	disc	functions	as	a	direct-access	device	because	the	laser	can
move	forwards	or	backwards.	The	data	is	formatted	into	sectors	along	the	track	in	a	similar	way	to	the
formatting	of	a	magnetic	hard	disk.

Another	similarity	with	magnetic	disk	technology	is	that	the	storage	capacity	is	dependent	on	how	close
together	individual	physical	representations	of	a	binary	digit	can	get.	There	are	two	aspects	governing
this	for	an	optical	disc.	The	speed	of	rotation	is	one	but	the	most	important	is	the	wavelength	of	the
light.	Shorter	wavelength	light	can	be	better	focused.	This	is	why	a	DVD	can	store	more	than	a	CD	but
much	less	than	a	Blu-ray	disc.

Solid-state	media
Despite	the	continued	improvement	in	optical	technology	there	is	now	a	powerful	competitor	in	the
form	of	solid-state	storage.	The	basis	for	this	is	‘flash’	memory,	which	is	a	semiconductor	technology
with	no	moving	parts.	The	circuits	consist	of	arrays	of	transistors	acting	as	memory	cells.	The	most
frequently	used	technology	is	called	‘NAND’	because	the	basic	circuitry	resembles	that	of	a	NAND	logic
gate	(see	Chapter	4	Section	4.04)	with	the	memory	cells	connected	in	series.	The	writing	to	the	memory
and	the	reading	from	it	is	handled	by	a	NAND	flash	controller.	The	special	feature	is	that	blocks	of
memory	cells	can	have	their	contents	erased	all	at	once	‘in	a	flash’.	Furthermore,	before	data	can	be
written	to	a	block	of	cells	in	the	memory	the	data	in	the	block	first	has	to	be	erased.	A	block	consists	of
several	pages	of	memory.	When	data	is	read,	a	single	page	of	data	can	be	read	in	one	operation.

The	most	frequent	use	is	either	in	a	memory	card	or	in	a	USB	flash	drive	(memory	stick).	In	the	latter
case	the	flash	memory	is	incorporated	in	a	device	with	the	memory	chip	connected	to	a	standard	USB
connector.	This	is	currently	the	technology	of	choice	for	removable	data	storage.	How	long	this	will
remain	so	is	uncertain	with	alternative	technologies	such	as	phase-change	random	access	memory
(PRAM)	already	under	development.

The	alternative	use	is	as	a	substitute	for	a	hard	disk	when	it	is	often	referred	to	as	a	solid-state	drive
(SSD).	You	might	think	that,	with	no	moving	parts,	the	technology	would	last	forever.	This	is	not	true;
with	continuous	use	there	is	a	degradation	in	the	material	used	for	construction.	However,	this	is	only
gradual	and	it	can	be	detected	and	its	effects	corrected	for.	Another	major	advantage	over	the
traditional	hard	drive	is	the	faster	access	speed.

Extension	Question	3.01
Carry	out	some	research	into	the	technologies	currently	available	for	storage.
Consider	first	the	options	available	for	the	storage	device	inside	a	laptop	computer.	Create	a	table
showing	cost,	storage	capacity	and	access	speed	for	typical	examples.	Then	consider	the	options
available	for	peripheral	storage	devices.	Create	a	similar	table	for	these.
Can	you	identify	which	technologies	remain	viable	and	which	ones	are	becoming	uncompetitive?	Are
there	any	new	technologies	likely	to	come	into	common	use?

3.05	Output	devices	provided	for	a	user	of	a	general-purpose
computer	system
Screen	display
Chapter	1	(Section	1.05)	described	how	an	image	could	be	stored	as	a	bitmap	built	up	from	pixels.
Screen	displays	are	also	based	on	the	pixel	concept	but	with	one	major	difference.	A	screen	pixel
consists	of	three	sub-pixels	typically	one	each	for	red,	green	and	blue.	Varying	the	level	of	light	emitted
from	the	individual	sub-pixels	allows	a	full	range	of	colours	to	be	displayed.

There	have	been	a	number	of	very	different	technologies	used	to	create	a	pixel.	In	the	original	cathode
ray	tube	(CRT)	technology,	there	is	no	individual	component	for	a	pixel.	The	inner	surface	of	the	screen
is	covered	with	phosphor,	which	is	a	material	that	emits	light	when	electrons	fall	on	it.	An	individual
pixel	is	lit	up	by	controlling	the	direction	of	the	electron	beam	used.	Colour	CRT	displays	have
individual	red,	green	and	blue	phosphors	arranged	so	as	to	create	an	array	of	pixels.

Flat-screen	technologies	now	dominate.	The	liquid-crystal	display	(LCD)	screen	is	an	example.	It	has
individual	cells	containing	a	liquid	crystal	to	create	each	pixel.	The	pixel	matrix	is	illuminated	by	back-
lighting	and	each	pixel	can	affect	the	transmission	of	this	light	to	create	the	on-screen	display.	A	typical
arrangement	is	shown	in	Figure	3.04.

Figure	3.04	The	components	of	a	liquid-crystal	display	screen

The	back-lighting	is	usually	provided	by	light-emitting	diodes	(LEDs).	Polarised	light	is	directed	towards
the	pixel	matrix	and	a	further	polariser	is	placed	between	the	pixel	matrix	and	the	screen.	If	a	voltage	is
applied	to	an	individual	pixel	cell	the	alignment	of	the	liquid	crystal	molecules	is	affected.	This	changes
the	polarisation	of	the	light	and	so	changes	what	is	displayed	on	the	screen.

Virtual	reality	headset
The	most	important	components	of	a	virtual	reality	headset	are	the	two	eye-pieces.	These	are	fed	paired
images	from	the	controlling	system	which,	when	looked	at	together,	give	the	eyes	the	sensation	of	being
in	a	3D	environment.	The	images	can	be	collected	using	specialised	photographic	techniques	or	can	be
created	using	a	3D	graphics	package.	The	wearer	of	the	headset	can	control	which	part	of	the	3D
environment	is	in	view.	They	do	this	by	moving	their	head	or	by	using	a	controlling	device.

Hard-copy	output	of	text
Two	technologies	have	come	to	dominate	the	printing	of	documents	from	data	stored	in	a	computer
system.	These	are	the	inkjet	printer	and	the	laser	printer.	Both	these	technologies	can	be	used	to	print
text	or	images.

An	inkjet	printer	works	in	the	following	way.	A	sheet	of	paper	is	fed	in;	the	printhead	moves	across	the

sheet	depositing	ink	on	to	the	paper;	the	paper	is	moved	forward	a	fraction	and	the	printhead	moves
across	the	paper	again.	This	continues	until	the	sheet	has	been	fully	printed.	The	printhead	consists	of
nozzles	that	spray	droplets	on	to	the	paper.	Ink	is	supplied	to	the	printhead	from	one	or	more	ink
cartridges.

A	schematic	diagram	of	the	workings	of	a	laser	printer	is	shown	in	Figure	3.05.	The	operation	can	be
summarised	as	follows.

The	above	sequence	represents	black	and	white	printing.

For	colour	printing,	separate	toners	are	required	for	the	colours	and	the	process	has	to	take	place	for
each	colour.	The	colours	are	created	from	cyan,	magenta,	yellow	and	black.	The	technology	produces
dots.	Image	quality	depends	on	the	number	of	dots	per	inch	and	software	can	control	the	number	of
dots	per	pixel.

Figure	3.05	A	schematic	diagram	of	a	laser	printer

The	same	principles	apply	for	colour	printing	using	an	inkjet	printer,	where	separate	colour	inks	are
used.

Hard-copy	graphics	output
As	discussed	in	Chapter	1	(Section	1.05)	a	graphic	image	can	be	stored	either	as	a	bitmap	or	as	a	vector
graphic.	The	printing	technology	described	above	can	be	used	to	print	a	hard-copy	of	a	bitmap.	If	a
vector	graphic	file	has	been	created	the	image	can	be	displayed	on	a	screen	or	printed	by	first
converting	the	file	to	a	bitmap	version.	However,	specialised	technical	applications	often	require	a	more

The	drum	is	given	an	electric	charge.

The	drum	starts	to	revolve	step	by	step.

At	each	step	a	laser	beam	is	directed	by	the	mirror	and	lens	assembly	to	a	sequence	of	positions
across	the	width	of	the	drum.

At	each	position	the	laser	is	either	switched	off	to	leave	the	charge	on	the	drum	or	switched	on	to
discharge	the	position.

This	process	repeats	until	a	full-page	electrostatic	image	has	been	created.

The	drum	is	coated	with	a	charged	toner	that	only	sticks	to	positions	where	the	drum	has	been
discharged.

The	drum	rolls	over	a	sheet	of	paper	which	is	initially	given	an	electric	charge.

The	sheet	of	paper	is	discharged	and	then	is	passed	through	heated	rollers	to	fuse	the	toner
particles	and	seal	the	image	on	the	paper	surface.

The	drum	is	discharged	before	the	process	starts	again	for	the	next	page.

1

2

3

4

5

6

7

8

9

accurate	representation	to	be	created	on	paper.	This	requires	the	use	of	a	graphics	plotter.	A	plotter
uses	pens	to	write,	usually,	on	a	large	sheet	of	paper	constrained	by	sprockets	along	one	pair	of	sides.
The	sprockets	can	move	the	paper	forwards	or	backwards	and	pens	can	either	be	parked	or	in	use	at
any	given	time.	The	controlling	circuitry	and	software	can	create	the	drawing	directly	from	the	original
vector	graphic	file.

Graph	plotters	are	used	by	engineers	and	designers	working	in	manufacturing.	Engineers	and
designers	may	also	use	a	3D	printer,	which	is	a	device	that	offers	an	alternative	technology	for
computer-aided	manufacture	(CAM).

Figure	3.06	A	bionic	ear	created	using	a	3D	printer

A	3D	design	is	created	in	a	suitable	computer-aided	design	(CAD)	package.	The	design	is	split	into
layers.	The	data	for	the	first	layer	is	transmitted	to	the	3D	printer.	Rather	than	using	ink	to	draw	the
layer,	the	3D	printer	uses	a	nozzle	to	squirt	material	on	to	the	printer	bed	to	create	a	physical	layer	to
match	the	design.	This	process	is	repeated	for	successive	layers.	When	the	whole	object	has	been
formed	it	has	to	be	cured	in	some	way	to	ensure	that	the	layers	are	stuck	together	and	the	material	has
been	converted	to	the	form	required	for	the	finished	product.

The	technology	is	versatile.	Figure	3.06	shows	a	striking	example.

(For	those	of	you	interested	in	the	details	of	Figure	3.06:	the	bionic	ear	was	constructed	with	three
‘inks’.	Silicone	was	used	for	the	basic	structure,	a	gel	containing	chondrocyte	cells	and	silicone	infused
with	silver	nanoparticles	were	the	other	two	‘inks’.	The	final	curing	step	involved	incubation	in	a
culture	medium	to	allow	the	chondrocyte	cells	to	produce	cartilage.	The	only	missing	component	was
skin.)

3.06	Input	devices	provided	for	a	user	of	a	general-purpose
computer	system
The	keyboard
The	keyboard	allows	a	user	to	input	text	data.	During	text	input	it	appears	as	though	a	key	press
immediately	transfers	the	appropriate	character	to	the	computer	screen,	but	this	is	an	illusion.	The	key
press	has	to	be	converted	to	a	character	code,	which	is	transmitted	to	the	processor.	The	processor,
under	the	control	of	the	operating	system,	ensures	that	the	text	character	is	displayed	on	the	screen.
The	same	process	takes	place	if	the	keyboard	is	used	to	initiate	some	action,	perhaps	by	using	a
shortcut	key	combination.	The	difference	is	that	the	processor	has	to	respond	by	taking	the	requested
action.

To	achieve	this	functionality	the	keyboard	has	electrical	circuitry	together	with	its	own	microprocessor
and	a	ROM	chip.	The	significant	details	of	how	a	keyboard	works	are	as	follows.

The	keys	are	positioned	above	a	key	matrix,	which	consists	of	a	set	of	rows	of	wires	and	another	set
of	columns	of	wires.

Pressing	a	key	causes	contact	at	one	of	the	points	where	wires	cross.

The	microprocessor	continuously	tests	to	see	if	any	electrical	circuit	involving	a	row	wire	and	a
column	wire	has	become	closed.

When	the	microprocessor	recognises	that	a	circuit	has	become	closed,	it	can	identify	the	particular
intersection	(wire	crossing	point)	that	is	causing	this.

The	processor	then	uses	data	stored	in	the	ROM	to	identify	the	character	code	relating	to	the	key
associated	with	that	intersection	and	sends	this	character	to	the	screen.

The	screen
There	are	a	number	of	ways	in	which	a	user	can	cause	data	to	be	input	through	an	interaction	with	a
screen.	At	one	time	a	computer	system	user	only	had	access	to	a	keyboard	and	a	screen	acting	as	a
monitor.	Even	then	the	software	could	display	a	menu	on	the	screen	and	the	user	could	choose	an
option	by	keying	in	a	number	from	the	menu.

A	significant	step	forward	came	with	the	introduction	of	graphical	user	interfaces	(GUIs)	as	standard
features	for	microcomputer	systems	in	the	1980s.	A	GUI	provides	a	number	of	different	types	of	screen
icon,	each	of	which	allows	the	user	to	control	data	input.	The	user	needs	a	pointing	mechanism	to	use	a
GUI	effectively.	One	example	of	a	pointing	mechanism	is	a	computer	mouse	that	controls	the	position	of
a	cursor	on	the	screen.	The	screen	is	now	not	just	an	output	device	but	also	an	input	device	activated	by
a	mouse	click.

Touch	screens
The	early	versions	of	touch	screen	technology	worked	with	a	CRT	screen	but	could	equally	well	be	used
with	a	flat	screen.	The	mechanism	required	emitters	to	be	positioned	on	the	sides	of	the	screen	with
detectors	positioned	opposite	to	them.	The	emitters	produced	either	infrared	light	or	ultrasonic	waves.
When	a	finger	touched	the	screen	and	blocked	some	of	the	light	or	ultrasound,	some	of	the	detectors
would	measure	a	reduced	signal	level.

As	well	as	providing	improved	display	capability,	flat-screen	technology	has	allowed	new	mechanisms
for	touch	screen	interaction.

The	modern	version	of	a	touch-sensitive	screen	has	layers	providing	the	light	output	by	the	display	with
further,	touch-detecting	layers	added	immediately	beneath	the	surface	of	the	screen.	There	have	been
two	approaches	used.	The	first	is	the	resistive	touch	screen.	This	type	has	two	layers	separated	by	a
thin	space	beneath	the	screen	surface.	The	screen	is	not	rigid	so	when	a	finger	presses	on	to	the	screen
the	pressure	moves	the	topmost	of	these	two	separated	layers,	so	that	the	top	layer	makes	contact	with
the	lower	layer.	The	point	of	contact	creates	a	voltage	divider	in	the	horizontal	and	vertical	directions.

The	second	technology	is	the	capacitive	touch	screen.	This	does	not	require	a	soft	screen	but	instead
makes	use	of	the	fact	that	a	finger	touching	a	glass	screen	can	cause	a	capacitance	change	in	a	circuit
component	immediately	below	the	screen.	The	most	effective	technology	is	projective	capacitive	touch
(PCT)	with	mutual	capacitance.	PCT	screens	have	a	circuit	beneath	the	screen	that	contains	an	array	of
capacitors.	This	capacitive	technology	can	detect	the	touch	of	several	fingertips	at	the	same	time,	which
allows	for	more	sophisticated	applications.

In	any	type	of	touch	screen	the	processor	takes	readings	from	measuring	devices	and	uses	these
readings	to	calculate	the	position	of	the	touch.	This	calculation	then	allows	the	processor	to	set	in
motion	whatever	action	the	user	was	requesting.

Extension	Question	3.02
Consider	the	different	possibilities	for	interacting	with	a	screen	display.	Create	a	table	showing	the
advantages	and	disadvantages	for	each	technique.

Discussion	Point:
Investigate	which	flat-screen	technologies	are	used	in	any	computer,	laptop,	tablet	or	mobile/cell	phone
that	you	use.	Discuss	the	benefits	and	drawbacks	associated	with	their	use.

Input	of	a	graphic
There	are	several	ways	to	store	and	use	image	(graphic)	data	in	a	computer.	A	webcam	is	a	device	used
to	stream	video	images	into	a	computer	system.	A	digital	camera	can	be	connected	to	a	computer	and
stored	images	or	videos	can	then	be	downloaded	into	the	computer.	Another	option	is	to	use	a	scanner.
Effectively,	a	scanner	reverses	the	printing	process	in	that	it	takes	an	image	and	creates	a	digital
representation	from	it.	A	sheet	of	paper	containing	the	image	(which	may	be	text)	is	held	in	a	fixed
position	and	a	light	source	moves	from	one	end	of	the	sheet	to	the	other.	It	covers	the	width	of	the
paper.	The	reflected	light	is	directed	by	a	system	of	mirrors	and	lenses	on	to	a	charge-coupled	device
(CCD).

You	don’t	need	to	know	the	details	of	how	a	CCD	works,	but	three	aspects	to	note	are:

a	CCD	consists	of	an	array	of	photo-sensitive	cells

a	CCD	produces	an	electrical	response	proportional	to	the	light	intensity	for	each	cell

a	CCD	needs	an	analogue-to-digital	converter	to	create	digital	values	to	be	transmitted	to	the
computer.

3.07	Input	and	output	of	sound
Voice	input	and	output
IP	telephony	and	video	conferencing	are	two	applications	that	require	both	voice	input	and	voice
output.	In	addition,	voice	recognition	can	be	used	as	an	alternative	technique	for	data	input	to	a
computer	and	voice	synthesis	is	being	used	for	an	increasing	variety	of	applications.

For	input,	a	microphone	is	needed.	This	is	a	device	that	has	a	diaphragm,	a	flexible	material	that	is
caused	to	vibrate	by	an	incoming	sound.	If	the	diaphragm	is	connected	to	suitable	circuitry	the
vibration	causes	a	change	in	an	electrical	signal.	A	condenser	microphone	uses	capacitance	change	as
the	mechanism;	an	alternative	is	to	use	a	piezoelectric	crystal.	The	analogue	electrical	signal	is
converted	to	a	digital	signal	by	an	analogue-to-digital	(ADC)	converter	so	that	it	can	be	processed	inside
the	computer.

For	output,	a	speaker	(loudspeaker)	is	needed.	How	this	works	is	effectively	the	reverse	process	to	that
for	input.	Digital	data	from	the	computer	system	is	converted	to	analogue	by	a	digital-to-analogue
(DAC)	converter.	The	analogue	signal	is	fed	as	a	varying	electrical	current	to	the	speaker.	In	most
speakers,	the	current	flows	through	a	coil	suspended	within	the	magnetic	field	provided	by	a	permanent
magnet	in	the	speaker.	As	the	size	and	direction	of	the	current	keep	changing,	the	coil	moves
backwards	and	forwards.	This	movement	controls	the	movement	of	a	diaphragm,	which	causes	sound	to
be	created.

The	input	and	output	are	controlled	by	a	sound	(audio)	card	installed	in	the	computer.

Other	types	of	sound	input	and	output
Music	as	well	as	voice	sounds	can	be	recorded	or	live	streamed	in	the	same	way	that	voices	are
recorded.	Some	sound	recording	devices	carry	out	the	analogue	to	digital	conversion	very	early	on	in
the	process	so	that	all	the	sound	processing	is	done	digitally.	Music	can	be	output	via	speakers	or
stored	in	digital	form	for	later	play	back.

Reflection	Point:
The	description	‘peripheral’	is	often	used	to	describe	devices	that	can	be	connected	to	a	computer.	In
your	research	did	you	come	across	the	word	being	used?	Is	it	a	useful	one	or	is	it	possibly	not	so
because	of	the	lack	of	a	clear	definition?

Summary
Primary	storage	is	main	memory,	consisting	of	RAM	(DRAM	or	SRAM)	and	ROM	(possibly	PROM,
EPROM	or	EEPROM).
Secondary	storage	includes	magnetic,	optical	and	solid-state	media.
Output	devices	include	screens,	printers,	plotters	and	speakers.
Input	devices	include	the	keyboard,	scanner	and	microphone.
Screens	can	be	used	for	both	input	and	output.

■

■
■
■
■

Exam-style	Questions

[3]

[4]

[2]

[3]

[2]

[1]

[4]

[4]

[3]

[3]

[2]

[2]

[3]

Examples	of	primary	and	secondary	storage	devices	include:

hard	disk

DVD-RW

flash	memory

For	each	device,	describe	the	type	of	media	used.

Hard	disk

DVD-RW

Flash	memory

Describe	the	internal	operation	of	the	following	devices:

DVD-RW

Pressing	a	key	on	a	computer	keyboard	can	cause	a	character	to	be	displayed	on	the	computer
screen.

Identify	four	aspects	of	the	basic	internal	operation	of	a	keyboard	that	makes	this	happen.

Describe	an	alternative	method	for	a	user	to	enter	some	text	into	a	computer	system.

In	the	operation	of	a	laser	printer	there	are	a	number	of	initial	stages	which	lead	up	to	the
creation	of	a	full-page	electrostatic	image.	Identify	three	of	these	stages	and	present	them	in
the	order	that	they	would	occur.

Identify	two	of	the	stages	that	make	use	of	this	electrostatic	image.

State	the	difference	in	the	procedure	used	for	colour	printing	from	that	used	for	black	and
white	printing.

Describe	the	operation	of	a	touch	screen	technology	that	can	be	used	in	association	with	any	type
of	computer	screen.

Describe	the	operation	of	a	touch	screen	technology	that	is	only	applicable	for	use	with	a	flat
screen.

Examples	of	primary	and	secondary	storage	devices	include:

hard	disk

DVD-RW

flash	memory

For	each	device,	describe	the	type	of	media	used.

Hard	disk

DVD-RW

Flash	memory

Describe	the	internal	operation	of	the	following	devices:

DVD-RW

DVD-RAM

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q1	November	2015

Describe	two	differences	between	RAM	and	ROM.

State	three	differences	between	Dynamic	RAM	(DRAM)	and	Static	RAM	(SRAM). 

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	12	Q6	November	2016

1 a

b

2 a

i

ii

b i

ii

iii

3 a

b

4 a

b

5 a

b

Chapter	4
Logic	gates	and	logic	circuits

4.01	Boolean	logic	and	problem	statements
Consider	the	following	question:

Is	Colombo	further	north	than	Singapore?

In	everyday	language	the	answer	will	be	either	yes	or	no.	(‘Yes’,	in	fact.)	However,	the	question	could	be
rephrased	to	make	use	of	the	language	of	Boolean	logic:

Colombo	is	further	north	than	Singapore:	TRUE	or	FALSE?

More	formally,	the	statement:

Colombo	is	further	north	than	Singapore.

can	be	described	as	an	example	of	a	logic	assertion	or	a	logic	proposition	that	can	have	only	one	of
the	two	alternative	Boolean	logic	values:	TRUE	or	FALSE.

Now	consider	the	following	two	individual	statements.

You	should	take	an	umbrella	if	it	is	raining	or	if	the	weather	forecast	is	for	rain	later.

The	air-conditioning	system	is	set	to	come	on	in	an	office	only	during	working	hours	but	also	only	if
the	temperature	rises	to	above	25°C.

Each	of	these	statements	contains	two	logic	propositions	which	are	highlighted.	In	each	statement
these	logic	propositions	are	combined	in	some	way.	Finally,	each	statement	has	the	addition	of	an
outcome	which	is	dependent	on	the	combination	of	the	two	propositions.	Each	of	these	is,	therefore,	an
individual	example	of	a	problem	statement.

4.02	Boolean	operators
The	problem	statements	identified	above	can	be	more	formally	expressed	in	a	form	that	is	suitable	for
handling	with	Boolean	logic.	To	do	this	it	is	necessary	to	use	Boolean	operators.	The	three	basic
Boolean	operators	are	AND,	OR	and	NOT.

The	definition	for	AND,	OR	and	NOT	can	be	expressed	as:

A	AND	B	is	TRUE	if	A	is	TRUE	and	B	is	TRUE

A	OR	B	is	TRUE	if	A	is	TRUE	or	B	is	TRUE

NOT	A	is	TRUE	if	A	is	FALSE.

Here,	both	A	and	B	represent	any	logic	proposition	or	assertion	that	has	a	value	TRUE	or	FALSE.

The	two	problem	statements	above	can	now	be	rephrased	as	follows:

Take_umbrella	=	TRUE	IF	(raining	=	TRUE)	OR	(rain_forecast	=	TRUE)

System_on	=	TRUE	IF	(office	hours	=	TRUE)	AND	(temperature	>	25°C).

Each	original	problem	statement	has	now	been	rephrased	to	include	a	form	of	logic	expression.	The
format	of	each	expression	here	does	not	follow	any	formally	defined	convention	but	the	structure	does
allow	the	underlying	logic	to	be	understood.	In	general,	a	logic	expression	consists	of	logic	propositions
combined	using	Boolean	operators.	The	expression	may	be	included	in	an	equation	with	a	defined
output.

Any	logic	expression	can	be	constructed	using	only	the	Boolean	operators	AND,	OR	and	NOT	but	it	is
often	convenient	to	use	other	operators.	Here	are	the	definitions	for	the	three	other	operators	that	you
should	be	familiar	with:

A	NAND	B	is	TRUE	if	A	is	FALSE	or	B	is	FALSE

A	NOR	B	is	TRUE	if	A	is	FALSE	and	B	is	FALSE

A	XOR	B	is	TRUE	if	A	is	TRUE	or	B	is	true	but	not	both	of	them.

WORKED	EXAMPLE	4.01

Constructing	a	logic	expression	from	a	problem	statement

Consider	the	following	problem	statement.

A	shopkeeper	orders	a	delivery	of	goods	at	the	end	of	each	month.	However,	if	the	stock	of	a
particular	item	falls	to	the	re-order	level	before	the	end	of	the	month,	a	delivery	is	ordered
immediately.	Also,	if	a	regular	customer	orders	a	large	amount	of	goods,	a	delivery	is	ordered
immediately.

We	need	to	identify	the	conditions	in	the	statement	that	can	have	true	or	false	values.	These	can	be
underlined:

A	shopkeeper	orders	a	delivery	of	goods	at	the	end	of	each	month.	However,	if	the	stock	of	a
particular	item	falls	to	the	re-order	level	before	the	end	of	the	month	a	delivery	is	ordered
immediately.	Also,	if	a	regular	customer	orders	a	large	amount	of	goods	a	delivery	is	ordered
immediately.

The	conditions	can	now	be	collected	together	in	one	logic	expression:

End_of_month	OR	re-order_level_reached	OR	(regular_customer	AND	large_amount)

To	simplify	this	we	change	each	condition	into	a	symbol.

Let	A	represent	End_of_month.

Let	B	represent	re-order_level_reached.

Let	C	represent	regular	customer.

Let	D	represent	large_amount.

The	logic	expression	can	now	be	written	in	an	equation	using	X	to	represent	‘a	delivery	is	ordered’:

X	=	A	OR	B	OR	(C	AND	D)

TASK	4.01
Convert	the	conditions	in	the	following	problem	statement	into	a	simple	logic	expression:

A	document	can	only	be	copied	if	it	is	not	covered	by	copyright	or	if	there	is	copyright	and
permission	has	been	obtained.

4.03	Truth	tables
The	truth	table	is	a	simple	but	powerful	technique	for	representing	any	logic	expression	or	for
describing	the	possible	outputs	from	a	logic	circuit.

A	truth	table	is	presented	by	making	use	of	the	convention	that	TRUE	can	be	represented	as	1	and
FALSE	can	be	represented	as	0.	The	simplest	use	of	a	truth	table	is	to	represent	the	logic	associated
with	a	Boolean	operator.

As	an	example,	let	us	consider	the	AND	operator.	The	labelling	of	the	truth	table	follows	the	convention
that	the	initially	defined	values	are	represented	by	A	and	B	and	the	value	obtained	from	the	simple
expression	using	the	AND	operator	is	represented	by	X.	In	other	words,	we	write	the	truth	table	for	X	=
A	AND	B.	Remembering	that	AND	only	returns	TRUE	if	both	A	and	B	are	TRUE	we	expect	a	truth	table
with	only	one	instance	of	X	having	the	value	1.	The	truth	table	is	shown	in	Table	4.01.

The	truth	table	has	four	rows	corresponding	to	the	four	combinations	of	the	truth	values	for	A	and	B.
Three	of	these	lead	to	a	0	in	the	X	column	as	expected.

A B X

0 0 0

0 1 0

1 0 0

1 1 1

Table	4.01	The	truth	table	for	the	AND	operator

	TIP
When	constructing	a	truth	table	make	sure	that	the	left-hand	columns	for	the	input	values
are	written	as	though	they	were	increasing	binary	values.

TASK	4.02
Without	looking	further	on	in	the	chapter,	construct	the	truth	table	for	the	OR	operator.

4.04	Logic	circuits	and	logic	gates
The	digital	circuits	that	constitute	the	inner	workings	of	a	computer	system	operate	as	logic	circuits
where	each	individual	part	of	the	circuit	is	either	in	an	‘on’	state,	corresponding	to	a	1,	or	in	an	off
state,	corresponding	to	a	0.	A	logic	circuit	comprises	component	parts	called	logic	gates.	Each	different
logic	gate	has	an	operation	that	matches	a	Boolean	operator.

Figure	4.01	The	symbol	for	the	AND	logic	gate

When	drawing	a	circuit,	standard	symbols	are	used	for	the	logic	gates.	As	an	example,	the	symbol
shown	in	Figure	4.01	represents	an	AND	gate.

The	first	point	to	note	here	is	that	the	shape	of	the	symbol	tells	us	the	type	of	gate.	The	second	point	is
that	the	inputs	are	shown	on	the	left-hand	side	and	the	output	is	shown	on	the	right-hand	side.	In
general,	the	number	of	inputs	is	not	limited	to	two.	We	will	only	consider	circuits	where	the	number	of
inputs	is	two	or	fewer.

Figure	4.02	shows	the	logic	gate	symbols	and	the	associated	truth	tables	for	each	of	the	six	Boolean
operators	introduced	in	Section	4.02.

Figure	4.02	Logic	gate	symbols	and	their	associated	truth	tables

There	are	two	other	points	to	note	here.	The	NOT	gate	is	a	special	case,	having	only	one	input.	The
second	point	is	that	a	NAND	gate	is	a	combination	of	a	AND	gate	followed	by	a	NOT	gate,	and	a	NOR
gate	is	a	combination	of	an	OR	gate	followed	by	a	NOT	gate.	NAND	and	NOR	gates	produce	a
complementary	output	to	the	AND	and	OR	gates.

TASK	4.03
Draw	a	circuit	where	A	and	B	are	input	to	an	AND	gate,	from	which	the	output	is	carried	to	a
NOT	gate,	from	which	there	is	an	output	X.	Show	that	this	has	the	same	outcome	as	having	one
NAND	gate.

Extension	Question	4.01
Could	the	same	outcome	be	produced	by	positioning	a	NOT	gate	before	the	AND	gate?

	TIP
You	need	to	remember	the	symbol	for	each	of	these	gates.	A	good	start	here	is	to
remember	that	AND	has	the	proper	D	symbol	and	OR	has	the	curvy	one.

You	also	need	to	remember	the	definitions	for	the	gates	so	that	you	can	construct	the	corresponding
truth	table	for	each	gate.

Question	4.01
Can	you	recall	from	memory	the	symbols	and	definitions	of	the	six	logic	gates	introduced	in	this
chapter?

WORKED	EXAMPLE	4.02

Constructing	a	logic	circuit	from	a	problem	statement	or	logic	expression

You	need	to	be	able	to	construct	a	logic	circuit	from	either	a	problem	statement	or	from	a	logic
expression.	If	you	are	given	a	problem	statement,	the	best	approach	is	to	first	convert	it	to	a	logic
expression.

Consider	the	following	problem	statement:	A	bank	offers	a	special	lending	rate	to	customers
subject	to	certain	conditions.	To	qualify,	a	customer	must	satisfy	certain	criteria.

The	customer	has	been	with	the	bank	for	two	years.

Two	of	the	following	conditions	must	also	apply:

the	customer	is	married

the	customer	is	aged	25	years	or	older

the	customer’s	parents	are	customers	of	the	bank.

To	convert	this	statement	to	a	logic	expression	using	symbols	we	can	choose:

let	A	represent	an	account	held	for	two	years

let	B	represent	that	the	customer	is	married

let	C	represent	that	the	customer	is	aged	25	years	or	older

let	D	represent	that	the	customer’s	parents	have	an	account.

The	logic	expression	can	then	be	written	as:

A	AND	(((B	AND	C)	OR	(B	AND	D))	OR	(C	AND	D))

This	could	alternatively	be	presented	with	an	outcome:

Special_rate	IF	A	AND	(((B	AND	C)	OR	(B	AND	D))	OR	(C	AND	D))

alternatively	as

X	=	A	AND	(((B	AND	C)	OR	(B	AND	D))	OR	(C	AND	D))

Note	the	use	of	brackets	to	ensure	that	the	meaning	is	clear.	You	may	think	that	not	all	of	the

brackets	are	needed.	In	this	example,	an	extra	pair	has	been	included	to	guide	the	construction	of
the	circuit	where	only	two	inputs	are	allowed	for	any	of	the	gates.

From	this,	we	can	see	that	the	logic	circuit	corresponding	to	this	logic	expression	derived	from	the
original	problem	statement	could	be	constructed	using	four	AND	gates	and	two	OR	gates	as	shown
in	Figure	4.03.

Figure	4.03	A	logic	circuit	constructed	from	a	problem	statement

WORKED	EXAMPLE	4.03

Constructing	a	truth	table	from	a	logic	expression	or	logic	circuit

You	also	need	to	be	able	to	construct	a	truth	table	from	either	a	logic	expression	or	a	logic	circuit.
We	might	have	continued	with	the	problem	in	Worked	Example	4.02	but	four	inputs	will	lead	to	16
rows	in	the	truth	table.	Instead,	we	consider	a	slightly	simpler	problem	with	only	three	inputs	and
therefore	only	eight	rows	in	the	truth	table.	We	will	start	with	the	circuit	shown	in	Figure	4.04.

Figure	4.04	A	circuit	with	three	inputs	for	conversion	to	a	truth	table

Table	4.02	shows	how	the	truth	table	needs	to	be	set	up	initially.	There	are	two	points	to	note	here.
The	first	is	that	you	must	take	care	to	include	all	of	the	eight	different	possible	combinations	of	the
input	values.	The	second	point	is	that	for	such	a	circuit	it	is	not	sensible	to	try	to	work	out	the
outputs	directly	from	the	input	values.	Instead	a	systematic	approach	should	be	used.	This	involves
identifying	intermediate	points	in	the	circuit	and	recording	the	values	at	each	of	them	in	the
columns	headed	‘Workspace’	in	Table	4.02.

Inputs Workspace Output

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Table	4.02	The	initial	empty	truth	table

Figure	4.05	shows	the	same	circuit	but	with	four	intermediate	points	labelled	M,	N,	P	and	Q
identified.	Each	one	has	been	inserted	on	the	output	side	of	a	logic	gate.

Figure	4.05	The	circuit	in	Figure	4.04	with	intermediate	points	identified

Now	you	need	to	work	systematically	through	the	intermediate	points.	You	start	by	filling	in	the
columns	for	M	and	N.	Then	you	fill	in	the	columns	for	P	and	Q	which	feed	into	the	final	AND	gate.
The	final	truth	table	is	shown	as	Table	4.03.	The	circuit	has	two	combinations	of	inputs	that	lead	to
a	TRUE	output	from	the	circuit.

The	columns	containing	the	intermediate	values	(the	workspace)	could	be	deleted	at	this	stage.

Inputs Workspace Output

A B C M N P Q X

0 0 0 0 1 1 0 0

0 0 1 0 1 1 1 1

0 1 0 0 0 1 0 0

0 1 1 0 0 1 0 0

1 0 0 0 1 1 0 0

1 0 1 0 1 1 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 0 0

Table	4.03	The	truth	table	for	the	circuit	shown	in	Figure	4.05

One	final	point	to	make	here	is	that	you	may	be	able	to	check	part	of	your	final	solution	by	looking
at	just	part	of	the	circuit.	For	this	example,	if	you	look	at	the	circuit	you	will	see	that	the	path	from
input	C	to	the	output	passes	through	two	AND	gates.	It	follows,	therefore,	that	for	all	combinations
with	C	having	value	0	the	output	must	be	0.	Therefore,	in	order	to	check	your	final	solution	you
only	need	to	examine	the	other	four	combinations	of	input	values	where	C	has	value	1.

If	a	logic	circuit	is	to	be	constructed	from	a	truth	table,	the	first	stage	is	to	create	a	logic	expression.	To
do	this	only	the	rows	producing	a	1	output	are	used.	Consider	the	truth	table	shown	in	Table	4.04.
There	are	three	rows	producing	a	1	output.	Each	of	these	produces	a	logic	expression	with	AND
operators.	These	three	logic	expressions	are	then	combined	with	OR	operators.

Inputs Output

A B C X

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Table	4.04	A	truth	table	to	be	converted	to	a	logic	circuit

The	three	rows	that	produce	a	1	output	have	the	following	values	for	the	inputs:

A	=	0,	B	=	0	and	C	=	1

A	=	0,	B	=	1	and	C	=	1

A	=	1,	B	=	0	and	C	=	0

Each	one	can	be	converted	to	a	logical	expression:

NOT	A	AND	NOT	B	AND	C

NOT	A	AND	B	AND	C

A	AND	NOT	B	AND	NOT	C

The	combination	of	the	three	individual	expressions	produces	the	following:

NOT	A	AND	NOT	B	AND	C

OR

NOT	A	AND	B	AND	C

OR

A	AND	NOT	B	AND	NOT	C

This	could	be	used	to	create	a	logic	circuit,	but	the	circuit	would	be	quite	complex.	In	Chapter	19
methods	will	be	discussed	that	allow	the	simplest	possible	circuit	to	be	constructed	for	a	given	logic
problem.

If	a	logic	expression	is	to	be	constructed	from	a	logic	circuit	the	first	step	is	to	construct	a	truth	table
from	the	circuit.	Then	the	above	method	can	be	applied	to	this	truth	table.

TASK	4.04
An	oven	has	a	number	of	components	that	should	all	be	working	properly.	For	each	component
there	is	a	signalling	mechanism	that	informs	a	management	system	either	if	all	is	well,	or	if	there
is	a	problem.	Table	4.05	summarises	the	signal	values	that	record	the	status	for	each	component.

Signal Value Component	condition

A
0 Fan	not	working

1 Fan	working	properly

B
0 Internal	light	not	working

1 Internal	light	working	properly

C
0 Thermometer	reading	too	high

1 Thermometer	reading	in	range

Table	4.05	Signals	from	the	oven	components

If	the	thermometer	reading	is	in	range	but	either	or	both	the	fan	and	light	are	not	working,	the
management	system	has	to	output	a	signal	to	activate	a	warning	light	on	the	control	panel.	Draw
a	logic	circuit	for	this	fault	condition.

Reflection	Point:
Looking	back	over	the	chapter	content,	what	would	you	say	is	the	central	concept	in	the	subject	matter?

Summary
A	logic	scenario	can	be	described	by	a	problem	statement	or	a	logic	expression.
A	logic	expression	comprises	logic	propositions	and	Boolean	operators.
Logic	circuits	are	constructed	from	logic	gates.
The	operation	of	a	logic	gate	matches	that	of	a	Boolean	operator.
The	outcome	of	a	logic	expression	or	a	logic	circuit	can	be	expressed	as	a	truth	table.
A	logic	expression	can	be	created	from	a	truth	table	using	the	rows	that	provide	a	1	output.

■
■
■
■
■
■

Exam-style	Questions

[3]

[2]

[2]

[8]

[2]

[3]

[3]

[4]

The	following	are	the	symbols	for	three	different	logic	gates.

Identify	each	of	the	logic	gates.

Sketch	the	truth	table	for	either	Gate	1	or	Gate	2.

Consider	the	following	circuit:

Complete	the	truth	table	for	the	circuit	using	the	following	template:

Inputs Workspace Output

A B C X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

There	is	an	element	of	redundancy	in	this	diagram.	Explain	what	the	problem	is.

The	definition	of	the	NAND	gate	can	be	expressed	as:

 A	NAND	B	is	TRUE	if	A	is	FALSE	or	B	is	FALSE

Sketch	the	truth	table	for	a	NAND	gate.

Consider	the	following	statement:

In	a	competition,	two	teams	play	two	matches	against	each	other.	One	of	the	teams	is	declared
the	winner	if	one	of	the	following	results	occurs:

The	team	wins	both	matches.

The	team	wins	one	match	and	loses	the	other	but	has	the	highest	total	score.

Identify	the	three	logic	propositions	in	this	statement.

By	assigning	the	symbols	A,	B	and	C	to	these	three	propositions	give	the	outcome	of	the
competition	as	a	logic	expression.

Sketch	a	logic	circuit	to	match	this	logic	expression.

A	domestic	heating	system	has	a	hot	water	tank	and	a	number	of	radiators.	There	is	a	computerised
management	system	which	receives	signals.	These	signals	indicate	whether	or	not	the	conditions	for

1 a

i

ii

b

i

ii

2 a

b

i

ii

iii

3

[4]

[5]

[5]

components	are	as	they	should	be.	The	following	table	summarises	the	signals	received:

Signal Value Component	condition

A
0 Water	flow	in	the	radiators	is	too	low

1 Water	flow	in	the	radiators	is	within	limits

B
0 Hot	water	tank	temperature	too	high

1 Hot	water	tank	temperature	within	limits

C
0 Water	level	in	hot	water	tank	too	low

1 Water	level	in	hot	water	tank	within	limits

Consider	the	following	fault	condition.	The	water	level	in	the	hot	water	tank	is	too	low	and	the
temperature	in	the	hot	water	tank	is	too	high.	The	management	system	must	output	a	signal	to
switch	off	the	system.

Sketch	a	truth	table	for	this	fault	condition	including	the	A,	B	and	C	signals.

Sketch	the	circuit	diagram	for	this	fault	condition	to	match	this	truth	table.

Consider	the	fault	condition	where	the	hot	water	tank	temperature	is	within	limits	but	the	water
flow	in	the	radiators	is	too	low	and	the	water	level	in	the	hot	water	tank	is	too	low.	Sketch	the
circuit	diagram	for	this	fault	condition	which	requires	the	management	system	to	output	a	signal
to	increase	water	pressure.

Three	digital	sensors	A,	B	and	C	are	used	to	monitor	a	process.	The	outputs	from	the	sensors	are
used	as	the	inputs	to	a	logic	circuit.

A	signal,	X,	is	output	from	the	logic	circuit:

Output,	X,	has	a	value	of	1	if	either	of	the	following	two	conditions	occur:

sensor	A	outputs	the	value	1	OR	sensor	B	outputs	the	value	0

sensor	B	outputs	the	value	1	AND	sensor	C	outputs	the	value	0

Draw	a	logic	circuit	to	represent	these	conditions.

[5]

Complete	the	truth	table	for	the	logic	circuit	described	in	part	(a).

A B C Workspace X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

a

i

ii

b

4 a

b

[4]

[4]

1 0 1

1 1 0

1 1 1

Write	a	logic	statement	that	describes	the	following	logic	circuit.

[3]

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	13	Q6	June	2015

A	student	writes	the	following	logic	expression:

  X	is	1	IF	(B	is	NOT	1	AND	S	is	NOT	1)	OR	(P	is	NOT	1	AND	S	is	1)

Draw	a	logic	circuit	to	represent	this	logic	expression.

Do	not	attempt	to	simplify	the	logic	expression.

[6]

Complete	the	truth	table	for	the	logic	expression	given	in	part	(a).

B S P Workspace X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	12	Q1	November	2016

c

5 a

b

Chapter	5:
Processor	fundamentals

5.01	The	von	Neumann	model	of	a	computer	system
John	von	Neumann	was	the	first	person	to	describe	the	basic	principles	of	a	computer	system	and	its
architecture	in	a	publication.

The	model	von	Neumann	described	has	the	following	basic	features.

There	is	a	processor	-	the	central	processing	unit	(CPU).

The	processor	has	direct	access	to	memory.

The	memory	contains	a	‘stored	program’	(which	can	be	replaced	by	another	at	any	time)	and	the
data	required	by	the	program.

The	stored	program	consists	of	individual	instructions.

The	processor	executes	instructions	sequentially.

5.02	Central	processing	unit	(CPU)	architecture
In	order	to	understand	how	the	von	Neumann	model	could	be	put	into	practice	in	a	real	computer
system,	we	need	first	to	identify	the	individual	hardware	components	of	a	CPU	and	define	their
functions.	Let’s	consider	a	system	that	has	the	minimum	number	of	components	needed.	Figure	5.01
gives	a	simplified	schematic	diagram	of	a	processor.

Figure	5.01	A	schematic	diagram	of	the	architecture	of	a	simple	CPU

The	dotted	outline	shows	the	boundary	of	the	processor.	The	logical	arrangement	of	some	of	the
processor	components	is	indicated.	The	arrows	show	possible	directions	of	flow	of	data.	As	the
following	discussion	will	show,	the	data	for	some	of	the	arrows	is	actually	an	address	or	an	instruction.
However,	in	general,	data	might	be	an	address,	an	instruction	or	a	value.

The	active	components	of	the	CPU
The	two	components	of	the	CPU	that	have	an	active	role	in	its	operation	are	the	arithmetic	and	logic
unit	(ALU)	(or	Arithmetic	Logic	Unit)	and	the	control	unit.	As	its	name	implies,	the	ALU	is	responsible
for	the	arithmetic	or	logic	processing	requirements	of	the	instructions	in	a	running	program.	The
functions	of	the	control	unit	are	more	diverse.	One	aspect	is	controlling	the	flow	of	data	throughout	the
processor	and	the	rest	of	the	whole	computer	system.	Another	is	ensuring	that	program	instructions	are
handled	correctly.	A	vital	part	of	the	control	unit	is	a	clock	that	is	used	by	the	unit	to	synchronise
processes.	Strictly	speaking	there	are	two	clocks.	The	first	is	an	internal	clock	that	controls	the	cycles
of	activity	within	the	processor.	The	other	is	the	system	clock	that	controls	activities	outside	the
processor.	The	CPU	will	have	a	defined	frequency	for	its	clock	cycle,	which	is	usually	referred	to	as	the
clock	speed.	The	frequency	defines	the	minimum	period	of	time	that	separates	successive	activities
within	the	system.

Registers
The	other	components	of	the	CPU	are	the	registers.	These	are	storage	components	which,	because	they
are	placed	very	close	to	the	ALU,	allow	very	short	access	times.	Each	register	has	limited	storage
capacity,	typically	16,	32	or	64	bits.	A	register	is	either	general	purpose	or	special	purpose.	If	there	is
only	one	general-purpose	register	it	is	referred	to	as	the	Accumulator.	Here	and	in	Chapter	6,	we
assume	that	the	processor	has	just	this	one	general-purpose	register.	The	Accumulator	is	used	to	store
a	single	value	at	any	one	time.	A	value	is	stored	in	the	Accumulator	that	is	to	be	used	by	the	ALU	for	the

execution	of	an	instruction.	The	ALU	can	then	store	a	different	value	in	the	Accumulator	after	the
execution	of	the	instruction.

Figure	5.01	shows	some	of	the	special-purpose	registers	as	individual	components.	The	box	labelled
‘other	registers’	can	be	considered	to	comprise	the	Accumulator	plus	the	special-purpose	registers	not
identified	individually.	The	full	names	of	the	special-purpose	registers	included	in	the	simple	CPU	that
we	are	considering	are	given	in	Table	5.01	with	a	brief	description	of	their	function.

Register	name Abbreviation Register’s	function

Current	instruction
register

CIR
Stores	the	current	instruction	while	it	is	being	decoded	and
executed

Index	register IX Stores	a	value;	only	used	for	indexed	addressing

Memory	address	register MAR
Stores	the	address	of	a	memory	location	or	an	I/O
component	which	is	about	to	have	a	value	read	from	or
written	to

Memory	data	register
(memory	buffer	register)

MDR	(MBR)
Stores	data	that	has	just	been	read	from	memory	or	is	just
about	to	be	written	to	memory

Program	counter PC
Stores	the	address	of	where	the	next	instruction	is	to	be
read	from

Status	register SR
Contains	bits	that	are	either	set	or	cleared	which	can	be
referenced	individually

Table	5.01	Registers	in	a	simple	CPU

There	are	three	important	points	to	remember.	The	first	is	that	the	MDR	must	act	as	a	buffer.	This	is
because	transfers	of	data	inside	the	processor	take	place	much	more	quickly	than	transfers	outside	the
processor.	The	second	point	to	note	is	that	the	index	register	(IX)	can	be	abbreviated	as	IR	but	in	some
sources	the	current	instruction	register	(CIR)	is	abbreviated	as	‘IR’.	This	is	a	potential	cause	of
confusion.	In	this	book,	the	index	register	is	always	IX	and	the	current	instruction	register	is	CIR.
Finally,	there	is	also	possible	confusion	if	the	abbreviation	PC	is	used.	This	will	only	be	used	in	this	book
when	register	transfer	notation	is	being	used,	as	you	will	see	later	in	the	chapter.	Everywhere	else,	a	PC
is	a	computer.

For	all	of	the	special-purpose	registers,	except	for	the	status	register,	the	contents	represent	one	value.
For	the	status	register	each	individual	bit	is	used	as	a	logical	flag.	The	bit	is	set	to	1	if	a	condition	is
detected.	Examples	are	the	carry	flag,	the	negative	flag	and	the	overflow	flag.

Chapter	6	(Section	6.07)	contains	some	examples	of	the	use	of	the	accumulator	and	the	status	register.

5.03	The	system	bus
A	bus	is	a	parallel	transmission	component	with	each	separate	wire	carrying	a	single	bit.	It	is	important
not	to	describe	a	bus	as	a	storage	device.	A	bus	does	not	hold	data.	Instead	it	is	a	mechanism	for	data	to
be	transferred	from	one	system	component	to	another.

There	will	be	buses	inside	the	CPU.	These	are	not	considered	here.	The	system	bus	connects	the	CPU	to
the	memory	and	to	the	I/O	system.	In	the	simple	computer	system	described	in	this	chapter	there	will
be	a	system	bus	that	comprises	three	distinct	components:	the	address	bus,	the	data	bus	and	the
control	bus.	The	schematic	diagram	of	the	CPU	in	Figure	5.01	shows	the	logical	connection	between
each	bus	and	a	CPU	component.	The	address	bus	is	connected	to	the	MAR;	the	data	bus	to	the	MDR;
and	the	control	bus	to	the	control	unit.	The	system	bus	allows	data	flow	between	the	CPU,	the	memory
and	input	or	output	(I/O)	devices	as	shown	in	the	schematic	diagram	in	Figure	5.02.

Figure	5.02	A	schematic	diagram	of	the	system	bus

The	address	bus
The	sole	function	of	the	address	bus	is	to	carry	an	address.	This	address	is	loaded	on	to	the	bus	from
the	MAR	as	and	when	directed	by	the	control	unit.	The	address	specifies	a	location	in	memory	or	an	I/O
component	which	is	due	to	receive	data	or	from	which	data	is	to	be	read.	The	address	bus	is	a	‘one-way
street’.	It	can	only	be	used	to	send	an	address	to	a	memory	controller	or	an	I/O	controller.	It	cannot	be
used	to	carry	an	address	back	to	the	CPU.

The	data	bus
The	function	of	the	data	bus	is	to	carry	data.	This	might	be	an	instruction,	an	address	or	a	value.	As
can	be	seen	from	Figure	5.02,	the	data	bus	is	two-way	(bidirectional):	it	might	be	carrying	data	from	the
CPU	to	the	memory	or	carrying	data	to	the	CPU.	However,	another	option	is	to	carry	data	to	or	from	an
I/O	device.	The	diagram	does	not	make	clear	whether,	for	instance,	data	coming	from	an	input	device	is
carried	first	to	the	CPU	or	directly	to	the	memory.	There	is	a	good	reason	for	this.	Some	computer
systems	will	only	allow	input	to	the	CPU	before	the	data	can	be	stored	in	memory.	Other	systems	will
allow	direct	transfer	to	memory.

The	control	bus
The	control	bus	is	another	bidirectional	bus	which	transmits	a	signal	from	the	control	unit	to	any	other
system	component	or	transmits	a	signal	to	the	control	unit.	There	is	no	need	for	extended	width,	so	the
control	bus	typically	has	just	eight	wires.	A	major	use	of	the	control	bus	is	to	carry	timing	signals.	As
described	in	Section	5.02,	the	system	clock	in	the	control	unit	defines	the	clock	cycle	for	the	computer
system.	The	control	bus	carries	timing	signals	at	time	intervals	dictated	by	the	clock	cycle.	This	ensures
that	the	time	that	one	component	transmits	data	is	synchronised	with	the	time	that	another	component
reads	it.

5.04	Factors	contributing	to	system	performance
The	processor	clock	speed	is	a	very	important	factor	governing	the	processing	speed	of	the	system.	This
is	because	one	clock	cycle	defines	the	shortest	possible	time	that	any	action	can	take.	Actually,	none	of
the	components	outside	of	the	processor	can	work	anywhere	near	as	fast	as	the	processor	can.	The
components	that	are	directly	addressable	by	the	processor,	which	can	be	referred	to	as	the	immediate
access	store	(IAS),	can	only	accept	data	from	or	provide	data	to	the	processor	at	speeds	much	slower
than	the	processor	speed.

Because	of	this	problem	modern	processors	are	far	more	complex	than	the	simple	example	that	has
been	discussed	in	this	chapter.	One	example	of	this	complexity	is	that	the	CPU	chip	or	integrated	circuit
will	be	multi-core.	Each	core	is	a	separate	processor.	Performance	improves	with	increasing	number	of
cores.	A	further	factor	is	the	use	of	cache	memory	which	was	briefly	discussed	in	Chapter	3	(Sections
3.01	and	3.03).	Cache	memory	is	the	fastest	component	of	the	IAS.	Performance	improves	with
increased	storage	size	for	the	cache	and	with	increased	rate	of	access.	Fastest	access	is	obtained	by
having	all	or	part	of	the	cache	on	the	CPU	chip.

Before	considering	other	factors,	it	is	useful	to	introduce	the	concept	of	a	word.	A	word	consists	of	a
number	of	bytes	and	for	any	system	the	word	length	is	defined.	The	significance	of	the	word	length	is
that	it	defines	a	grouping	that	the	system	can	handle	as	one	unit.	The	word	length	might	be	stated	as	a
number	of	bytes	or	as	a	number	of	bits.	Typical	word	lengths	are	16,	32	or	64	bits;	that	is,	2,	4	or	8
bytes,	respectively.	The	word	length	will	influence	the	system	architecture	design	in	regard	to	the
capacity	of	the	components.	For	example,	it	is	usual	for	the	size	of	registers	to	match	the	word	length.
Word	length	also	has	to	be	considered	when	making	decisions	about	bus	widths.

For	the	address	bus,	the	bus	width	defines	the	number	of	bits	in	the	address’s	binary	code.	In	a	very
simple	computer	system	the	bus	width	might	be	16	bits,	allowing	65	536	memory	locations	to	be
directly	addressed.	Such	a	memory	size	would,	of	course,	be	totally	inadequate	for	a	modern	computer
system.	Even	doubling	the	address	bus	width	to	32	bits	would	only	allow	direct	addressing	of	a	little
over	four	billion	addresses.	As	a	result,	special	techniques	are	used	when	the	storage	capacity	of	the
memory	is	too	large	for	direct	addressing.	Their	use	affects	system	performance.

Bus	width	is	again	an	important	factor	in	considering	how	the	data	bus	is	used.	For	a	given	computer
system,	the	data	bus	width	is	ideally	the	same	as	the	word	length.	If	this	is	not	possible,	the	bus	width
can	be	half	the	word	length	so	that	a	full	word	can	be	transmitted	by	two	consecutive	data	transfers.
Clearly	the	performance	of	the	system	is	affected	if	the	latter	case	applies.

Extension	Question	5.01
In	an	advertisement	for	a	laptop	computer,	the	system	is	described	as	4	GB,	1	TB,	1.7	GHz.

Which	three	components	are	being	referred	to	here?

Calculate	the	minimum	time	period	that	could	separate	successive	activities	on	this	system.

Extension	Question	5.02
Can	you	find	out	the	bus	widths	used	in	the	computer	system	you	are	using?

a

b

5.05	I/O	ports
The	schematic	diagram	in	Figure	5.02	slightly	misrepresents	the	system	architecture	because	it	looks
as	if	the	CPU,	the	memory	and	the	I/O	devices	have	similar	access	to	the	data	and	control	buses.	The
reality	is	different.	Each	I/O	device	is	connected	to	an	interface	called	a	port.	Each	port	is	connected	to
the	I/O	or	device	controller.	This	controller	handles	the	interaction	between	the	CPU	and	an	I/O	device.
A	port	is	described	as	‘internal’	if	the	connected	I/O	device	is	an	integral	part	of	the	computer	system.
An	external	port	allows	the	computer	user	to	connect	a	peripheral	I/O	device.

The	Universal	Serial	Bus	(USB)
In	the	early	days	of	the	PC,	the	process	of	connecting	a	peripheral	was	not	something	the	ordinary	user
would	try	to	do;	it	required	technical	expertise.	The	aim	of	the	plug-and-play	concept	was	to	remove	the
need	for	technical	knowledge	so	that	any	computer	user	could	connect	a	peripheral	and	start	using	it
straight	away.	The	plug-and-play	concept	was	only	fully	realised	by	the	creation	of	the	Universal	Serial
Bus	(USB)	standard.	Nowadays	anyone	buying	a	new	peripheral	device	will	expect	it	to	connect	to	a
USB	port.	There	is	an	alternative	technology	known	as	FireWire,	but	this	is	not	so	commonly	used	in
computer	systems.

	TIP
Don’t	forget	that	the	USB	is	a	bus.	A	USB	drive	stores	data	and	is	connected	to	a	USB
port	which	allows	data	to	be	transmitted	along	the	bus.

The	following	is	some	information	about	the	USB	standard.

A	hierarchy	of	connections	is	supported.

The	computer	is	at	the	root	of	this	hierarchy	and	can	handle	127	attached	devices.

Devices	can	be	attached	while	the	computer	is	switched	on	and	are	automatically	configured	for
use.

The	standard	has	evolved,	with	USB	3.2	being	the	latest	version.

Discussion	Point:
Carry	out	an	investigation	into	storage	devices	that	could	be	connected	as	a	peripheral	to	a	PC	using
the	USB	port.

For	two	representative	devices	find	out	which	specific	USB	technology	is	being	used	and	what	the
potential	data	transfer	speed	is.	How	do	these	speeds	compare	with	the	speed	of	access	of	a	hard	drive
installed	inside	the	computer?

Specialised	multimedia	ports
Despite	the	widespread	use	of	USB	ports	there	are	some	peripheral	devices	that	require	a	different
port,	one	that	is	specialised	for	the	type	of	device.	Although	computer	systems	come	packaged	with	a
monitor	for	screen	display	there	is	sometimes	a	requirement	for	a	second	screen	to	be	used.	The
connection	of	the	second	screen	can	be	through	a	Video	Graphics	Array	(VGA)	port.	This	provides	high-
resolution	screen	display	which	is	suitable	for	most	display	requirements.	However,	if	the	screen	is
needed	to	display	a	video,	the	VGA	port	is	not	suitable	because	it	does	not	transmit	the	audio
component.

A	High	Definition	Multimedia	Interface	(HDMI)	port	will	provide	a	connection	to	a	screen	and	allow	the
transmission	of	high-quality	video	including	the	audio	component.

5.06	The	fetch–execute	(F–E)	cycle
The	full	name	for	this	is	the	fetch,	decode	and	execute	cycle.	This	is	illustrated	by	the	flowchart	in
Figure	5.03.

Figure	5.03	Flowchart	for	the	fetch,	decode	and	execute	cycle

If	we	assume	that	a	program	is	already	running,	then	the	program	counter	will	already	hold	the	address
of	the	next	instruction.	In	the	fetch	stage,	the	following	steps	will	now	happen.

In	the	decode	stage,	the	instruction	stored	in	the	CIR	is	received	as	input	by	the	circuitry	within	the
control	unit.	Depending	on	the	type	of	instruction,	the	control	unit	will	send	signals	to	the	appropriate
components	so	that	the	execute	stage	can	begin.	At	this	stage,	the	ALU	will	be	activated	if	the

This	address	in	the	program	counter	is	transferred	within	the	CPU	to	the	MAR.

During	the	next	clock	cycle	two	things	happen	simultaneously:

the	instruction	held	in	the	address	pointed	to	by	the	MAR	is	fetched	into	the	MDR

the	address	stored	in	the	program	counter	is	incremented.

The	instruction	stored	in	the	MDR	is	transferred	within	the	CPU	to	the	CIR.

There	are	two	points	to	note	here.

The	clock	cycle	is	the	one	controlled	by	the	system	clock	which	will	have	settings	that	allow	one
data	transfer	from	memory	to	take	place	in	the	time	defined	for	one	cycle.

In	the	final	step	the	program	counter	is	incremented	by	1.	However,	the	instruction	just	loaded
might	be	a	jump	instruction.	In	this	case,	the	program	counter	contents	will	have	to	be	updated
in	accordance	with	the	jump	condition.	This	can	only	happen	after	the	instruction	has	been
decoded.

1

2

3

instruction	requires	arithmetic	or	logic	processing.

The	description	of	the	execute	stage	is	given	in	Chapter	6,	where	a	simple	instruction	set	is	introduced
and	discussed.

5.07	Register	transfer	notation
Operations	involving	registers	can	be	described	by	register	transfer	notation.	A	simple	example	of	this
is	a	representation	of	the	fetch	stage	of	the	fetch–execute	cycle:
MAR	←	[PC]

PC	←	[PC]	+	1;	MDR	←	[[MAR]]

CIR	←	[MDR]

In	register	transfer	notation	the	basic	format	for	an	individual	data	transfer	is	similar	to	that	for
variable	assignment.	The	first	item	is	the	destination	for	the	data.	Here	the	appropriate	abbreviation	is
used	to	identify	the	particular	register.	To	the	right	of	the	arrow	showing	the	transmission	of	data	is	the
definition	of	this	data.	In	this	definition,	the	square	brackets	around	a	register	abbreviation	show	that
the	content	of	the	register	is	being	moved.	This	movement	might	also	include	an	arithmetical	operation.
When	two	data	operations	are	placed	on	the	same	line	separated	by	a	semi-colon,	this	means	that	the
two	transfers	take	place	simultaneously.	The	double	pair	of	brackets	around	MAR	on	the	second	line
needs	careful	interpretation.	The	content	of	the	MAR	is	an	address;	it	is	the	content	of	that	address
which	is	being	transferred	to	the	MDR.

5.08	Interrupt	handling
There	are	many	different	reasons	for	an	interrupt	to	be	generated.	Some	examples	are:

a	fatal	error	in	a	program

a	hardware	fault

a	need	for	I/O	processing	to	begin

user	interaction

a	timer	signal.

Discussion	Point:
Carry	out	an	investigation	into	the	different	causes	of	an	interrupt.

Interrupts	are	handled	by	a	number	of	different	mechanisms,	but	there	are	some	clear	overriding
principles.	Each	different	interrupt	needs	to	be	handled	appropriately.	Different	interrupts	might	have
different	priorities.	Therefore,	the	processor	must	have	a	means	of	identifying	the	type	of	interrupt.	One
way	is	to	have	an	interrupt	register	in	the	CPU	that	works	like	the	status	register,	with	each	individual
bit	operating	as	a	flag	for	a	specific	type	of	interrupt.

As	the	flowchart	in	Figure	5.03	shows,	the	existence	of	an	interrupt	is	only	detected	at	the	end	of	a
fetch–execute	cycle.	This	allows	the	current	program	to	be	interrupted	and	left	in	a	defined	state	which
can	be	returned	to	later.	An	interrupt	is	handled	by	the	following	steps.

The	contents	of	the	program	counter	and	any	other	registers	are	stored	somewhere	safe	in	memory.

The	appropriate	interrupt	handler	or	Interrupt	Service	Routine	(ISR)	program	is	initiated	by	loading
its	start	address	into	the	program	counter.

When	the	ISR	program	has	been	executed	there	is	an	immediate	check	to	see	if	further	interrupts
need	handling.

Further	interrupts	are	dealt	with	by	repeated	execution	of	the	ISR	program.

If	there	are	no	further	interrupts,	the	safely	stored	contents	of	the	registers	are	restored	to	the	CPU
and	the	originally	running	program	is	resumed.

Reflection	Point:
Have	you	worked	out	a	method	to	remember	all	of	the	names	and	abbreviations	for	the	special	purpose
registers?

Summary
The	von	Neumann	architecture	for	a	computer	system	is	based	on	the	stored	program	concept.
The	CPU	contains	a	control	unit,	an	arithmetic	and	logic	unit	and	registers.
Registers	can	be	special	purpose	or	general	purpose.
The	status	register	has	individual	bits	acting	as	condition	flags.
The	system	bus	contains	the	data,	address	and	control	buses.
A	universal	serial	bus	(USB)	port	can	be	used	to	attach	peripheral	devices.
Instructions	are	handled	by	the	fetch–execute	cycle.
Register	transfer	notation	is	used	to	describe	data	transfers.
If	an	interrupt	is	detected,	control	passes	to	an	interrupt-handling	routine.

■
■
■
■
■
■
■
■
■

Exam-style	Questions
[1]

[3]

[5]

[3]

[6]

[1]

[2]

[3]

[10]

[4]

[6]

[1]

[1]

[1]

[2]

[2]

A	processor	has	just	one	general-purpose	register.	Give	the	name	of	this	register.

The	memory	address	register	(MAR)	is	a	special-purpose	register.	State:

its	function

the	type	of	data	stored	in	it

the	register	that	supplies	these	data	at	the	start	of	the	fetch	stage	of	the	fetch–execute	cycle.

The	current	instruction	register	(CIR)	is	another	special-purpose	register.	State:

its	function

the	type	of	data	stored	in	it

the	register	that	supplies	this	data	at	the	end	of	the	fetch	stage	of	the	fetch–execute	cycle.

Explain	three	differences	between	the	memory	address	register	and	the	memory	data	register.

The	system	bus	comprises	of	three	individual	buses:	the	data	bus,	the	address	bus	and	the	control
bus.

For	each	bus	give	a	brief	explanation	of	its	use.

Each	bus	has	a	defined	bus	width.

State	what	determines	the	width	of	a	bus.

Explain	which	bus	will	have	the	least	width.

Explain	the	effect	of	changing	the	address	bus	from	a	32-bit	bus	to	a	64-bit	bus.

The	fetch	stage	of	the	fetch–decode–execute	cycle	can	be	represented	by	the	following	statements
using	register	transfer	notation:
MAR	←	[PC]

PC	←	[PC]	+	1;	MDR	[[MAR]]

ICR	←	[MDR]

Explain	the	meaning	of	each	statement.	The	explanation	must	include	definitions	of	the	following
items:	MAR,	PC,	[],	,	MDR,	[[]],	CIR.

Explain	the	use	of	the	address	bus	and	the	data	bus	for	two	of	the	statements.

Name	and	describe	three	buses	used	in	the	von	Neumann	model.

The	sequence	of	operations	shows,	in	register	transfer	notation,	the	fetch	stage	of	the	fetch-
execute	cycle.
1		MAR	←	[PC]

2		PC	←	[PC]	+	1

3		MDR	←	[[MAR]]

4		CIR	←	[MDR]

[register]	denotes	contents	of	the	specified	register	or	memory	location

step	1	above	is	read	as	“the	contents	of	the	Program	Counter	are	copied	to	the	Memory
Address	Register”

Describe	what	is	happening	at	step	2.

Describe	what	is	happening	at	step	3.

Describe	what	is	happening	at	step	4.

Describe	what	happens	to	the	registers	when	the	following	instruction	is	executed:

LDD	35

Explain	what	is	meant	by	an	interrupt.

1 a

b

i

ii

iii

c

i

ii

iii

d

2

a

b

i

ii

iii

3

a

b

4 a

b

i

ii

iii

c

d i

[4]

[4]

[4]

Explain	the	actions	of	the	processor	when	an	interrupt	is	detected. 

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	13	Q5	June	2015

Describe	how	special	purpose	registers	are	used	in	the	fetch	stage	of	the	fetch-execute	cycle.

Use	the	statements	A,	B,	C	and	D	to	complete	the	description	of	how	the	fetch-execute	cycle
handles	an	interrupt.

A the	address	of	the	Interrupt	Service	Routine	(ISR)	is	loaded	to	the	Program	Counter	(PC).

B the	processor	checks	if	there	is	an	interrupt.

C when	the	ISR	completes,	the	processor	restores	the	register	contents.

D the	register	contents	are	saved.

At	the	end	of	the	cycle	for	the	current	instruction	       .

If	the	interrupt	flag	is	set,	       ,	       	and	       .

The	interrupted	program	continues	its	execution.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	11	Q3	June	2016.

ii

5 a

b

Chapter	6:
Assembly	language	programming

6.01	Machine	code	instructions
We	need	to	start	with	a	few	facts.

The	only	language	that	the	CPU	recognises	is	machine	code.

Machine	code	consists	of	a	sequence	of	instructions.

An	instruction	contains	an	opcode.

An	instruction	may	not	have	an	operand	but	up	to	three	operands	are	possible.

Different	processors	have	different	instruction	sets	associated	with	them.

Different	processors	will	have	comparable	instructions	for	the	same	operations,	but	the	coding	of
the	instructions	will	be	different.

For	a	particular	processor,	the	following	must	be	defined	for	each	individual	machine	code
instruction:

the	total	number	of	bits	or	bytes	for	the	whole	instruction

the	number	of	bits	that	define	the	opcode

the	number	of	operands	that	are	defined	in	the	remaining	bits

whether	the	opcode	occupies	the	most	significant	or	the	least	significant	bits.

We	will	consider	a	simple	system	where	there	is	either	one	or	zero	operands.	This	simple	system	will	be
assumed	to	have	a	16-bit	address	bus	width.	Following	on	from	the	approach	in	Chapter	5	(Section
5.02),	the	system	will	have	the	accumulator	as	the	only	general	purpose	register.

The	number	of	bits	needed	for	the	opcode	depends	on	the	number	of	different	opcodes	in	the
instruction	set	for	the	processor.	The	opcode	can	be	structured	with	the	first	few	bits	defining	the
operation	and	the	remaining	bits	associated	with	addressing.	A	sensible	instruction	format	for	our
simple	processor	is	shown	in	Figure	6.01.

Figure	6.01	A	simple	instruction	format

This	has	an	eight-bit	opcode	consisting	of	four	bits	for	the	operation,	two	bits	for	the	address	mode
(discussed	in	Section	6.05)	and	the	remaining	two	bits	for	addressing	registers.	This	allows	16	different
operations	each	with	one	of	four	addressing	modes.	This	opcode	will	occupy	the	most	significant	bits	in
the	instruction.	Because	in	some	circumstances	the	operand	will	be	a	memory	address	it	is	sensible	to
allocate	16	bits	for	it.	This	is	in	keeping	with	the	16-bit	address	bus.

When	an	instruction	arrives	in	the	CPU	the	control	unit	checks	the	opcode	to	see	what	action	it	defines.
This	first	step	in	the	decode	stage	of	the	fetch–execute	cycle	can	be	described	using	the	register
transfer	notation	which	was	introduced	in	Chapter	5	(Section	5.07).	However,	a	slight	amendment	is
needed	to	the	format.	The	following	shows	the	transfer	of	bits	16	to	23,	which	represent	the	opcode,
from	the	current	instruction	register	to	the	control	unit:

CU	←	[CIR(23:16)]

6.02	Assembly	language
A	programmer	might	wish	to	write	a	program	where	the	actions	taken	by	the	processor	are	directly
controlled.	It	is	argued	that	this	is	the	most	efficient	type	of	program.	However,	writing	a	substantial
program	as	a	sequence	of	machine	code	instructions	would	take	a	very	long	time	and	there	would	be
inevitably	lots	of	errors	along	the	way.	The	solution	for	this	type	of	programming	is	to	use	assembly
language.	As	well	as	having	a	uniquely	defined	machine	code	language,	each	processor	has	its	own
assembly	language.

The	essence	of	assembly	language	is	that	for	each	machine	code	instruction	there	is	an	equivalent
assembly	language	instruction	which	comprises:

a	mnemonic	(a	symbolic	abbreviation)	for	the	opcode

a	character	representation	for	the	operand.

If	a	program	has	been	written	in	assembly	language	it	has	to	be	translated	into	machine	code	before	it
can	be	executed	by	the	processor.	The	translation	program	is	called	an	assembler.

Using	an	assembly	language,	the	programmer	has	the	advantage	of	the	coding	being	easier	to	write
than	it	would	have	been	in	machine	code.	In	addition,	the	use	of	the	assembler	allows	a	programmer	to
include	some	special	features	in	an	assembly	language	program.	Examples	of	some	of	these	are:

comments

symbolic	names	for	constants

labels	for	addresses

macros

directives.

A	macro	is	a	sequence	of	instructions	that	is	to	be	used	more	than	once	in	a	program.	A	directive	is	an
instruction	to	the	assembler	as	to	how	it	should	construct	the	final	executable	machine	code.	This	might
be	to	direct	how	memory	should	be	used	or	to	define	files	or	procedures	that	will	be	used.

Discussion	Point:
Although	writing	a	program	in	assembly	language	is	much	easier	than	using	machine	code,	many	would
argue	that	its	use	is	no	longer	justified.	Can	you	investigate	the	arguments	for	and	against?

6.03	Symbolic,	relative	and	absolute	addressing
When	considering	how	an	assembler	would	convert	an	assembly	language	program	into	machine	code	it
is	necessary	to	understand	the	difference	between	symbolic,	relative	and	absolute	addressing.	To
explain	these,	we	can	consider	a	simple	assembly	language	program	which	totals	single	numbers	input
at	the	keyboard.	Table	6.01	shows	the	program	as	it	would	be	written	using	symbolic	addressing
together	with	an	explanation	of	each	instruction.

Assembly	language	program
using	symbolic	addressing

Explanation	of	each	instruction

IN A	single	number	is	input	at	the	keyboard	and	its	ASCII	code	is
stored	in	the	accumulator

SUB	#48 This	subtraction	converts	the	ASCII	code	into	the	binary	code	for
the	number	(see	Task	6.01)

STO	MAX The	number	in	the	accumulator	is	stored	at	the	address	labelled
MAX:

LDM	#0 Loads	zero	into	the	accumulator

STO	TOTAL The	zero	in	the	accumulator	is	stored	at	the	address	labelled
TOTAL:

STO	COUNT The	zero	in	the	accumulator	is	stored	at	the	address	labelled
COUNT:

STRTLP:IN A	single	number	is	input	at	the	keyboard	and	its	ASCII	code	is
stored	in	the	accumulator

SUB	#48 This	subtraction	converts	the	ASCII	code	into	the	binary	code	for
the	number

ADD	TOTAL Adds	the	value	at	address	labelled	TOTAL:	to	the	value	in	the
accumulator	and	stores	the	sum	in	the	accumulator

STO	TOTAL The	number	in	the	accumulator	is	stored	at	the	address	labelled
TOTAL:

LDD	COUNT Loads	the	value	stored	at	address	COUNT:	into	the	accumulator

INC	ACC Adds	1	to	the	value	in	the	accumulator

CMP	MAX Compares	the	value	in	the	accumulator	with	the	value	stored	at
address	MAX:

JPN	STRTLP If	the	compared	values	are	not	equal	the	program	jumps	to	the
instruction	labelled	STRTLP:

END The	execution	of	the	program	has	finished

MAX: A	labelled	address	where	a	value	can	be	stored

TOTAL: A	labelled	address	where	a	value	can	be	stored

COUNT: A	labelled	address	where	a	value	can	be	stored

Table	6.01	An	assembly	program	using	symbolic	addressing	with	explanations

The	convention	has	been	followed	that	a	label	is	written	with	a	following	colon	which	is	ignored	when
the	label	is	referenced.	Note	how	the	code	is	dominated	by	the	use	of	the	accumulator.

TASK	6.01
Check	the	ASCII	coding	table	to	see	why	the	subtraction	in	Table	6.01	works.

The	use	of	symbolic	addressing	allows	a	programmer	to	write	some	assembly	language	code	without
having	to	bother	about	where	the	code	will	be	stored	in	memory	when	the	program	is	run.	However,	it
is	possible	to	write	assembly	language	code	where	the	symbolic	addressing	is	replaced	by	either
relative	addressing	or	absolute	addressing.	Table	6.02	shows	the	simple	code	from	Table	6.01	converted
to	use	these	alternative	approaches.

Assembly	language	program	using	relative
addressing

Assembly	language	program	using	absolute
addressing

(0)   IN (200) IN

(1)   SUB	#48 (201) SUB	#48

(2)   STO	[BR]	+	15 (202) STO	215

(3)   LDM	#0 (203) LDM	#0

(4)   STO	[BR]	+	16 (204) STO	216

(5)   STO	[BR]	+	17 (205) STO	217

(6)   IN (206) IN

(7)   SUB	#48 (207) SUB	#48

(8)   ADD	[BR]	+	16 (208) ADD	216

(9)   STO	[BR]	+	16 (209) STO	216

(10)  LDD	[BR]	+	17 (210) LDD	217

(11)  INC	ACC (211) INC	ACC

(12)  CMP	[BR]	+	15 (212) CMP	215

(13)  JPN	[BR]	+	7 (213) JPN	207

(14)  END (214) END

(15) (215) 	

(16) (216) 	

(17) (217) 	

Table	6.02	A	simple	assembly	language	program	using	relative	and	absolute	addressing

For	the	relative	addressing	example,	the	assumption	is	that	a	special-function	base	register	BR	contains
the	base	address.	The	contents	of	this	register	can	then	be	used	as	indicated	by	[BR].	Note	that	there
are	no	labels	for	the	code.	The	left-hand	column	is	just	for	illustration	identifying	the	offset	from	the
base	address	which	is	the	address	of	the	first	instruction	in	the	program.

For	the	absolute	address	example	there	are	again	no	labels	for	the	code.	The	left-hand	column	is	again
just	for	illustration	but	this	time	identifying	actual	memory	addresses.	This	has	been	coded	with	the
understanding	that	the	first	instruction	in	the	program	is	to	be	stored	at	memory	address	200.

6.04	The	assembly	process	for	a	two-pass	assembler
For	any	assembler	there	are	a	number	of	things	that	have	to	be	done	with	the	assembly	language	code
before	any	translation	can	be	done.	Some	examples	are:

removal	of	comments

replacement	of	a	macro	name	used	in	an	instruction	by	the	list	of	instructions	that	constitute	the
macro	definition

removal	and	storage	of	directives	to	be	acted	upon	later.

A	two-pass	assembler	is	designed	to	handle	programs	written	in	the	style	of	the	one	illustrated	in	Table
6.01.	This	program	contains	forward	references.	Some	of	the	instructions	have	a	symbolic	address	for
the	operand	where	the	location	of	the	address	is	not	known	at	that	stage	of	the	program.	A	two-pass
assembler	is	needed	so	that	in	the	first	pass	the	location	of	the	addresses	for	forward	references	can	be
identified.

To	achieve	this	during	the	first	pass	the	assembler	uses	a	symbol	table.	The	code	is	read	line	by	line.
When	a	symbolic	address	is	met	for	the	first	time	its	name	is	entered	into	the	symbol	table.	Alongside
the	name	a	corresponding	address	has	to	be	added	as	soon	as	that	can	be	identified.	Table	6.03	shows	a
possible	format	for	the	symbol	table	that	would	be	created	for	the	program	shown	in	Table	6.01.

Symbol Offset

MAX +15

TOTAL +16

COUNT +17

STRTLP 		+7

Table	6.03	A	completed	symbol	table	for	the	assembly	language	program	in	Table	6.01

Note	that	the	assembler	has	to	count	the	instructions	as	it	reads	the	code.	Then	when	it	encounters	a
label	it	can	enter	the	offset	value	into	the	symbol	table.	In	this	example	the	first	entry	made	in	the	offset
column	is	the	+7	for	STRPLP.

For	the	second	pass	the	Assembler	uses	the	symbol	table	and	a	lookup	table	that	contains	the	binary
code	for	each	opcode.	This	table	would	have	an	entry	for	every	opcode	in	the	set	defined	for	the
processor.	Table	6.04	shows	entries	only	for	the	instructions	used	in	the	simple	program	we	are	using
as	an	example.	Note	that	the	binary	codes	are	just	suggestions	of	codes	that	might	be	used.

Opcode	mnemonic Opcode	binary

IN 0001	0000

SUB 0110	0001

STO 0100	0100

LDM 0010	0001

ADD 0100	0101

LDD 0010	0101

INC 0101	0101

CMP 1000	0100

JPN 1010	0100

END 1111	1111

Table	6.04	An	opcode	lookup	table

Provided	that	no	errors	have	been	identified,	the	output	from	the	second	pass	will	be	a	machine	code
program.	For	our	example,	this	code	is	shown	in	Table	6.05	along	with	the	original	assembly	code	for
comparison.

Machine	code
Assembly	code

Opcode Operand

0001	0000 	 IN

0110	0001	0000	0000	0011	0000 	 SUB	#48

0100	0100	0000	0000	0000	1111 	 STO	MAX

0010	0001	0000	0000	0000	0000 	 LDM	#0

0100	0100	0000	0000	0001	0000 	 STO	TOTAL

0100	0100	0000	0000	0001	0001 	 STO	COUNT

0001	0000 STRTLP: IN

0110	0001	0000	0000	0011	0000 	 SUB	#48

0100	0101	0000	0000	0001	0000 	 ADD	TOTAL

0100	0100	0000	0000	0001	0000 	 STO	TOTAL

0010	0101	0000	0000	0001	0001 	 LDD	COUNT

0101	0101 	 INC	ACC

1000	0100	0000	0000	0000	1111 	 CMP	MAX

1010	0100	0000	0000	0000	0110 	 JPN	STRTLP

1111	1111 	 END

0000	0000 MAX: 	

0000	0000 TOTAL: 	

0000	0000 COUNT: 	

Table	6.05	Machine	code	created	from	assembly	code

Some	points	to	note	are	as	follows.

Most	of	the	instructions	have	an	operand	which	is	a	16-bit	binary	number.

Usually	this	represents	an	address	but	for	the	SUB	and	LDM	instructions	the	operand	is	used	as	a
value.

There	is	no	operand	for	the	IN	and	END	instructions.

The	INC	instruction	is	a	special	case.	There	is	an	operand	in	the	assembly	language	code	but	this	just
identifies	a	register.	In	the	machine	code	the	register	is	identified	within	the	opcode	so	no	operand
is	needed.

The	machine	code	has	been	coded	with	the	first	instruction	occupying	address	zero.

This	code	is	not	executable	in	this	form	but	it	is	valid	output	from	the	assembler.

Changes	will	be	needed	for	the	addresses	when	the	program	is	loaded	into	memory	ready	for	it	to
be	executed.

Three	memory	locations	following	the	program	code	have	been	allocated	a	value	zero	to	ensure	that
they	are	available	for	use	by	the	program	when	it	is	executed.

6.05	Addressing	modes
When	an	instruction	requires	a	value	to	be	loaded	into	a	register	there	are	different	ways	of	identifying
the	value.	Each	one	is	known	as	an	addressing	mode.	In	Section	6.01,	it	was	stated	that,	for	our
simple	processor,	two	bits	of	the	opcode	in	a	machine	code	instruction	would	be	used	to	define	the
addressing	mode.	This	allows	four	different	modes	which	are	described	in	Table	6.06.

Addressing	mode Use	of	the	operand

Immediate
The	operand	is	the	value	to	be	used	in	the	instruction;
SUB	#48

is	an	example.

Direct

The	operand	is	the	address	which	holds	the	value	to	be	used	in
the	instruction;
ADD	TOTAL

is	an	example.

Indirect
The	operand	is	an	address	that	holds	the	address	which	has	the
value	to	be	used	in	the	instruction.

Indexed
The	operand	is	an	address	to	which	must	be	added	the	value
currently	in	the	index	register	(IX)	to	get	the	address	which	holds
the	value	to	be	used	in	the	instruction.

Table	6.06	Addressing	modes

For	immediate	addressing	there	are	three	options	for	defining	the	value:

#48	specifies	the	denary	value	48

#B00110000	specifies	the	binary	equivalent

#&30	specifies	the	hexadecimal	equivalent

6.06	Assembly	language	instructions
We	continue	to	consider	a	simple	processor	with	a	limited	instruction	set.	The	examples	described	here
do	not	correspond	directly	to	those	found	in	the	assembly	language	for	any	specific	processor.
Individual	instructions	will	have	a	match	in	more	than	one	real-life	set.	The	important	point	is	that	these
examples	are	representative.	In	particular,	there	are	examples	of	the	most	common	categories	of
instruction.

Data	movement
These	types	of	instruction	can	involve	loading	data	into	a	register	or	storing	data	in	memory.	Table	6.07
contains	a	few	examples	of	the	format	of	the	instructions	with	explanations.

Instruction
opcode

Instruction
operand

Explanation

LDM #n Immediate	addressing.	Load	the	number	n	to	ACC.

LDR #n Immediate	addressing.	Load	the	number	n	to	IX.

LDD <address> Direct	addressing.	Load	the	contents	at	the	given	address	to	ACC.

LDI <address> Indirect	addressing.	The	address	to	be	used	is	at	the	given	address.	Load
the	contents	of	this	second	address	to	ACC.

LDX <address> Indexed	addressing.	Form	the	address	from	<address>	+	the	contents	of
the	index	register.	Copy	the	contents	of	this	calculated	address	to	ACC.

MOV <register> Move	the	contents	of	the	accumulator	to	the	given	register	(IX).

STO <address> Store	the	contents	of	ACC	at	the	given	address.

Table	6.07	Some	instruction	formats	for	data	movement

The	important	point	to	note	is	that	the	mnemonic	defines	the	instruction	type	including	which	register
is	involved	and,	where	appropriate,	the	addressing	mode.	It	is	important	to	read	the	mnemonic
carefully!	The	instruction	will	have	an	actual	address	where	<address>	is	shown,	a	register	abbreviation
where	<register>	is	shown	and	a	denary	value	for	n	where	#n	is	shown.	The	explanations	use	ACC	to
indicate	the	accumulator.	For	explanations	of	LDD,	LDI	and	LDX,	refer	back	to	Table	6.07.

Figure	6.02	Example	of	some	data	stored	in	memory

The	following	shows	some	examples	of	the	effect	of	an	instruction	or	a	sequence	of	instructions	based
on	the	memory	content	shown	in	Figure	6.02.

LDD	103 the	value	110	is	loaded	into	the	accumulator

LDI	106 the	value	208	from	address	101	is	loaded	into	the	accumulator

STO	106 the	value	208	is	stored	in	address	106

LDD	INDEXVALUE  the	value	3	is	loaded	into	the	accumulator

MOV	IX the	value	3	from	the	accumulator	is	loaded	into	the	index	register

LDX	102 the	value	206	from	address	105	is	loaded	into	the	accumulator

Input	and	output
There	are	two	instructions	provided	for	input	or	output.	In	each	case	the	instruction	has	only	an
opcode;	there	is	no	operand.

The	instruction	with	opcode	IN	is	used	to	store	in	the	ACC	the	ASCII	value	of	a	character	typed	at
the	keyboard.

The	instruction	with	opcode	OUT	is	used	to	display	on	the	screen	the	character	for	which	the	ASCII
code	is	stored	in	the	ACC.

Comparisons	and	jumps
A	program	might	need	an	unconditional	jump	or	might	need	a	jump	if	a	condition	is	met.	In	the	second
case,	a	compare	instruction	is	executed	first.	Table	6.08	shows	the	format	for	these	types	of	instruction.

Instruction
opcode

Instruction
operand

Explanation

JMP <address> Jump	to	the	given	address

CMP <address> Compare	the	contents	of	ACC	with	the	contents	of	<address>

CMP #n Compare	the	contents	of	ACC	with	the	number	n

CMI <address> Indirect	addressing.	The	address	to	be	used	is	at	the	given	address.
Compare	the	contents	of	ACC	with	the	contents	of	this	second	address

JPE <address> Following	a	compare	instruction,	jump	to	<address>	if	the	compare	was
True

JPN <address> Following	a	compare	instruction,	jump	to	<address>	if	the	compare	was
False

Table	6.08	Jump	and	compare	instruction	formats

Note	that	the	comparison	is	restricted	to	asking	if	two	values	are	equal.

The	result	of	the	comparison	is	recorded	by	a	flag	in	the	status	register.	The	execution	of	the
conditional	jump	instruction	begins	by	checking	whether	or	not	the	flag	bit	has	been	set.	This	jump
instruction	does	not	cause	an	immediate	jump.	This	is	because	a	new	value	has	to	be	supplied	to	the
program	counter	so	that	the	next	instruction	is	fetched	from	this	newly	specified	address.	The
incrementing	of	the	program	counter	that	took	place	automatically	when	the	instruction	was	fetched	is
overwritten.

Arithmetic	operations
There	are	no	instructions	for	general-purpose	multiplication	or	division.	General-purpose	addition	and
subtraction	are	catered	for.	Table	6.09	contains	the	instruction	formats	used	for	arithmetic	operations.

Instruction	opcode Instruction	operand Explanation

ADD <address> Add	the	contents	of	the	given	address	to	the	ACC

ADD #n Add	the	denary	number	n	to	the	ACC

SUB <address> Subtract	the	contents	of	the	given	address	from	the	ACC

SUB #n Subtract	the	denary	number	n	from	the	ACC

INC <register> Add	1	to	the	contents	of	the	register	(ACC	or	IX)

DEC <register> Subtract	1	from	the	contents	of	the	register	(ACC	or	IX)

Table	6.09	Instruction	formats	for	arithmetic	operations

Figure	6.03	shows	a	program	to	find	out	how	many	times	5	divides	into	75.

The	following	should	be	noted	concerning	the	program.

The	first	three	instructions	initialise	the	count	and	the	sum.

The	instruction	in	address	103	is	the	one	that	is	returned	to	in	each	iteration	of	the	loop;	in	the	first
iteration	it	is	loading	the	value	0	into	the	accumulator	when	this	value	is	already	stored	but	this
cannot	be	avoided.

Figure	6.03	A	program	to	calculate	the	result	of	dividing	75	by	5

The	next	three	instructions	are	increasing	the	count	by	1	and	storing	the	new	value.

Instructions	106	to	108	add	5	to	the	sum.

Instructions	109	and	110	check	to	see	if	the	sum	has	reached	75	and	if	it	has	not	the	program
begins	the	next	iteration	of	the	loop.

Instructions	111	to	113	are	only	used	when	the	sum	has	reached	75	which	causes	the	value	15
stored	for	the	count	to	be	output.

Shift	operations
There	are	two	shift	instructions	available:

LSL   #n

where	the	bits	in	the	accumulator	are	shifted	logically	n	places	to	the	left

LSR   #n

where	the	bits	are	shifted	to	the	right.

In	a	logical	shift	no	consideration	is	given	as	to	what	the	binary	code	in	the	accumulator	represents.
Because	a	shift	operation	moves	a	bit	from	the	accumulator	into	the	carry	bit	in	the	status	register	this
can	be	used	to	examine	individual	bits.	For	a	left	logical	shift,	the	most	significant	bit	is	moved	to	the
carry	bit,	the	remaining	bits	are	shifted	left	and	a	zero	is	entered	for	the	least	significant	bit.	For	a	right
logical	shift,	it	is	the	least	significant	bit	that	is	moved	to	the	carry	bit	and	a	zero	is	entered	for	the	most
significant	bit.

If	the	accumulator	content	represents	an	unsigned	integer,	the	left	shift	operation	is	a	fast	way	to
multiply	by	two.	However,	this	only	gives	a	correct	result	if	the	most	significant	bit	is	a	zero.	For	an
unsigned	integer	the	right	shift	represents	integer	division	by	two.	For	example,	consider:

00110001	(denary	49)  gives	if	right	shifted  00011000	(denary	24)

The	remainder	from	the	division	can	be	found	in	the	carry	bit.	Again,	the	division	will	not	always	give	a
correct	result;	continuing	right	shifts	will	eventually	produce	a	zero	for	every	bit.	It	should	be	apparent
that	a	logical	shift	cannot	be	used	for	multiplication	or	division	by	two	when	a	signed	integer	is	stored.
This	is	because	the	operation	may	produce	a	result	where	the	sign	of	the	number	has	changed.

As	indicated	earlier,	only	the	two	logical	shifts	are	available	for	the	simple	processor	considered	here.
However,	in	more	complex	processors	there	is	likely	to	be	a	cyclic	shift	capability.	Here	a	bit	moves	off
one	end	into	the	carry	bit	then	one	step	later	moves	in	at	the	other	end.	All	bit	values	in	the	original
code	are	retained.	Left	and	right	arithmetic	shifts	are	also	likely	to	be	available.	These	work	in	a
similar	way	to	logical	shifts,	but	are	provided	for	the	multiplication	or	division	of	a	signed	integer	by
two.	The	sign	bit	is	always	retained	following	the	shift.

Bitwise	logic	operation
The	options	for	this	are	described	in	Table	6.10.

Instruction
opcode

Instruction
operand

Explanation

AND #Bn Bitwise	AND	operation	of	the	contents	of	ACC	with	the	binary
number	n

AND <address> Bitwise	AND	operation	of	the	contents	of	ACC	with	the	contents
of	<address>

XOR #Bn Bitwise	XOR	operation	of	the	contents	of	ACC	with	the	binary
number	n

XOR <address> Bitwise	XOR	operation	of	the	contents	of	ACC	with	the	contents
of	<address>

OR #Bn Bitwise	OR	operation	of	the	contents	of	ACC	with	the	binary
number	n

OR <address> Bitwise	OR	operation	of	the	contents	of	ACC	with	the	contents	of
<address>

Table	6.10	Bitwise	logical	operation	instructions

The	operand	for	a	bitwise	logic	operation	instruction	is	referred	to	as	a	mask	because	it	can	effectively
cover	some	of	the	bits	and	only	affect	specific	bits.	Some	examples	of	their	use	are	given	in	Chapter	7
(Section	7.03).

6.07	Further	consideration	of	assembly	language	instructions
Register	transfer	notation
Section	6.01	introduced	an	extension	to	register	transfer	notation.	We	can	use	this	to	describe	the
execution	of	an	instruction.	For	example,	the	LDD	instruction	is	described	by:

ACC	←	[[CIR(15:0)]]

The	instruction	is	in	the	CIR	and	only	the	16-bit	address	needs	to	be	examined	to	identify	the	location	of
the	data	in	memory.	The	contents	of	that	location	are	transferred	into	the	accumulator.

TASK	6.02
Use	register	transfer	notation	to	describe	the	execution	of	an	LDI	instruction.

Computer	arithmetic
In	Chapter	1	(Section	1.03)	we	saw	that	computer	arithmetic	could	lead	to	an	incorrect	answer	if
overflow	occurred.	In	Chapter	5	(Section	5.02)	we	saw	the	possible	uses	of	the	Status	Register.	The
following	worked	example	illustrates	how	the	values	stored	in	the	Status	Register	can	identify	a	specific
overflow	condition.

The	use	of	the	following	three	flags	is	required:

the	carry	flag,	identified	as	C,	which	is	set	to	1	if	there	is	a	carry

the	negative	flag,	identified	as	N,	which	is	set	to	1	if	a	result	is	negative

the	overflow	flag,	identified	as	V,	which	is	set	to	1	if	overflow	is	detected.

WORKED	EXAMPLE	6.01

Using	the	status	register	during	an	arithmetic	operation

Consider	the	addition	of	two	positive	values	where	the	sum	of	the	two	produces	an	answer	that
is	too	large	to	be	correctly	identified	with	the	limited	number	of	bits	used	to	represent	the
values.	For	example,	Figure	6.04	shows	what	happens	if	we	use	an	eight-bit	binary	integer
representation	and	attempt	to	add	denary	66	to	denary	68.

Figure	6.04	An	attempted	addition	of	denary	66	to	denary	68

The	answer	produced	is	denary	−122.	Two	positive	numbers	have	been	added	to	get	a	negative
number.	This	impossibility	is	detected	by	the	combination	of	the	negative	flag	and	the	overflow
flag	being	set	to	1.	The	processor	examines	the	flags,	identifies	the	problem	and	generates	an
interrupt.

Consider	using	the	same	eight-bit	binary	integer	representation	but	this	time	we	add	two
negative	numbers	(−66	and	−68	in	denary).	The	result	is	shown	in	Figure	6.05.

1

2

Extension	Question	6.01
Carry	out	a	comparable	calculation	for	the	addition	in	binary	of	−66	to	+68.	What	do	you	think	the
processor	should	do	with	the	carry	bit?

Tracing	an	assembly	language	program
One	way	of	checking	to	see	if	an	assembly	language	program	has	errors	is	to	carry	out	a	dry	(practice)
run.	The	main	feature	of	this	will	be	to	check	how	the	contents	of	the	accumulator	change	as	the
program	runs.	The	following	two	worked	examples	illustrate	the	process.

WORKED	EXAMPLE	6.02

Tracing	an	assembly	language	program

For	this	example	the	trace	table	needs	a	column	for	the	accumulator,	two	for	memory	locations	and
one	for	the	output.

The	tracing	is	based	on	an	initial	user	input	of	15,	a	second	input	of	27	and	a	final	input	of	31.

The	program	is	shown	in	Figure	6.06.

100 IN
101 STO	200
102 IN
103 STO	201
104 IN
105 ADD	200
106 STO	200
107 ADD	201
108 INC	ACC
109 OUT
110 END

Figure	6.06	The	assembly	language	program

The	completed	trace	table	is	shown	in	Figure	6.07

Accumulator Memory	location	200 Memory	location	201 Output
15 	 	 	
	 15 	 	
27 	 	 	
	 	 27 	
31 	 	 	
46 	 	 	
	 46 	 	

Figure	6.05	An	attempted	addition	of	denary	−66	to	denary	−68

We	get	the	answer	+122.	This	impossibility	is	detected	by	the	combination	of	the	negative	flag
not	being	set	and	both	the	overflow	and	the	carry	flag	being	set	to	1.

73 	 	 	
74 	 	 	
	 	 	 74

Figure	6.07	The	trace	table	showing	the	execution	of	the	program

Note	that	in	this	presentation	the	decision	has	been	made	to	use	a	new	row	in	the	trace	table	for
each	instruction	in	the	program.	This	helps	with	checking.	However,	an	alternative	correct	method
is	to	enter	a	value	in	a	column	in	the	first	available	position.	For	example	in	the	Memory	location
200	column	the	first	two	rows	could	contain	the	15	and	46.	The	other	point	to	note	is	that	if	an
instruction	does	not	change	an	entry	in	a	column	it	is	not	necessary	to	enter	the	value	stored	again.
The	trace	table	only	needs	to	show	activity;	it	does	not	have	to	record	a	complete	set	of	values	at
each	stage	in	the	program	execution.

WORKED	EXAMPLE	6.03

Tracing	an	assembly	language	program

Some	instructions	for	part	of	a	program	are	contained	in	memory	locations	100	upwards.	Some	4-
bit	binary	data	values	are	stored	in	locations	200	upwards.	For	illustrative	purposes	the
instructions	are	shown	in	assembly	language	form.	At	the	start	of	a	part	of	the	program,	the
memory	contents	are	as	shown	in	Figure	6.08.

Figure	6.08	The	contents	of	memory	addresses	before	execution	of	the	program	begins

The	completed	trace	table	for	this	example	is	shown	in	Figure	6.09.	Because	the	program	contains
a	jump	instruction	it	is	necessary	to	record	the	values	for	the	program	counter	as	well	as	for	the
accumulator.

Program	counter	PC Accumulator	ACC Memory	location	203
100 1000 	
101 0001 	
102 0010 	
103 0101 	
104 	 	
106 	 	
107 0110 	
108 	 0110

Figure	6.09	The	contents	of	the	program	counter	and	accumulator	during	program	execution

The	entries	in	the	table	can	be	explained	as	follows.

The	first	row	shows	the	stored	value	before	execution	of	this	part	of	the	program.	There	will	be
a	value	in	the	accumulator	resulting	from	an	earlier	instruction.

The	second	row	shows	the	result	of	the	execution	of	the	instruction	in	location	100	which	loads
a	value	into	ACC;	this	is	followed	by	the	PC	being	automatically	incremented.

The	next	two	rows	show	the	value	being	changed	in	the	ACC	by	the	instructions	in	101	and	102
and	the	automatic	incrementing	of	the	PC	each	time.

The	fifth	row	has	no	new	value	in	ACC	because	only	a	comparison	is	being	done	but	there	is	an
automatic	increment	of	the	PC.

The	sixth	row	shows	a	new	value	in	the	PC	which	has	resulted	from	the	execution	of	the	jump
instruction	which	tested	for	equality	and	found	it	to	be	True.

The	seventh	row	shows	the	result	of	the	instruction	in	location	106	which	has	incremented	the
ACC.

The	final	row	shows	the	value	stored	in	location	203.

Question	6.01
Can	you	follow	through	the	changes	in	the	trace	table	for	Worked	Example	6.03?	Could	it	be	possible
for	the	program	to	change	the	content	in	one	of	the	memory	locations	100–107	during	execution?

TASK	6.03
Without	looking	at	the	explanations	provided,	trace	the	assembly	language	program	shown	in
Table	6.01.	Use	a	value	of	3	for	MAX	and	then	7,	8	and	9	as	input	values.

Reflection	Point:
There	are	several	references	in	this	chapter	to	the	content	in	earlier	chapters.	Have	you	checked	that
you	understand	how	the	topics	are	related	by	revising	the	content	in	the	earlier	chapters?

Summary
A	machine	code	instruction	consists	of	an	opcode	and	an	operand.
An	assembly	language	program	contains	assembly	language	instructions	plus	directives	that
provide	information	to	the	assembler.
A	two-pass	assembler	identifies	relative	addresses	for	symbolic	addresses	in	the	first	pass.
Processor	addressing	modes	can	be:	immediate,	direct,	indirect	or	indexed.
Assembly	language	instructions	can	be	categorised	as:	data	movement,	input/output,	compare	and
jump,	arithmetic,	shift	and	logical.

■
■

■
■
■

Exam-style	Questions

[2]

[1]

[3]

[1]

[3]

[1]

Three	instructions	for	a	processor	with	an	accumulator	as	the	single	general	purpose	register	are:

LDD <address>	for	direct	addressing

LDI <address>	for	indirect	addressing

LDX	<address>	for	indexed	addressing

In	the	diagrams	below,	the	instruction	operands,	the	register	content,	memory	addresses	and	the
memory	contents	are	all	shown	as	denary	values.

Consider	the	instruction	LDD	103.

Draw	arrows	on	a	copy	of	the	diagram	below	to	explain	execution	of	the	instruction.

Give	the	contents	of	the	accumulator	as	a	denary	value	after	execution	of	the	instruction.

Consider	the	instruction	LDI	107.

Draw	arrows	on	a	copy	of	the	diagram	below	to	explain	execution	of	the	instruction.

Give	the	contents	of	the	accumulator	as	a	denary	value	after	execution	of	the	instruction.

Draw	arrows	on	a	copy	of	the	diagram	below	to	explain	the	execution	of	the	instruction	LDX
103.

Give	the	contents	of	the	accumulator	as	a	denary	value	after	the	execution.

Every	machine	code	instruction	has	an	equivalent	in	assembly	language.	An	assembly	language

1

a

i

ii

b

i

ii

c i

ii

2

[6]

[6]

[4]

program	will	contain	assembly	language	instructions.	An	assembly	language	program	also	contains
components	not	directly	transformed	into	machine	code	instructions	when	the	program	is
assembled.

Describe	the	use	of	three	types	of	component	of	an	assembly	language	program	that	are	not
intended	to	be	directly	transformed	into	machine	code	by	the	assembler.

Complete	the	trace	table	for	the	following	assembly	language	program.	Note	that	the	LDI
instruction	uses	indirect	addressing.

	
Assembly	language	program

Memory	address Memory	content
100 LDD			201
101 INC		   ACC
102 STO 202
103 LDI 	203
104 DEC			ACC
105 STO 201
105 ADD		 204
107 STO 201
108 END

 
201 10
202 0
203 204
204 5

 

			Accumulator			

0
	
	
	
	
	
	
	
	

 
Memory	addresses

201 202 203 204
10 0 204 5
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

Consider	the	following	assembly	language	program:
<code> IN

	 STO CHARACTER

	 IN

	 SUB #48

START: CMP #0

	 JPN OUTPUT

	 END

OUTPUT: OUT

	 DEC ACC

	 JMP START

CHARACTER:    	

Explain	what	the	program	takes	as	input.

a

b

3

a

[3]Explain	what	the	program	outputs.

Complete	the	symbol	table	shown	below	which	would	be	obtained	from	the	first	pass	of	a	two-pass
assembler.	You	can	use	denary	numbers	for	addresses	and	you	can	assume	that	the	first
instruction	is	stored	in	address	0.

Label Address
	 	
	 	
	 	

[4]

The	table	shows	assembly	language	instructions	for	a	processor	which	has	one	general	purpose
register,	the	Accumulator	(ACC)	and	an	index	register	(IX).

Instruction
Explanation

Op	code Operand
LDD <address> Direct	addressing.	Load	the	contents	of	the	given	address	to	ACC.
LDX <address> Indexed	addressing.	Form	the	address	from	<address>	+	the

contents	of	the	index	register.	Copy	the	contents	of	this	calculated
address	to	ACC.

STO <address> Store	contents	of	ACC	at	the	given	address.
ADD <address> Add	the	contents	of	the	given	address	to	ACC.
INC <register> Add	1	to	the	contents	of	the	register	(ACC	or	IX).
DEC <register> Subtract	1	from	the	contents	of	the	register	(ACC	or	IX).
CMP <address> Compare	contents	of	ACC	with	contents	of	<address>.
JPE <address> Following	a	compare	instruction,	jump	to	<address>	if	the	compare

was	True.
JPN <address> Following	a	compare	instruction,	jump	to	<address>	if	the	compare

was	False.
JMP <address> Jump	to	the	given	address.
OUT 	 Output	to	screen	the	character	whose	ASCII	value	is	stored	in	ACC.
END 	 Return	control	to	the	operating	system.

The	diagram	shows	the	current	contents	of	a	section	of	main	memory	and	the	index	register:

 	60 0011	0010    
 	61 0101	1101
 	62 0000	0100
 	63 1111	1001
 	64 0101	0101
 	65 1101	1111
 	66 0000	1101
 	67 0100	1101
 	68 0100	0101
 	69 0100	0011
 .	.	.    
1000 0110	1001

Index	register:	 0 0 0 0 1 0 0 0

Show	the	contents	of	the	Accumulator	after	the	execution	of	the	instruction:

            LDX	60

Accumulator:	 	 	 	 	 	 	 	 	

b

c

4

a

i

[2]

[1]

Show	how	you	obtained	your	answer.

Show	the	contents	of	the	index	register	after	the	execution	of	the	instruction:

            DEC	IX

Index	register:	 	 	 	 	 	 	 	 	

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	11	Q9a	June	2016

ii

Chapter	7:
Monitoring	and	control	systems

7.01	Monitoring	systems
A	monitoring	system	can	be	used	to	create	a	record	of	the	condition	of	a	system	over	a	period	of	time.	A
monitoring	system	is	used	more	often	to	detect	when	a	particular	physical	property	of	a	system	goes
outside	a	desired	range;	for	example,	if	the	CPU	is	too	hot.

Discussion	Point:
Set	yourself	a	time	limit	of	one	minute.	During	this	minute,	by	considering	what	measurement	will	be
involved,	ask	yourself	how	many	different	types	of	monitoring	system	you	can	identify.

Let’s	consider	temperature	as	an	example.	If	this	was	being	monitored	under	human	control,	the
measurement	could	be	made	with	a	standard	mercury	thermometer.	However,	in	this	chapter	we	are
interested	in	systems	where	a	computer	or	microprocessor	is	being	used.	These	systems	require	a
measuring	device	that	records	a	value	which	can	be	transmitted	to	the	computer.	Such	a	measuring
device	is	a	called	a	sensor.	An	example	of	a	sensor	for	measuring	temperature	is	a	thermocouple,
which	outputs	an	electrical	voltage	that	changes	with	temperature.

It	is	important	to	understand	that	in	a	monitoring	system,	a	sensor	does	not	have	any	built-in
intelligence,	so	it	cannot	take	any	action	if	there	is	a	problem.	If	the	temperature	measured	becomes
dangerously	high	it	is	the	computer	that	sounds	an	alarm.

There	are	a	wide	variety	of	sensors	available.	For	some	the	name	indicates	the	property	being
measured	such	as	pressure,	humidity,	carbon	monoxide,	pH	or	sound.	For	others	such	as	an	infrared
sensor	there	are	different	methods	of	use.	A	passive	infrared	sensor	just	measures	the	level	of	infrared
light	received.	In	other	cases,	there	is	transmission	of	infrared	light	with	the	sensor	possibly	measuring
the	level	of	the	light	that	is	reflected	back.	Other	sensors	are	given	a	generic	name	such	as	a	motion
sensor,	for	which	different	examples	will	be	measuring	different	physical	properties.

Question	7.01
How	many	different	types	of	motion	sensor	are	you	aware	of?

7.02	Control	systems
A	control	system	has	the	monitoring	activity	plus	the	capability	to	control	a	system.	The	control	element
of	a	monitoring	and	control	system	needs	a	device	called	an	actuator.	An	actuator	is	an	electric	motor
that	is	connected	to	a	controlling	device.	It	might	be	used	for	switching	on	or	off	or	for	adjusting	a
setting.

Discussion	Point:
Refer	back	to	the	examples	you	identified	as	monitoring	systems.	How	many	were	actually	control
systems?	If	they	were	monitoring	systems	could	they	be	modified	to	become	control	systems?

Figure	7.01	shows	a	schematic	diagram	of	a	computer-controlled	environment.

Note	that	Figure	7.01	includes	an	analogue-to-digital	converter	(ADC)	and	a	digital-to-analogue
converter	(DAC)	as	separate	components.	In	a	real	system	they	are	likely	to	be	integral	to	the	sensor	or
actuator	device.

For	the	system	shown	in	Figure	7.01	there	is	a	continuing	process	where	the	computer	at	regularly
timed	intervals	signals	the	sensor	to	provide	a	measurement.	If	the	measurement	value	received	by	the
computer	is	not	in	the	desired	range	the	computer	initiates	a	control	action.	The	next	timed
measurement	will	happen	after	this	control	action	has	taken	place.	In	effect	this	next	measurement
provides	feedback	to	the	computer	on	the	effect	of	the	control	action.	Feedback	is	essential	in	a	control
system.

Figure	7.01	Computer-controlled	environment

	TIP
You	need	to	remember	that	a	sensor	does	not	have	any	built-in	intelligence	so	it	cannot
itself	take	any	action	if	a	problem	occurs.

A	closed-loop	feedback	control	system	is	a	special	type	of	monitoring	and	control	system	where	the
feedback	directly	controls	the	operation.	Figure	7.02	shows	a	schematic	diagram	of	such	a	system.	A
microprocessor	functions	as	the	controller.	This	compares	the	value	for	the	actual	output,	as	read	by	the
sensor,	with	the	desired	output.	It	then	transmits	a	value	to	the	actuator	which	depends	on	the
difference	calculated.

Figure	7.02	Closed-loop	feedback	control	system

Question	7.02
Where	would	you	be	likely	to	find	a	closed-loop	feedback	control	system?

7.03	Bit	manipulation	to	control	devices
The	controlling	computer	or	microprocessor	has	to	have	a	real-time	program	running	continuously.	The
program	can	set	values	for	Boolean	variables	subject	to	what	the	sensors	detect.	For	instance,	if	a
controlled	environment	had	two	properties	to	be	monitored	and	controlled,	four	Boolean	variables	could
be	used.	Values	could	be	set	by	assignment	statements	such	as:
IF	SensorDifference1	>	0	THEN	Sensor1HighFlag	←	TRUE

IF	SensorDifference1	<	0	THEN	Sensor1LowFlag	←	TRUE

IF	SensorDifference2	>	0	THEN	Sensor2HighFlag	←	TRUE

IF	SensorDifference2	<	0	THEN	Sensor2LowFlag	←	TRUE

Another	part	of	the	monitoring	and	control	program	would	then	be	checking	whether	any	of	the	four
flags	were	set.	The	machine	code	for	running	such	a	program	could	use	individual	bits	to	represent
each	flag.	The	way	that	flags	could	be	set	and	read	are	illustrated	by	the	following	assembly	language
code	fragments.	In	these	code	fragments	the	three	least	significant	bits	(positions	0,	1	and	2)	of	the
byte	are	used	as	flags.

The	following	illustrates	the	setting	of	all	bits	to	zero	which	might	be	used	when	the	system	is
switched	on.

LDD	0034 Loads	a	byte	into	the	accumulator	from	an	address.

AND	#B00000000
Uses	a	bitwise	AND	operation	of	the	contents	of	the	accumulator	with
the	operand	to	convert	each	bit	to	0.

STO	0034 Stores	the	altered	byte	in	the	original	address.

The	following	illustrates	the	toggling	of	the	value	for	one	bit.	This	changes	the	value	of	the	flag	it
represents.	It	might	be	needed	because	a	problem	has	been	encountered	or	alternatively	because	a
problem	has	been	solved.

LDD	0034 Loads	a	byte	into	the	accumulator	from	an	address.

XOR	#B00000001
Uses	a	bitwise	XOR	operation	of	the	contents	of	the	accumulator	with
the	operand	to	toggle	the	value	of	the	bit	stored	in	position	0.

STO	0034 Stores	the	altered	byte	in	the	original	address.

The	following	illustrates	the	setting	of	a	bit	to	have	value	1	irrespective	of	its	existing	value.	This
would	be	a	simple	way	of	just	reporting	a	condition	repetitively.

LDD	0034 Loads	a	byte	into	the	accumulator	from	an	address.

OR	#B00000100

Uses	a	bitwise	OR	operation	of	the	contents	of	the	accumulator	with
the	operand	to	set	the	flag	represented	by	the	bit	in	position	2.	All
other	bit	positions	remain	unchanged.

STO	0034 Stores	the	altered	byte	in	the	original	address.

The	following	illustrates	setting	all	bits	to	zero	except	one	bit	which	is	of	interest.	Following	this
operation,	a	comparison	can	be	made	with	a	binary	value	to	check	if	the	bit	is	set.	In	this	example	the
value	would	be	compared	to	the	binary	equivalent	of	denary	2.

LDD	0034 Loads	a	byte	into	the	accumulator	from	an	address.

AND	#B00000010

Uses	a	bitwise	AND	operation	of	the	contents	of	the	accumulator	with
the	operand	to	leave	the	value	in	position	1	unchanged	but	to	convert
every	other	bit	to	0.

STO	0034 Stores	the	altered	byte	in	the	original	address.

Reflection	Point:
Are	you	clear	that	a	bitwise	logic	operation	acts	on	every	bit	individually;	in	effect	all	bits	in	the

accumulator	are	processed	simultaneously?

Summary
A	monitoring	system	requires	sensors.
A	sensor	measures	a	physical	quantity;	there	are	many	examples,	such	as	temperature,	humidity,
pH,	infrared,	pressure,	sound	and	carbon	monoxide.
A	monitoring	and	control	system	requires	sensors	and	actuators.
A	program	used	for	a	monitoring	and	control	system	has	to	operate	in	real	time	with	an	infinite
loop	that	accepts	input	from	the	sensors	at	timed	intervals.
The	program	transmits	signals	to	the	actuators	if	the	values	received	from	the	sensors	indicate	a
need	for	control	measures	to	be	taken.
Bit	manipulation	can	be	used	within	an	assembly	language	program	to	monitor	or	control	devices.

■
■

■
■

■

■

Exam-style	Questions

[1]

[1]

[6]

[1]

[1]

[2]

[2]

[2]

A	farmer	has	a	large	barn	to	house	poultry	for	the	purpose	of	collecting	the	eggs	that	are	laid.	The
environment	inside	the	barn	affects	the	egg-laying	performance	of	the	poultry.	Traditionally,	the
farmer	had	routinely	entered	the	barn	to	check	that	all	was	well	with	the	environment.	If	there	was	a
concern,	the	barn	had	facilities	for	correcting	the	problem.

More	recently	a	computer-based	system	has	been	installed.	This	allows	the	farmer	to	observe
data	on	a	computer	screen.	If	any	of	the	data	is	of	concern	the	system	has	been	programmed	to
show	a	flashing	red	sign	on	the	screen.

Identify	the	type	of	system	that	the	farmer	has	had	installed.

Identify	the	type	of	devices	that	have	been	installed	inside	the	barn.

Describe	two	examples	of	this	type	of	device	that	could	be	used	and	explain	what	their
purpose	is	with	respect	to	the	functioning	of	the	computer-based	system.

The	farmer	has	been	told	that	there	is	no	need	for	someone	to	be	watching	a	screen	all	of	the
time.	A	different	type	of	computer-based	system	could	be	installed.

Identify	the	type	of	this	new	computer-based	system.

Identify	the	new	type	of	device	that	would	need	to	be	installed	inside	the	barn.	(There	would
be	more	than	one	needed).

Describe	how	the	new	computer-based	system	would	interact	with	these	devices.

An	assembly	language	program	has	been	written	for	a	monitoring	and	control	system.	The	program
uses	a	byte	stored	in	a	register	in	which	the	bits	can	be	individually	set	or	cleared.	An	example	is:

0  1  1  0  0  0  1  0 

Bits	0–3	are	set	to	0	initially	but	if	one	of	the	two	sensors	in	the	system	sends	a	measurement	that
indicates	a	problem	(measurement	is	too	high	or	too	low)	the	appropriate	bit	is	set	to	value	1.	Bits	4–
7	are	also	set	to	0	initially	but	if	an	actuator	has	to	be	switched	on	or	off	the	appropriate	bit	is	set	to
1.

All	of	the	bits	in	the	register	need	to	be	set	to	0.	State	which	logical	bitwise	operation	is	required
to	be	performed	on	the	register	content	and	give	the	operand	that	would	be	used	for	this.
Complete	your	answer	by	filling	in	the	boxes.

Logical	bitwise	operation	is:

     

Performed	with	the	operand:

 		  		  		  		  		  		  		  		

A	sensor	has	recorded	a	value	that	is	too	high	so	bit	2	must	be	set	to	1	but	the	other	bits	must
remain	unaltered.	State	which	logical	bitwise	operation	is	required	to	be	performed	on	the
register	content	and	give	the	operand	that	would	be	used	for	this.	Complete	your	answer	by	filling
in	the	boxes.

Logical	bitwise	operation	is:

     

Performed	with	the	operand:

 		  		  		  		  		  		  		  		

Bit	4	is	set	to	1	and	bit	5	set	to	0	but	the	sensor	reading	now	indicates	that	there	has	been	an
over-reaction	so	the	action	of	the	actuator	has	to	be	reversed.	This	requires	bits	4	and	5	to	have
their	values	toggled.	State	which	logical	bitwise	operation	is	required	to	be	performed	on	the
register	content	and	give	the	operand	that	would	be	used	for	this.	Complete	your	answer	by	filling
in	the	boxes:

1

a

i

ii

iii

b

i

ii

iii

2

a

b

c

[3]

[1]

[6]

Logical	bitwise	operation	is:

     

Performed	with	the	operand:

 		  		  		  		  		  		  		  		

A	gardener	grows	vegetables	in	a	greenhouse.	For	the	vegetables	to	grow	well,	the	temperature
needs	to	always	be	within	a	particular	range.

The	gardener	is	not	sure	about	the	actual	temperatures	in	the	greenhouse	during	the	growing
season.	The	gardener	installs	some	equipment.	This	records	the	temperature	every	hour	during	the
growing	season.

Name	the	type	of	system	described.

Identify	three	items	of	hardware	that	would	be	needed	to	acquire	and	record	the	temperature
data.	Justify	your	choice	for	each.

Item	1

Justification

Item	2

Justification

Item	3

Justification

Part	of	the	assembly	code	is:

	 Op	code Operand
SENSORS: 	 B00001010

COUNT: 	 0

VALUE: 	 1

LOOP: LDD SENSORS

	 AND VALUE

	 CMP #0

	 JPE ZERO

	 LDD COUNT

	 INC ACC

	 STO COUNT

ZERO: LDD VALUE

	 CMP #8

	 JPE EXIT

	 ADD VALUE

	 STO VALUE

	 JMP LOOP

EXIT: LDD COUNT

TEST: CMP …

	 JGT ALARM

Dry	run	the	assembly	language	code.	Start	at	LOOP	and	finish	when	EXIT	is	reached.

BITREG COUNT VALUE ACC
B00001010 0 1 	

	 	 	 	
	 	 	 	
	 	 	 	

3

a

b

c

i

	[1]

	[2]

	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

[4]

The	operand	for	the	instruction	labelled	TEST	is	missing.

State	the	missing	operand.

The	intruder	detection	system	is	improved	and	now	has	eight	sensors.

One	instruction	in	the	assembly	language	code	will	need	to	be	amended.

Identify	this	instruction

Write	the	amended	instruction

Cambridge	International	AS	&	A	Level	Computer	Science	9608	paper	31	Q6	June	2016

ii

iii

Chapter	8:
System	software

8.01	System	software
In	the	1960s,	the	likely	arrangement	for	using	a	computer	would	be	something	like	this.

The	user	controlled	the	computer	hardware	by	pressing	buttons.	Just	try	to	imagine	how	many	buttons
would	be	needed	if	you	had	to	control	a	computer	in	the	same	way	today.

The	missing	component	from	the	1960s	computer	was,	of	course,	an	operating	system;	in	other	words,
some	software	to	control	the	hardware	and	interact	with	application	software.	An	operating	system	is
an	example	of	a	type	of	software	called	‘system	software’.	This	distinguishes	it	from	application
software,	which	is	created	to	perform	a	specific	task	for	a	computer	user	rather	than	just	helping	to	run
the	system.

Enter	machine	room	with	deck	of	punched	cards	and	a	punched	paper	tape	reel.

Switch	on	computer.

Put	deck	of	cards	into	card	reader	and	press	button.

Put	paper	tape	into	tape	reader	and	press	button.

Press	button	to	run	the	program	entered	into	memory	from	the	punched	cards	using	the	data
entered	into	memory	from	the	paper	tape.

Press	button	to	get	output	printed	on	the	line-printer.

Switch	off	computer.

Leave	machine	room	with	deck	of	cards,	paper	tape	and	line-printer	output.

1

2

3

4

5

6

7

8

8.02	Operating	system	activities
Operating	systems	are	extremely	complex	and	it	is	not	possible	to	give	a	full	description	here	of	what	an
operating	system	is.	However,	what	an	operating	system	generally	does	is	to	provide	an	environment
where	programs	can	be	run	that	are	of	benefit	to	a	user.

The	activities	of	an	operating	system	can	be	sub-divided	into	different	categories,	some	of	which
overlap	with	each	other.	We	are	going	to	look	at	each	of	the	various	tasks	carried	out	by	the	operating
system.	Details	of	how	some	of	them	are	carried	out	are	discussed	in	Chapter	20	(Sections	20.01	to
20.05).

User–system	interface
A	user	interface	is	needed	to	allow	the	user	to	get	the	software	and	hardware	to	do	something	useful.
An	operating	system	should	provide	at	least	the	following	for	user	input	and	output:

a	command-line	interface

a	graphical	user	interface	(GUI).

Discussion	Point:
Have	you	any	experience	of	using	a	command-line	interface?

Program–hardware	interface
Programmers	write	software	and	users	run	this	software.	The	software	uses	the	hardware.	The
operating	system	has	to	ensure	that	the	hardware	does	what	the	software	wants	it	to	do.	Program
development	tools	associated	with	a	programming	language	allow	a	programmer	to	write	a	program
without	needing	to	know	the	details	of	how	the	hardware,	particularly	the	processor,	actually	works.
The	operating	system	then	has	to	provide	the	mechanism	for	running	the	developed	program.

Resource	management
When	a	program	has	started	to	run	it	is	described	as	a	process.	In	a	modern	computer	system,	a
process	will	not	be	able	to	run	to	completion	without	interruption.	At	any	time	there	will	be	many
processes	running	on	the	computer	system.	Each	process	needs	access	to	the	resources	provided	by	the
computer	system.

The	resource	management	provided	by	the	operating	system	aims	to	achieve	the	best	possible
efficiency	in	computer	system	use.	The	two	most	important	aspects	of	this	are:

scheduling	of	processes

resolution	of	conflicts	when	two	processes	require	the	same	resource.

Memory	management
There	are	three	important	aspects	of	memory	management.

Memory	protection	ensures	that	one	program	does	not	try	to	use	the	same	memory	locations	as
another	program.

The	memory	organisation	scheme	is	chosen	to	achieve	the	best	usage	of	limited	memory	size,	for
example,	virtual	memory	involving	paging	or	segmentation.

Memory	usage	optimisation	involves	decisions	about	which	processes	should	be	in	main	memory	at
any	one	time	and	where	they	are	stored	in	this	memory.

Device	management
Every	computer	system	has	a	variety	of	components	that	are	categorised	as	‘devices’.	Examples	include
the	monitor	screen,	the	keyboard,	the	printer	and	the	webcam.	The	management	of	these	requires:

installation	of	the	appropriate	device	driver	software

control	of	usage	by	processes.

File	management
Three	major	features	here	are	the	provision	of:

file	naming	conventions

directory	(folder)	structures

access	control	mechanisms.

Security	management
Chapter	9	(Sections	9.02,	9.03	&	9.04)	and	Chapter	21	contain	extensive	accounts	of	security	issues
and	measures	used	to	prevent	problems.	For	the	operating	system	the	many	aspects	of	security
management	include:

provision	for	recovery	when	data	is	lost

prevention	of	intrusion

ensuring	data	privacy.

Error	detection	and	recovery
Errors	can	arise	in	the	execution	of	a	program	either	because	it	was	badly	written	or	because	it	has
been	supplied	with	inappropriate	data.	Other	errors	are	associated	with	devices	not	working	correctly.
Whatever	the	cause	of	an	error,	the	operating	system	should	have	the	capability	to	interrupt	a	running
process	and	provide	error	diagnostics	where	appropriate.	In	extreme	cases,	the	operating	system	needs
to	be	able	to	shut	down	the	system	in	an	organised	fashion	without	loss	of	data.

TASK	8.01
For	each	of	the	above	categories	of	operating	system	task,	each	point	could	be	placed	in	a
different	category.	Make	an	abbreviated	list	of	these	categories	and	add	arrows	to	show	different
categories	where	each	point	could	be	placed.

Question	8.01
It	is	useful	to	describe	the	management	tasks	carried	out	by	an	operating	system	as	being	primarily	one
of	the	following	types:

those	assisting	the	user	of	the	system

those	concerned	with	the	running	of	the	system.

Considering	the	management	tasks	that	have	already	been	categorised,	can	you	identify	them	as
belonging	to	one	or	other	of	the	above	types?	Are	there	any	problems	in	doing	this?

8.03	Utility	software
A	utility	program	can	be	provided	by	the	operating	system	or	it	can	be	installed	separately.	It	is	a
program	that	is	not	executed	as	part	of	the	normal	running	of	the	operating	system.	Instead	it	is	a
program	that	the	user	or	the	operating	system	can	decide	to	run	when	needed.	For	example,	some
utility	programs	manage	hard	disks.

Hard	disk	formatter	and	checker
A	disk	formatter	will	typically	carry	out	the	following	tasks:

removing	existing	data	from	a	disk	that	has	been	used	previously

setting	up	the	file	system	on	the	disk,	based	on	a	table	of	contents	that	allows	a	file	recognised	by
the	operating	system	to	be	associated	with	a	specific	physical	part	of	the	disk

partitioning	the	disk	into	logical	drives	if	this	is	required.

Another	utility	program,	which	can	be	a	component	of	a	disk	formatter,	performs	disk	contents	analysis
and,	if	possible,	disk	repair	when	needed.	The	program	first	checks	for	errors	on	the	disk.	Some	errors
arise	from	a	physical	defect	resulting	in	what	is	called	a	‘bad	sector’.	There	are	a	number	of	possible
causes	of	bad	sectors.	However,	they	usually	arise	either	during	manufacture	or	from	mishandling	of
the	system.	An	example	is	moving	the	computer	without	ensuring	that	the	disk	heads	are	secured	away
from	the	disk	surface.

Other	errors	arise	from	an	event	such	as	a	loss	of	power	or	an	error	causing	sudden	system	shutdown.
As	a	result	some	of	the	files	stored	on	the	disk	might	no	longer	be	useable.	A	disk	repair	utility	program
can	mark	bad	sectors	and	ensure	that	the	file	system	no	longer	tries	to	use	them.	When	the	integrity	of
files	has	been	affected,	the	utility	might	be	able	to	recover	some	of	the	data	but	otherwise	it	has	to
delete	the	files.

Hard	disk	defragmenter
A	disk	defragmenter	utility	also	can	be	part	of	a	disk	repair	utility	program	but	it	is	not	primarily
concerned	with	errors.	A	perfectly	functioning	disk	will,	while	in	use,	gradually	become	less	efficient
because	the	constant	creation,	editing	and	deletion	of	files	leaves	them	in	a	fragmented	state.	The
cause	of	this	is	the	logical	arrangement	of	data	in	sectors	as	discussed	in	Chapter	3	(Section	3.04),
which	does	not	allow	a	file	to	be	stored	as	a	single	block	of	data.

A	simple	illustration	of	the	problem	is	shown	in	Figure	8.01.	Initially	file	A	occupies	three	sectors	fully
and	part	of	a	fourth	one.	File	B	is	small	so	occupies	only	part	of	a	sector.	File	C	occupies	two	sectors
fully	and	part	of	a	third.	When	File	B	is	deleted,	the	sector	remains	unfilled	because	it	would	require	too
much	system	CPU	time	to	rearrange	the	file	organisation	every	time	there	is	a	change.	When	File	A	is
extended	it	completely	fills	the	first	four	sectors	and	the	remainder	of	the	extended	file	is	stored	in	all
of	Sector	8	and	part	of	Sector	9.	Sector	4	will	only	be	used	again	if	a	small	file	is	created	or	if	the	disk
fills	up,	when	it	might	store	the	first	part	of	a	longer	file.

Figure	8.01	File	fragmentation	on	a	hard	disk

A	defragmenter	utility	program	reorganises	the	file	storage	to	return	it	to	a	state	where	all	files	are
stored	in	one	block	across	a	sequence	of	sectors.	For	a	large	disk	this	will	take	some	time.	It	will	be
impossible	if	the	disk	is	too	full	because	of	the	lack	of	working	space	for	the	rearrangement.

TASK	8.02
If	you	have	never	used	a	disk	defragmenter	or	disk	repair	utility	program,	can	you	get	access	to	a
system	where	you	can	use	one?	If	so,	note	the	changes	that	are	carried	out	and	recorded	by	the
utility	program.

Backup	software
It	is	quite	likely	that	you	perform	a	manual	backup	of	your	own	files	every	now	and	then	using	a	flash
memory	stick.	However,	an	easier	way	to	perform	backup	is	to	use	a	backup	utility	program.	Such	a
program	will:

establish	a	schedule	for	backups

only	create	a	new	backup	file	when	there	has	been	a	change.

Question	8.02
In	the	systems	that	you	use,	the	technical	staff	will	have	made	provision	for	backup.	Can	you	find	out
what	procedures	are	followed	and	what	hardware	is	used	for	this?

File	compression
A	file	compression	utility	program	can	be	used	regularly	by	an	operating	system	to	minimise	hard	disk
storage	requirements.	Whether	or	not	the	operating	system	does	this,	a	user	can	still	choose	to	install	a
suitable	program.	However,	as	was	discussed	in	Chapter	1	(Section	1.07)	compression	is	most
important	when	transmitting	data.	In	particular,	it	makes	sense	to	compress	(or	‘zip’)	a	file	before
attaching	it	to	an	email.

Virus	checker
A	virus-checking	program	should	be	installed	as	a	permanent	facility	to	protect	a	computer	system.	In
an	ideal	world,	it	would	only	need	to	be	used	to	scan	a	file	when	the	file	initially	entered	the	system.
Unfortunately,	this	ideal	state	can	never	be	realised.	When	a	new	virus	comes	along	there	is	a	delay
before	it	is	recognised	and	a	further	delay	before	a	virus	checker	has	been	updated	to	deal	with	it.	As	a
result,	it	is	necessary	for	a	virus	checker	to	be	regularly	updated	and	for	it	to	scan	all	files	on	a
computer	system	as	a	matter	of	routine.

8.04	Program	libraries
The	‘programs’	in	a	program	library	are	usually	subroutines	created	to	carry	out	particular	tasks.	A
programmer	can	use	these	within	their	own	programs.

All	newly	developed	programs	are	likely	to	contain	errors,	which	only	become	apparent	as	the	programs
are	tested	or	used.	It	saves	a	programmer	a	lot	of	time	and	trouble	to	be	able	to	include	already	tried
and	tested	subroutines	taken	from	a	program	library.

The	most	obvious	examples	of	library	routines	are	the	built-in	functions	available	for	use	when
programming	in	a	particular	language.	Examples	of	these	are	discussed	in	Chapter	14	(Section	14.07).
Another	example	is	the	collection	of	over	1600	procedures	for	mathematical	and	statistics	processing
available	from	the	Numerical	Algorithms	Group	(NAG)	library.	This	organisation	has	been	creating
routines	since	1971	and	they	are	universally	accepted	as	being	as	reliable	as	software	ever	can	be.

In	Section	8.05,	we	will	discuss	the	methods	available	for	translation	of	source	code.	For	now,	we	simply
need	an	overview	of	what	happens.	The	source	code	is	written	in	a	programming	language	of	choice.	If
a	compiler	is	used	for	the	translation	and	no	errors	are	found,	the	compiler	produces	object	code
(machine	code).	This	code	cannot	be	executed	by	itself.	Instead	it	has	to	be	linked	with	the	code	for	any
subroutines	used	by	it.	It	is	possible	to	carry	out	the	linking	before	loading	the	full	code	into	memory
and	running	it.

There	is	a	major	disadvantage	in	linking	library	routines	into	the	executable	code.	This	is	because	every
program	using	a	routine	has	to	have	its	own	copy.	This	increases	the	storage	space	requirement	for	the
executable	file.	It	also	increases	memory	usage	when	more	than	one	process	uses	the	routine.

The	alternative	is	to	use	a	routine	from	a	dynamic	linked	library	(DLL).	When	a	DLL	routine	is	available
the	executable	code	just	requires	a	small	piece	of	code	to	be	included.	This	allows	it	to	link	to	the
routine,	which	is	stored	separately	in	memory,	when	execution	of	the	program	needs	it.	Many	processes
can	be	linked	to	the	same	routine.	This	has	the	advantage	that	the	executable	files	for	all	programs
need	less	storage	space.	Memory	requirement	is	also	minimised.	Another	advantage	is	that	if	a	new
version	of	the	routine	becomes	available	it	can	be	loaded	into	memory	so	that	any	program	using	it	is
automatically	upgraded.

The	main	disadvantage	of	using	a	DLL	is	that	the	program	is	relying	on	the	routine	being	available	and
performing	the	expected	function.	If	for	some	reason	the	DLL	becomes	corrupted	or	a	new	version	has
bugs	not	yet	discovered	the	program	will	fail	or	produce	an	erroneous	result.	The	user	running	the
program	will	find	it	difficult	to	establish	what	needs	to	be	done	to	get	the	program	to	run	without	error.

8.05	Language	translators
The	use	of	an	assembler	for	translating	a	program	written	in	assembly	language	has	been	discussed	in
Chapter	6	(Sections	6.02,	6.03	&	6.04).	This	chapter	will	introduce	the	translators	that	are	used	to
translate	a	program	written	in	a	high-level	procedural	language.

Compilers	and	interpreters
The	starting	point	for	using	either	a	compiler	or	an	interpreter	is	a	file	containing	source	code,	which	is
a	program	written	in	a	high-level	language.

For	an	interpreter	the	following	steps	apply.

For	a	compiler	the	following	steps	apply.

Execution	of	the	program	can	only	begin	when	the	compilation	has	shown	no	errors.	This	can	take	place
automatically	under	the	control	of	the	compiler	program	if	data	for	the	program	is	available.
Alternatively,	the	object	code	is	stored	and	the	program	is	executed	later	with	no	involvement	of	the
compiler.

Discussion	Point:
What	type	of	facility	for	language	translation	are	you	being	provided	with?	Does	your	experience	of
using	it	match	what	has	been	described	here?

The	advantages	and	disadvantages	to	a	programmer	of	creating	interpreted	or	compiled	programs.

An	interpreter	has	advantages	when	a	program	is	being	developed	because	errors	can	be	identified
as	they	occur	and	corrected	immediately	without	having	to	wait	for	the	whole	of	the	source	code	to
be	read	and	analysed.

An	interpreter	has	a	disadvantage	in	that	during	a	particular	execution	of	the	program,	parts	of	the

The	interpreter	program,	the	source	code	file	and	the	data	to	be	used	by	the	source	code	program
are	all	made	available.

The	interpreter	program	begins	execution.

The	first	line	of	the	source	code	is	read.

The	line	is	analysed.

If	an	error	is	found,	this	is	reported	and	the	interpreter	program	halts	execution.

If	no	error	is	found,	the	line	of	source	code	is	converted	to	an	intermediate	code.

The	interpreter	program	uses	this	intermediate	code	to	execute	the	required	action.

The	next	line	of	source	code	is	read	and	Steps	4–8	are	repeated.

1

2

3

4

5

6

7

8

The	compiler	program	and	the	source	code	file	are	made	available	but	no	data	is	needed.

The	compiler	program	begins	execution.

The	first	line	of	the	source	code	is	read.

The	line	is	analysed.

If	an	error	is	found	this	is	recorded.

If	no	error	is	found	the	line	of	source	code	is	converted	to	an	intermediate	code.

The	next	line	of	source	code	is	read	and	Steps	4–7	are	repeated.

When	the	whole	of	the	source	code	has	been	dealt	with	one	of	the	following	happens.

If	no	error	is	found	in	the	whole	source	code	the	complete	intermediate	code	is	converted	into
object	code.

If	any	errors	are	found	a	list	of	these	is	output	and	no	object	code	is	produced.

1

2

3

4

5

6

7

8

code	which	contain	syntax	errors	may	not	be	accessed	so	if	errors	are	still	present,	they	are	not
discovered	until	later.

An	interpreter	has	a	disadvantage	when	a	program	is	error	free	and	is	distributed	to	users	because
the	source	code	has	to	be	sent	to	each	user.

A	compiler	has	the	advantage	that	an	executable	file	can	be	distributed	to	users,	so	the	users	have
no	access	to	the	source	code.

The	advantages	and	disadvantages	to	the	user	of	interpreted	or	compiled	programs.

For	an	interpreted	program,	the	interpreter	and	the	source	code	have	to	be	available	each	time	that
an	error-free	program	is	run.

For	a	compiled	program,	only	the	object	code	has	to	be	available	each	time	that	an	error-free
program	is	run.

Compiled	object	code	will	provide	faster	execution	than	is	possible	for	an	interpreted	program.

Compiled	object	code	is	less	secure	because	it	could	contain	a	virus.

Whether	an	interpreter	or	a	compiler	is	used,	a	program	can	only	be	run	on	a	particular	computer	with
a	particular	processor	if	the	interpreter	or	compiler	program	has	been	written	for	that	processor.

If	there	is	an	option	available	the	choice	of	an	interpreter	is	justified	when	a	program	is	being
developed	because:

one	error	in	a	program	can	lead	to	several	other	errors	occurring

an	interpreter	can	detect	and	correct	an	early	error	so	limiting	subsequent	ones

the	debugging	facilities	provided	in	association	with	the	interpreter	speed	this	process.

The	choice	of	a	compiler	is	justified	when	the	programmer	is	confident	that	the	program	is	as	near
error-free	as	possible	because:

an	executable	file	can	be	created

this	can	be	distributed	for	general	use

execution	of	the	program	will	be	faster	than	if	an	interpreter	were	used.

Java
When	the	programming	language	Java	was	created,	a	different	philosophy	was	applied	to	how	it	should
be	used.	Each	different	type	of	computer	has	to	have	a	Java	Virtual	Machine	created	for	it.	Then	when	a
programmer	writes	a	Java	program	this	is	compiled	first	of	all	to	create	what	is	called	Java	Byte	Code.
When	the	program	is	run,	this	code	is	interpreted	by	the	Java	Virtual	Machine.	The	Java	Byte	Code	can
be	transferred	to	any	computer	that	has	a	Java	Virtual	Machine	installed.

8.06	Features	found	in	a	typical	Integrated	Development
Environment	(IDE)
Whatever	language	is	used	for	writing	source	code	and	whatever	compiler	or	interpreter	is	being	used
there	will	be	one	or	more	IDEs	available	to	assist	the	programmer.	This	section	discusses	the	types	of
feature	that	should	be	provided	by	an	IDE.

Prettyprinting
Prettyprint	refers	to	the	presentation	of	the	program	code	typed	into	an	editor.	For	example,	the	Python
IDLE	(see	Figure	8.02)	automatically	colour-codes	keywords,	built-in	function	calls,	comments,	strings
and	the	identifier	in	a	function	header.	In	addition,	indentation	is	automatic.

Figure	8.02	Prettyprint	in	the	Python	IDLE

Context-sensitive	prompts
This	feature	displays	hints	(or	a	choice	of	keywords)	and	available	identifiers	that	might	be	appropriate
at	the	current	insertion	point	of	the	program	code.	Figure	8.03	shows	an	example	of	the	Visual	Studio
editor	responding	to	text	typed	in	by	the	programmer.

Figure	8.03	Context-sensitive	prompts	in	the	Visual	Studio	editor

Dynamic	syntax	checks
When	a	line	has	been	typed,	some	editors	perform	syntax	checks	and	alert	the	programmer	to	errors.

Figure	8.04	shows	an	example	of	the	Visual	Studio	editor	responding	to	a	syntax	error.

Figure	8.04	Dynamic	syntax	check	in	the	Visual	Studio	editor

Expanding	and	collapsing	code	blocks
When	working	on	program	code	consisting	of	many	lines	of	code,	it	saves	excessive	scrolling	if	you	can
collapse	blocks	of	statements.

Debugging
An	IDE	often	contains	features	to	help	with	debugging.

If	a	Debugger	feature	has	been	switched	on	it	is	possible	to	select	a	breakpoint.	When	the	program
starts	running	it	will	stop	when	it	reaches	the	breakpoint.	The	program	can	then	be	stepped	through,
one	instruction	at	a	time.	Figure	8.05	shows	the	windows	presented	to	the	user	in	the	Python	IDLE
when	this	feature	is	being	used.

Figure	8.05	(a)	A	Python	program	showing	a	breakpoint;	(b)	the	Debug	Control	window

TASK	8.03
Investigate	the	facilities	in	the	editors	you	have	available.	If	you	have	a	choice	of	editors,	you	may
like	to	use	the	editor	with	the	most	helpful	facilities.

Reflection	Point:
Much	of	the	discussion	in	this	chapter	only	summarises	what	an	operating	system	does.	Do	you	think	it
would	be	helpful	to	move	on	immediately	to	have	a	look	at	some	of	the	content	in	sections	20.01	to
20.05	of	Chapter	20?

Summary
Operating	system	tasks	can	be	categorised	in	more	than	one	way,	for	example,	some	are	for
helping	the	user,	others	are	for	running	the	system.
Utility	programs	include	hard	disk	utilities,	backup	programs,	virus	checkers	and	file	compression
utilities.
Library	programs,	including	Dynamic	Link	Library	(DLL)	files,	are	available	to	be	incorporated
into	programs;	they	are	usually	subroutines	and	are	very	reliable.
A	high-level	language	can	be	translated	using	an	interpreter	or	a	compiler.

■

■

■

■

A	Java	compiler	produces	Java	Byte	Code	which	is	interpreted	by	a	Java	Virtual	Machine.
An	integrated	Development	Environment	(IDE)	contains	many	features	that	provide	support	for	a
programmer	when	a	program	is	being	written	and	when	it	is	being	corrected.

■
■

Exam-style	Questions

[2]

[2]

[6]

[2]

[2][5]

[3]

[2]

[1]

[3]

[4]

[1]

[8]

[4]

[2]

[6]

[4]

[4]

[2]

One	of	the	reasons	for	having	an	operating	system	is	to	provide	a	user	interface	to	a	computer
system.

Name	two	different	types	of	interface	that	an	operating	system	should	provide. 

Identify	for	each	type	of	interface	a	device	that	could	be	used	to	enter	data. 

Identify	and	explain	briefly	three	other	management	tasks	carried	out	by	an	operating	system.

A	PC	operating	system	will	make	available	to	a	user	a	number	of	utility	programs.

Identify	two	utility	programs	that	might	be	used	to	deal	with	a	hard	disk	problem.

For	each	of	these	utility	programs	explain	why	it	might	be	needed	and	explain	what	it	does.

Identify	two	other	utility	programs	for	a	PC	user.

Library	programs	are	made	available	for	programmers.

Explain	why	a	programmer	should	use	library	programs.

Identify	two	examples	of	a	library	program.

Assemblers,	compilers	and	interpreters	are	examples	of	translation	programs.

State	the	difference	between	an	assembler	and	a	compiler	or	interpreter.

A	programmer	can	choose	to	use	an	interpreter	or	a	compiler.

State	three	differences	between	how	an	interpreter	works	and	how	a	compiler	works.

Discuss	the	advantages	and	disadvantages	of	an	interpreter	compared	to	a	compiler.

If	a	programmer	chooses	Java,	a	special	approach	is	used.	Identify	one	feature	of	this	special
approach.

Explain	the	meaning	of	the	following	terms:

Prettyprinting

Context-sensitive	prompt

Dynamic	syntax	check

Debugging

Describe	the	features	you	would	expect	a	debugger	to	provide.

Before	it	is	used,	a	hard	disk	is	formatted	using	disk	formatter	software.

Explain	why	formatting	is	needed.

Eventually,	the	performance	of	the	hard	disk	deteriorates.

Name	three	other	utility	programs	that	might	be	required.	State	why	each	is	needed.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q10	November	2015

A	programmer	is	writing	a	program	that	includes	code	from	a	program	library.

Describe	two	benefits	to	the	programmer	of	using	one	or	more	library	routines. 

The	programmer	decides	to	use	a	Dynamic	Link	Library	(DLL)	file.

Describe	two	benefits	of	using	DLL	files.

State	one	drawback	of	using	DLL	files.

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	12	Q8	November	2016

1 a

i

ii

b

2 a

i

ii

iii

b

i

ii

3

a

b

i

ii

iii

4 a

b

5

a

b

6

a

b

i

ii

Chapter	9:
Security,	privacy	and	data	integrity

9.01	Definitions	of	data	integrity,	privacy	and	security
Data	integrity
It	is	easy	to	define	integrity	of	data	but	far	less	easy	to	ensure	it.	Only	accurate	and	up-to-date	data	has
data	integrity.	Any	person	or	organisation	that	stores	data	needs	it	to	have	integrity.	We	will	discuss
ways	to	achieve	data	integrity	in	this	chapter,	and	also	in	Chapter	11	(Sections	11.01	&	11.02).

Data	privacy
Data	privacy	is	about	keeping	data	private	rather	than	allowing	it	to	be	available	in	the	public	domain.
The	term	may	be	applied	to	a	person	or	an	organisation.	Every	individual	has	an	almost	limitless
amount	of	data	associated	with	their	existence.	Assuming	that	an	individual	is	not	engaged	in	criminal
or	subversive	activities,	he	or	she	should	be	in	control	of	which	data	about	himself	or	herself	is	made
public	and	which	data	remains	private.	An	organisation	can	have	data	that	is	private	to	the
organisation,	such	as	the	minutes	of	management	meetings,	but	we	will	not	discuss	this	here.

For	an	individual	there	is	little	chance	of	data	privacy	if	there	is	not	a	legal	framework	in	place	to
penalise	offenders	who	breach	this	privacy.	This	framework	is	provided	by	a	data	protection	law.	The
following	aspects	should	be	noted	about	such	laws.

The	major	focus	relates	to	personal,	therefore	private,	data	that	an	individual	supplies	to	an
organisation.

The	data	is	supplied	to	allow	the	organisation	to	use	it	but	only	for	purposes	understood	and	agreed
by	the	individual.

Data	protection	laws	oblige	organisations	to	ensure	the	privacy	and	the	integrity	of	this	data.

Unfortunately,	having	laws	does	not	guarantee	adherence	to	them	but	they	do	act	as	a	deterrent	if
wrong-doers	can	be	subject	to	legal	proceedings.

Discussion	Point:
What	data	protection	laws	are	in	place	in	your	country?	Are	you	familiar	with	any	details	of	these	laws?

Data	protection	normally	applies	to	data	stored	in	computer	systems	with	the	consent	of	the	individual.
Should	these	laws	be	extended	to	cover	storage	of	data	obtained	from	telephone	calls	or	search	engine
usage?

Data	security
Data	are	secure	if	they	are	available	for	use	when	needed	and	the	data	made	available	are	the	data	that
were	stored	originally.	The	security	of	data	has	been	breached	if	any	data	have	been	lost	or	corrupted.

Data	security	must	be	achieved	before	either	data	integrity	or	data	privacy	can	be	achieved,	but	data
security	does	not	by	itself	guarantee	either	data	integrity	or	data	privacy.	One	of	the	requirements	for
protection	of	data	is	the	security	of	the	system	used	to	store	the	data.	System	security	does	not	just
protect	data.	There	are	two	primary	aims	of	system	security	measures:

to	ensure	that	the	system	continues	to	carry	out	the	tasks	users	need

to	ensure	that	only	authorised	users	have	access	to	the	system.

9.02	Threats	to	the	security	of	a	computer	system	and	of	the
data	stored	in	it
The	threats	to	the	security	of	a	system	include	the	following	types:

individual	user	not	taking	appropriate	care

internal	mismanagement

natural	disasters

unauthorised	intrusion	into	the	system	by	an	individual

malicious	software	entering	the	system.

	TIP
Try	to	keep	a	perspective	with	relation	to	hacking;	it	is	only	one	of	many	security	issues.

Threats	to	computer	and	data	security	posed	by	networks	and	the	Internet
We	are	all	continuously	at	risk	from	security	threats	to	systems	we	use	ourselves	and	to	all	of	the
systems	used	by	organisations	upon	which	we	rely.	The	dominant	factor	is	that	none	of	these	systems
are	stand-alone;	all	are	connected	to	networks	and	through	these	networks	to	the	Internet.	One	cause
of	concern	is	the	hacker	who	is	someone	intent	on	gaining	unauthorised	access	to	a	computer	system.	A
hacker	who	achieves	this	aim	might	gain	access	to	private	data.	Alternatively,	a	hacker	might	cause
problems	by	deleting	files	or	causing	problems	with	the	running	of	the	system.	The	other	major	cause	of
concern	is	malicious	software	entering	the	system.

Types	of	malware
Malware	is	the	everyday	name	for	malicious	software.	It	is	software	that	is	introduced	into	a	system	for
a	harmful	purpose.	One	category	of	malware	is	where	program	code	is	introduced	to	a	system.	The
various	types	of	malware-containing	program	code	are:

virus:	tries	to	replicate	itself	inside	other	executable	code

worm:	runs	independently	and	transfers	itself	to	other	network	hosts

logic	bomb:	stays	inactive	until	some	condition	is	met

Trojan	horse:	replaces	all	or	part	of	a	previously	useful	program

spyware:	collects	information	and	transmits	it	to	another	system

bot:	takes	control	of	another	computer	and	uses	it	to	launch	attacks.

The	differences	between	the	different	types	are	not	large	and	some	examples	come	into	more	than	one
of	these	categories.	The	virus	category	is	often	subdivided	according	to	the	software	that	the	virus
attaches	itself	to.	Examples	are	boot	sector	viruses	and	macro	viruses.

Malware	can	also	be	classified	in	terms	of	the	activity	involved:

phishing:	sending	an	email	or	electronic	message	from	an	apparently	legitimate	source	requesting
confidential	information

pharming:	setting	up	a	bogus	website	which	appears	to	be	a	legitimate	site

keylogger:	recording	keyboard	usage	by	the	legitimate	user	of	the	system.

Question	9.01
Carry	out	some	research	to	find	some	examples	of	how	phishing	and	pharming	might	be	attempted.

System	vulnerability	arising	from	user	activity
Many	system	vulnerabilities	are	associated	directly	with	the	activities	of	legitimate	users	of	a	system.
Two	examples	which	do	not	involve	malware	are	as	follows.

The	use	of	weak	passwords	and	particularly	those	which	have	a	direct	connection	to	the	user.	A
poor	choice	of	password	gives	the	would-be	hacker	a	strong	chance	of	guessing	the	password	and
thus	being	able	to	gain	unauthorised	access.

A	legitimate	user	not	recognising	a	phishing	or	pharming	attack	and,	as	a	result,	giving	away
sensitive	information.

A	legitimate	user	with	a	grievance	might	introduce	malware	deliberately.	More	often,	malware	is
introduced	accidentally	by	the	user.	Typical	examples	of	actions	that	might	introduce	malware	are:

attaching	a	portable	storage	device

opening	an	email	attachment

accessing	a	website

downloading	a	file	from	the	Internet.

Vulnerability	arising	from	within	the	system	itself
Systems	themselves	often	have	security	weaknesses.	The	following	are	examples	of	this.

Operating	systems	often	lack	good	security.	Over	time,	there	is	a	tendency	for	operating	systems	to
increase	in	complexity,	which	leads	to	more	opportunities	for	weak	security.	Operating	systems	have
regular	updates,	often	because	of	a	newly	discovered	security	vulnerability.

In	the	past,	commonly	used	application	packages	allowed	macro	viruses	to	spread,	but	this
particular	problem	is	now	largely	under	control.

A	very	specific	vulnerability	is	buffer	overflow.	Programs	written	in	the	C	programming	language,	of
which	there	are	very	many,	do	not	automatically	carry	out	array	bound	checks.	A	program	can	be
written	to	deliberately	write	code	to	the	part	of	memory	that	is	outside	the	address	range	defined	for
the	array,	set	up	as	a	buffer.	The	program	overwrites	what	is	stored	there	so	when	a	later	program
reads	this	overwritten	section	it	will	not	execute	as	it	should.	Sometimes	this	only	causes	minor
disruption,	but	a	cleverly	designed	program	can	permit	an	attacker	to	gain	unauthorised	access	to
the	system	and	cause	serious	problems.

1

2

3

9.03	Security	measures	for	protecting	computer	systems
Disaster	recovery
Continuity	of	operation	is	vital	for	large	computer	installations	that	are	an	integral	part	of	the	day-to-
day	operations	of	an	organisation.	Measures	are	needed	to	ensure	that	the	system	continues	working
whatever	event	occurs	or,	if	there	has	to	be	a	system	shut-down,	at	the	very	least	to	guarantee	that	the
service	will	start	again	within	a	very	short	time.

Such	measures	come	under	the	general	heading	of	disaster	recovery	contingency	planning.	The
contingency	plan	should	be	based	on	a	risk	assessment.	The	plan	will	have	provision	for	an	alternative
system	to	be	brought	into	action.	If	an	organisation	has	a	full	system	always	ready	to	replace	the
normally	operational	one,	it	is	referred	to	as	a	‘hot	site’.	By	definition,	such	a	system	has	to	be	remote
from	the	original	system	to	allow	recovery	from	natural	disasters	such	as	earthquake	or	flood.

Safe	system	update
A	special	case	of	system	vulnerability	arises	when	there	is	a	major	update	of	hardware	and/or	software.
Traditionally,	organisations	had	the	luxury	of	installing	and	testing	a	new	system	over	a	weekend	when
no	service	was	being	provided.	In	the	modern	era,	it	is	more	usual	to	have	systems	that	can	be	accessed
at	any	time	and	(often)	from	any	location.	A	company	is	never	closed	for	business.	As	a	result,
organisations	may	need	to	have	the	original	system	and	its	replacement	running	in	parallel	for	a	period
to	ensure	continuity	of	service.

Discussion	Point:
Major	failings	of	large	computer	systems	are	well	documented.	You	could	carry	out	research	to	find
some	examples.	Find	an	example	of	where	the	crisis	was	caused	by	technology	failure	and	a	different
example	where	some	natural	disaster	was	the	cause.

User	authentication
Even	if	a	PC	is	used	by	only	one	person	there	should	be	a	user	account	set	up.	User	accounts	are,	of
course,	essential	for	a	multi-user	(timesharing)	system.	The	main	security	feature	of	a	user	account	is
the	authentication	of	the	user.	The	normal	method	is	to	associate	a	password	with	each	account.	In
order	for	this	to	be	effective	the	password	needs	a	large	number	of	characters	including	a	variety	of
those	provided	in	the	ASCII	scheme.

TASK	9.01

Alternative	methods	of	authentication	include	biometric	methods	and	security	tokens.	A	biometric
method	might	require	examination	of	a	fingerprint	or	the	face	or	the	eye.	A	security	token	can	be	a
small	item	of	hardware	provided	for	each	individual	user	that	confirms	their	identity.	Similar	protection
can	be	provided	by	software	with	the	user	required	to	provide	further	input	after	the	password	has
been	entered.	Normal	practice	is	to	combine	one	of	these	alternative	methods	with	the	password
system.

Good	practice
General	good	practice	that	helps	to	keep	a	personal	computer	secure	includes	not	leaving	the	computer

Create	an	example	of	a	secure	password	using	eight	characters	(but	not	one	you	are	going	to
use).

Assuming	that	each	character	is	taken	from	the	ASCII	set	of	graphic	characters,	how	many
different	possible	passwords	could	be	defined	by	eight	characters?

Do	you	think	this	is	a	sufficient	number	of	characters	to	assume	that	the	password	would	not
be	encountered	by	someone	trying	all	possible	passwords	in	turn	to	access	the	system?

1

2

3

switched	on	when	unattended,	not	allowing	someone	else	to	observe	you	accessing	the	computer	and
not	writing	down	details	of	how	you	access	it.

Users	may	attach	portable	storage	devices	to	a	system,	but	this	increases	the	risk	of	transferring
malware	into	the	system.	This	risk	is	reduced	by	an	organisation	having	a	policy	banning	the	use	of
such	devices	or	at	least	limiting	their	use.	Unfortunately,	this	is	difficult	if	normal	business	processes
require	portability	of	data.

Firewall
The	primary	defence	to	malware	entering	a	system	through	a	network	connection	is	to	install	a
firewall.	Ideally	a	firewall	will	be	a	hardware	device	that	acts	like	a	security	gate	at	an	international
airport.	Nothing	is	allowed	through	without	it	being	inspected.	Alternatively,	a	firewall	can	run	as
software.	Data	must	enter	the	system,	but	it	can	be	inspected	immediately.	A	firewall	can	inspect	the
system	addresses	identified	in	the	transmission	of	data,	but	can	sometimes	also	inspect	the	data	itself	to
check	for	anything	unusual	or	inappropriate.

Digital	signature
If	an	incoming	transmission	is	an	email,	you	might	want	to	check	the	identity	of	the	sender.	The	solution
is	to	insist	that	the	sender	attaches	a	digital	signature	to	the	email.	Some	details	of	this	are	discussed	in
Chapter	21	(Section	21.02).

Anti-virus	software	and	intrusion	detection
Security	measures	restricting	access	to	a	system	do	not	guarantee	success	in	removing	all	threats.	It	is
therefore	necessary	to	have,	in	addition,	programs	running	on	a	system	to	check	for	problems.	One
option	is	to	install	what	is	normally	referred	to	as	anti-virus	software	but	which	is	usually	aimed	at
combating	any	type	of	malware.	This	carries	out	regular	scans	to	detect	any	malware	and	to	remove	or
deactivate	it.	Possibly	special-purpose	anti-spyware	software	might	be	installed.	Another	option	is	to
install	an	intrusion	detection	system	that	will	take	as	input	an	audit	record	of	system	use	and	look	for
examples	that	do	not	match	expected	system	activity.

Unfortunately,	people	intent	on	causing	damage	to	systems	are	using	methods	that	are	becoming	ever
more	sophisticated.	The	defence	methods	have	to	be	improved	continually	to	counter	these	threats.

9.04	Security	measures	for	protecting	data
Recovering	from	data	loss
In	addition	to	problems	arising	from	malicious	activity	there	are	a	variety	of	reasons	for	accidental	loss
of	data:

a	disk	or	tape	gets	corrupted

a	disk	or	tape	is	destroyed

the	system	crashes

the	file	is	erased	or	overwritten	by	mistake

the	location	of	the	file	is	forgotten.

For	these	reasons,	every	system	should	have	a	backup	procedure	to	recover	lost	data.	The	system
administrator	decides	on	the	details	of	the	procedure.	The	principles	for	the	procedure	traditionally
followed	are	straightforward:

a	full	backup	is	made	at	regular	intervals,	perhaps	weekly

at	least	two	generations	of	full	backup	are	kept	in	storage

incremental	backups	are	made	on	a	daily	basis.

For	maximum	security	the	backup	disks	or	tapes	are	stored	away	from	the	system	in	a	fire-proof	and
flood-proof	location.

This	works	well	when	an	incremental	backup	occurs	done	overnight	with	the	full	backup	handled	at	the
weekend.	With	systems	running	24/7,	data	in	the	system	might	be	changing	at	any	time,	and	a	simple
approach	to	backup	would	leave	data	in	an	inconsistent	state.

One	solution	is	to	have	a	backup	program	that	effectively	freezes	the	file	store	while	data	is	being
copied.	At	the	same	time	changes	that	are	happening	due	to	system	use	are	recorded	elsewhere	within
the	system.	The	changes	can	then	be	implemented	once	the	backup	copy	has	been	stored.

An	alternative	approach	is	to	use	a	disk-mirroring	strategy.	In	this	case,	data	is	simultaneously	stored
on	two	disk	systems	during	the	normal	operation	of	the	system.	The	individual	disk	systems	might	be	at
remote	locations	as	part	of	a	disaster	recovery	plan.

Restricting	access	to	data
If	a	user	has	logged	in,	they	have	been	authorised	to	use	the	computer	system	but	not	necessarily	all	of
it.	In	particular,	the	system	administrator	may	identify	different	categories	of	user	with	different	needs
with	respect	to	the	data	they	are	allowed	to	see	and	use.	A	typical	example	is	that	one	employee	should
be	able	to	use	the	system	to	look	up	another	employee’s	internal	phone	number.	This	should	not	allow
the	employee	at	the	same	time	to	check	the	salary	paid	to	the	other	employee.

The	solution	is	to	have	an	authorisation	policy	which	gives	different	access	rights	to	different	files	for
different	individuals.	For	a	particular	file,	a	particular	individual	might	have	no	access	at	all	or	possibly
read	access	but	not	write	access.	In	another	case,	an	individual	might	have	read	access	but	not
unrestricted	write	access.

Protecting	data	content
Even	with	appropriate	security	measures	in	place,	a	system	and	its	data	might	still	be	accessed	by
someone	who	overcomes	security	to	break	into	the	system.	This	type	of	access	can	still	be	made	a	waste
of	time	and	effort	if	the	stored	data	cannot	be	read.	Data	can	be	encrypted	to	ensure	this.	Some	details
of	encryption	methods	are	discussed	in	Chapter	21	(Sections	21.01,	21.03,	21.04,	21.05	&	21.06).

9.05	Data	validation	and	verification
Data	integrity	can	never	be	guaranteed,	but	the	chances	are	improved	if	appropriate	measures	are
taken	when	data	originally	enters	a	system	or	when	it	is	transmitted	from	one	system	to	another.

Validation	of	data	entry
The	term	validation	is	a	somewhat	misleading	one.	It	seems	to	imply	that	data	is	accurate	if	it	has	been
validated.	This	is	far	from	the	truth.	For	example,	if	entry	of	a	name	is	expected	but	the	wrong	name	is
entered,	it	will	still	be	recognised	as	a	name	and	therefore	accepted	as	valid.	Validation	can	only
prevent	incorrect	data	if	there	is	an	attempt	to	input	data	that	is	of	the	wrong	type,	in	the	wrong	format
or	out	of	range.

Data	validation	is	implemented	by	software	associated	with	a	data	entry	interface.	There	are	a	number
of	different	types	of	check	that	can	be	made.	Typical	examples	are:

a	presence	check	to	ensure	that	an	entry	field	is	not	left	blank

a	format	check,	for	example	a	date	has	to	be	dd/mm/yyyy

a	length	check,	for	example	with	a	telephone	number

a	range	check,	for	example	the	month	in	a	date	must	not	exceed	12

a	limit	check,	for	example	a	maximum	number	of	years	for	a	person’s	age

a	type	check,	for	example	only	a	numeric	value	for	the	month	in	a	date

an	existence	check,	for	example	that	a	file	exists	with	the	filename	referred	to	in	the	data	entry.

Verification	of	data	entry
When	data	is	entered	into	a	system,	verification	means	getting	the	user	to	confirm	that	the	data
entered	was	what	was	intended	to	be	entered.	Unfortunately,	this	still	does	not	mean	that	the	data
entered	is	correct.	Double	entry	is	one	method	of	verification.	The	most	common	example	is	when	a
user	is	asked	to	supply	a	new	password.	There	will	usually	be	a	request	for	the	password	to	be	re-
entered.	A	second	method	is	to	use	a	visual	check	of	what	has	been	entered.	If	a	form	has	been	filled	in,
it	always	makes	sense	to	read	through	the	data	entered	before	sending	the	form	off	to	its	destination.

Check	digit
When	a	series	of	numbers	are	used	to	identify	something,	it	is	possible	to	use	a	check	digit	method	of
verification.	There	are	many	different	options	here	but	they	all	require	a	calculation	to	be	made	with
the	numbers	that	have	been	entered.	The	final	part	of	the	calculation	involves	an	integer	division	from
which	the	remainder	is	added	as	an	extra	one	or	two	digits	at	the	end	of	the	series	of	numbers.	In	one
scheme	where	only	a	single	check	digit	is	allowed,	the	letter	X	is	used	when	the	remainder	is	calculated
as	10.	When	the	data	is	subsequently	read	the	same	calculation	is	carried	out	and	the	result	is
compared	to	the	check	digit	that	had	been	stored.	This	technique	is	used	for	a	bar	code	or	for	the	ISBN
for	a	book.

Verification	during	data	transfer
It	is	possible	for	data	to	be	corrupted	during	transmission.	Often,	this	happens	when	an	individual	bit	is
flipped	from	1	to	0	or	from	0	to	1.	Verification	techniques	need	to	check	on	some	property	associated
with	the	bit	pattern.

The	simplest	approach	is	to	use	a	simple	one-bit	parity	check.	This	is	particularly	easy	to	do	if	data	is
transferred	in	bytes	using	a	seven-bit	code.	Either	even	or	odd	parity	can	be	implemented	in	the	eighth
bit	of	the	byte.	Assuming	even	parity,	this	is	the	procedure.

At	the	transmitting	end,	the	number	of	1s	in	the	seven-bit	code	is	counted.

If	the	count	gives	an	even	number,	the	parity	bit	is	set	to	0.

1

2

If	no	errors	are	found,	the	transmission	is	accepted.	However,	we	cannot	guarantee	that	the
transmission	is	error	free.	It	is	possible	for	two	bits	to	be	flipped	in	an	individual	byte,	which	would
mean	that	the	transmission	is	incorrect	but	the	parity	check	is	passed.	Fortunately,	this	is	rather
unlikely	so	it	is	sensible	to	assume	no	error.	The	limitation	of	the	method	is	that	it	can	only	detect	the
presence	of	an	error.	It	cannot	identify	the	actual	bit	that	is	in	error.	If	an	error	is	detected,	re-
transmission	has	to	be	requested.

An	alternative	approach	is	to	use	the	checksum	method.	At	the	transmitting	end	a	block	is	defined	as	a
number	of	bytes.	Then,	no	matter	what	the	bytes	represent,	the	bits	in	each	byte	are	interpreted	as	a
binary	number.	The	sum	of	these	binary	numbers	in	a	block	is	calculated	and	supplied	as	a	checksum
value	in	the	transmission.	This	is	repeated	for	each	block.	The	receiver	does	the	same	calculation	and
checks	the	sum	of	the	numbers	with	the	checksum	value	transmitted	for	each	block	in	turn.	Once	again,
an	error	can	be	detected	but	its	position	in	the	transmission	cannot	be	determined.

	TIP
Don’t	confuse	a	check	digit	with	a	checksum.	A	check	digit	is	used	for	stored	data;	a
checksum	is	only	used	for	transmitted	data.

Detecting	the	exact	position	of	an	error	so	as	to	correct	it	is	considerably	more	complex.	One	approach
is	to	use	the	parity	block	check	method.	Like	the	checksum	method	this	is	a	longitudinal	parity	meaning
that	it	is	used	to	check	a	sequence	of	binary	digits	contained	in	a	number	of	bytes.

WORKED	EXAMPLE	9.01

Using	a	parity	block	check

At	the	transmitting	end,	a	program	reads	a	group	of	seven	bytes	as	illustrated	in	Figure	9.01.	The
data	is	represented	by	seven	bits	for	each	byte.	The	most	significant	bit	in	each	byte,	bit	7,	is
undefined	so	we	have	left	it	blank.

Seven-bit	codes

1 0 1 0 0 1 1

0 1 1 0 0 0 1

1 0 1 1 0 0 0

0 0 1 1 1 0 0

0 1 1 0 0 1 0

0 1 1 0 0 0 1

0 1 1 0 0 0 1

Figure	9.01	Seven	bytes	to	be	transmitted

The	parity	bit	is	set	for	each	of	the	bytes,	as	in	Figure	9.02.	The	most	significant	bit	is	set	to
achieve	even	parity.

Parity	bits Seven-bit	codes

0 1 0 1 0 0 1 1

If	the	count	gives	an	odd	number,	the	parity	bit	is	set	to	1.

This	is	repeated	for	every	byte	in	the	transmission.

At	the	receiving	end,	the	number	of	1s	in	the	eight-bit	code	is	counted.

If	the	count	gives	an	even	number,	the	byte	is	accepted.

This	is	repeated	for	every	byte	in	the	transmission.

3

4

5

6

7

1 0 1 1 0 0 0 1

1 1 0 1 1 0 0 0

1 0 0 1 1 1 0 0

1 0 1 1 0 0 1 0

1 0 1 1 0 0 0 1

1 0 1 1 0 0 0 1

Figure	9.02	Bytes	with	the	parity	bit	set

An	additional	byte	is	then	created	and	each	bit	is	set	as	a	parity	bit	for	the	bits	at	that	bit	position.
This	includes	counting	the	parity	bits	in	the	seven	bytes	containing	data.	This	is	illustrated	in
Figure	9.03.

Figure	9.03	Parity	byte	added

The	program	then	transmits	the	eight	bytes	in	sequence.

At	the	receiving	end,	a	program	takes	the	eight	bytes	as	input	and	checks	the	parity	sums	for	the
individual	bytes	and	for	the	bit	positions.

Note	that	the	method	is	handling	a	serial	transmission	so	it	includes	longitudinal	checking,	but	the
checking	algorithm	is	working	on	a	matrix	of	bit	values.	If	there	is	just	one	error	in	the	seven	bytes
this	method	will	allow	the	program	at	the	receiving	end	to	identify	the	position	of	the	error.	It	can
therefore	correct	the	error	so	the	transmission	can	be	accepted.

Question	9.02
Assume	that	the	seven	bytes	shown	in	Figure	9.04	contain	data.

Figure	9.04	Seven	bytes	to	be	transmitted

The	most	significant	bit	is	set	to	0	but	it	is	undefined	at	this	stage	because	a	seven-bit	ASCII	code
represents	character	data.	Choose	a	parity	and	change	the	value	stored	in	the	most	significant	bit	to
match	this	parity	for	each	byte.	Then	create	the	eighth	byte	that	would	be	used	for	transmission	in	a
parity	block	check	method.

Question	9.03
The	eight	bytes	shown	in	Figure	9.05	have	been	received	in	a	transmission	using	the	parity	block
method.	The	first	seven	bytes	contain	the	data	and	the	last	byte	contains	the	parity	check	bits.

Figure	9.05	Eight	bytes	received	in	a	transmission

Identify	what	has	gone	wrong	during	the	transmission.

What	would	happen	after	the	transmission	is	checked?

Reflection	Point:
This	chapter	contains	a	lot	of	terminology.	It	is	very	easy	to	get	confused	about	the	definitions	of	the
different	terms	used.	Have	you	considered	how	you	are	going	to	attempt	to	remember	all	of	the
definitions	and	not	get	confused?

Summary
Important	considerations	for	the	storage	of	data	are:	data	integrity,	data	privacy	and	data	security.
Data	protection	laws	relate	to	data	privacy.
Security	measures	for	computer	systems	include	authentication	of	users,	prevention	of
unauthorised	access,	protection	from	malware	and	methods	for	recovery	following	system	failure.
Security	methods	for	data	include	backup	procedures,	user	authorisation	and	access	control.
Data	entry	to	a	system	should	be	subject	to	data	validation	and	data	verification.
Verification	for	data	transmission	may	be	carried	out	using:	a	parity	check,	a	checksum	or	a	parity
block	check	method.

a

b

■
■
■

■
■
■

Exam-style	Questions

[1]

[3]

[2]

[2]

[4]

[3]

[3]

[2]

[2]

[4]

[5]

[3]

[2]

It	is	important	that	data	has	integrity.

Identify	the	missing	word	in	the	sentence	‘Concerns	about	the	integrity	of	data	are	concerns
about	its

Validation	and	verification	are	techniques	that	help	to	ensure	data	integrity	when	data	is
entered	into	a	system.

Explain	the	difference	between	validation	and	verification.

Define	a	type	of	validation	and	give	an	example.

Even	after	validation	has	been	correctly	applied	data	may	lack	integrity	when	it	comes	to	be
used.	Explain	why	that	might	happen.

Data	should	be	protected	from	being	read	by	unauthorised	individuals.

Explain	two	policies	that	can	be	used	to	provide	the	protection.

Security	of	data	is	an	important	concern	for	a	system	administrator.

Identify	three	reasons	why	data	might	not	be	available	when	a	user	needs	it. 

Describe	what	could	be	features	of	a	policy	for	ensuring	data	security.

It	is	important	for	mission-critical	systems	that	there	is	a	disaster	recovery	contingency	plan	in
place.

Define	what	type	of	disaster	is	under	consideration	here.

Define	what	will	be	a	major	feature	of	the	contingency	plan.

Measures	to	ensure	security	of	a	computer	system	need	to	be	in	place	on	a	daily	basis	if	the
system	is	connected	to	the	Internet.

Describe	two	measures	that	could	be	taken	to	ensure	security	of	the	system.

When	data	is	transmitted	measures	need	to	be	applied	to	check	whether	the	data	has	been
transmitted	correctly.

If	data	consists	of	seven-bit	codes	transmitted	in	bytes,	describe	how	a	simple	parity	check
system	would	be	used.	Your	account	should	include	a	description	of	what	happens	at	the
transmitting	end	and	what	happens	at	the	receiving	end.

An	alternative	approach	is	to	use	a	checksum	method.	Describe	how	this	works.

For	either	of	these	two	methods	there	are	limitations	as	to	what	can	be	achieved	by	them.	Identify
two	of	these	limitations.

A	different	method	which	does	not	have	all	of	these	limitations	is	the	parity	block	check	method.

The	following	diagram	represents	eight	bytes	received	where	the	parity	block	method	has	been
applied	at	the	transmitting	end.	The	first	seven	bytes	contain	the	data	and	the	last	byte	contains
parity	bits.

Byte	1 0 1 0 1 0 0 1 1

Byte	2 1 0 1 1 0 0 0 1

Byte	3 1 1 0 1 0 0 0 0

Byte	4 1 0 0 1 1 1 0 0

Byte	5 1 0 1 1 0 0 1 0

1 a

i

ii

iii

iv

b

2 a

i

ii

b

i

ii

c

3 a

i

ii

b

c

[4]

[3]

[2]

[3]

[3]

[4]

Byte	6 1 0 1 1 0 0 0 1

Byte	7 1 0 1 1 0 0 0 1

Byte	8 0 0 0 1 0 1 0 0

Identify	the	problem	with	this	received	data	and	what	would	be	done	with	it	by	the	program	used
by	the	receiver.

Give	the	definition	of	the	terms	firewall	and	authentication.	Explain	how	they	can	help	with	the
security	of	data.

Describe	two	differences	between	data	integrity	and	data	security.

Data	integrity	is	required	at	the	input	stage	and	also	during	transfer	of	the	data.

State	two	ways	of	maintaining	data	integrity	at	the	input	stage.	Use	examples	to	help	explain
your	answer.

State	two	ways	of	maintaining	data	integrity	during	data	transmission.	Use	examples	to	help
explain	your	answer.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	13	Q3	June	2015

Verification	and	validation	can	be	applied	during	data	entry.

Describe	what	is	meant	by	these	terms.	For	each	method,	explain	why	it	is	needed. 

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q8	November	2015

4 a

b

c

i

ii

5

Chapter	10:	
Ethics	and	ownership

10.01	Ethics
You	can	find	a	number	of	definitions	of	‘ethics’.	The	following	three	sentences	are	examples.

Ethics	is	the	field	of	moral	science.

Ethics	are	the	moral	principles	by	which	any	person	is	guided.

Ethics	are	the	rules	of	conduct	recognised	in	a	particular	profession	or	area	of	human	life.

In	this	book,	we	will	not	use	the	first	definition.	The	third	definition	is	the	focus	of	this	chapter.
However,	the	rules	of	conduct	of	computer	scientists	and	developers	must	reflect	the	moral	principles
of	the	second	definition.	Here	are	some	observations	that	come	to	mind	when	considering	moral
principles.

Moral	principles	concern	right	or	wrong.	The	concept	of	virtue	is	often	linked	to	what	is	considered	to
be	right.	What	is	right	and	wrong	can	be	considered	from	one	of	the	following	viewpoints:	philosophical,
religious,	legal	or	pragmatic.

Philosophical	debate	has	been	going	on	for	well	over	2000	years.	Early	thinkers	frequently	quoted	in
this	context	are	Aristotle	and	Confucius	but	there	are	many	more.	Religions	have	sometimes
incorporated	philosophies	already	existing	or	have	introduced	their	own.	Laws	should	reflect	what	is
right	and	wrong.	Pragmatism	could	be	defined	as	applying	common	sense.

This	chapter	is	not	an	appropriate	place	to	discuss	religious	beliefs,	but	we	should	remember	that
religious	beliefs	do	have	to	be	considered	in	the	working	environment.	Legal	issues	clearly	impact	on
working	practices	but	they	are	rarely	the	primary	focus	in	rules	of	conduct.	What	remains	as	the
foundation	for	rules	of	conduct	are	the	philosophical	views	of	right	and	wrong	and	the	pragmatic	views
of	what	is	common	sense.	These	will	constitute	a	frame	of	reference	for	what	follows	in	this	chapter.

10.02	The	computing	professional
No	matter	what	their	particular	specialism	is,	any	professional	person	is	expected	to	act	ethically.	A
professional	can	receive	guidance	on	ethical	behaviour	by	joining	an	appropriate	professional
organisation.	Such	an	organisation	will	have	a	code	of	conduct	that	will	include	reference	to	ethical
practice.

For	example,	the	British	Computer	Society	(BCS)	has	a	code	of	conduct	that	gives	guidance	under	four
headings:

The	Association	for	Computing	Machinery	(ACM)	and	the	Institute	of	Electrical	and	Electronics
Engineers	(IEEE)	are	both	based	in	the	USA	but	have	a	global	perspective	and	global	influence.	The
IEEE-CS/ACM	Joint	Task	Force	Software	Engineering	Code	of	Ethics	defines	eight	principles	defined	as
follows.

Despite	the	differences	in	the	detail	the	codes	are	consistent	with	regard	to	the	following:

the	public	interest	or	public	good	is	a	key	concern

the	codes	present	fundamental	principles

the	professional	is	expected	to	exercise	their	own	judgement

the	professional	should	seek	advice	if	unsure.

WORKED	EXAMPLE	10.01

Applying	ethics	to	a	software	engineering	scenario

In	a	real-life	scenario	there	might	be	many	individual	clauses	that	should	be	considered	when	a
judgement	is	to	be	made.	For	example,	let’s	consider	the	following	scenario.

You	are	employed	by	a	company	that	develops	software.	You	are	working	on	a	software	engineering
project	to	be	delivered	to	a	client.	One	day	the	project	manager	states	that	the	project	is	running
behind	schedule.	As	a	result,	the	time	allocated	for	testing	of	the	software	will	be	limited	to	one
week	rather	than	the	one	month	that	was	stated	in	the	project	plan.

Public	Interest

Professional	Competence	and	Integrity

Duty	to	Relevant	Authority

Duty	to	the	Profession

1

2

3

4

PUBLIC	–	Software	engineers	shall	act	consistently	with	the	public	interest.

CLIENT	AND	EMPLOYER	–	Software	engineers	shall	act	in	a	manner	that	is	in	the	best	interests	of
their	client	and	employer	consistent	with	the	public	interest.

PRODUCT	–	Software	engineers	shall	ensure	that	their	products	and	related	modifications	meet	the
highest	professional	standards	possible.

JUDGEMENT	–	Software	engineers	shall	maintain	integrity	and	independence	in	their	professional
judgement.

MANAGEMENT	–	Software	engineering	managers	and	leaders	shall	subscribe	to	and	promote	an
ethical	approach	to	the	management	of	software	development	and	maintenance.

PROFESSION	–	Software	engineers	shall	advance	the	integrity	and	reputation	of	the	profession
consistent	with	the	public	interest.

COLLEAGUES	–	Software	engineers	shall	be	fair	to	and	supportive	of	their	colleagues.

SELF	–	Software	engineers	shall	participate	in	lifelong	learning	regarding	the	practice	of	their
profession	and	shall	promote	an	ethical	approach	to	the	practice	of	the	profession.

1

2

3

4

5

6

7

8

As	a	professional	you	could	be	guided	in	your	thinking	by	referring	to	the	eight	principles	listed
above	from	the	IEEE-CS/ACM	Joint	Task	Force	Software	Engineering	Code	of	Ethics.

Considering	them	in	turn	your	thinking	might	be	as	follows:

You	would	now	consider	what	action	to	take.	This	is	where	you	would	need	to	make	a	judgement.
You	might	consider	four	possible	scenarios:

The	first	scenario	is	the	ideal	one	where	the	appropriate	ethical	action	leads	to	a	fully-tested
product.	In	the	second	scenario	the	professional	has	acted	ethically	but	this	has	had	no	effect.	The
question	is	now	whether	anything	else	ought	to	be	done.	The	remaining	two	scenarios	are	where
unethical	behaviour	leaves	the	outcome	of	an	unsatisfactory	product	being	provided	for	the	client.

Discussion	Point:
Search	the	clauses	for	all	eight	principles	of	the	IEEE-CS/ACM	Joint	Task	Force	Software	Engineering
Code	of	Ethics	code	and	identify	the	ones	that	mention	documentation.

Why	is	documentation	mentioned	so	many	times?

You	could	probably	rule	out	any	immediate	need	to	consider	public	interest.

You	would	recognise	that	the	end	result	might	be	the	client	being	delivered	a	sub-standard
product	that	would	reflect	badly	on	the	reputation	of	your	employer.

You	would	identify	the	primary	cause	of	concern	as	being	the	likely	poor	quality	product	likely
to	be	delivered.

You	would	realise	that	you	needed	to	make	a	judgement	as	to	what	action,	if	any,	you	should
take.

You	might	identify	the	secondary	cause	of	concern	as	being	one	of	poor	management.

You	would	have	some	concern	concerning	how	delivering	a	product	with	many	errors	would
cause	your	profession	to	be	judged	badly	but	this	would	not	be	a	primary	concern.

You	would	be	concerned	about	your	colleagues	being	put	under	pressure	to	deliver	in	an
unrealistically	short	timescale.

You	would	recognise	that	this	was	not	an	issue	relating	to	your	professional	development.

1

2

3

4

5

6

7

8

You	decide	that	this	unprofessional	behaviour	by	the	project	manager	must	be	challenged.
Following	this	challenge	the	decision	is	reversed.

You	decide	that	this	unprofessional	behaviour	by	the	project	manager	must	be	challenged.
However,	your	protests	are	ignored.

You	decide	that	no	challenge	is	needed	because	although	the	testing	will	not	be	properly
completed	there	will	always	be	the	opportunity	to	remedy	the	remaining	errors	in	the	code
through	routine	maintenance	following	product	installation.

You	decide	that	an	immediate	protest	would	be	useless	but	you	intend	to	raise	the	matter	at	a
later	time	when	the	errors	in	the	product	have	become	evident.

1

2

3

4

10.03	The	public	good
In	different	parts	of	the	IEEE-CS/ACM	Joint	Task	Force	Software	Engineering	Code	of	Ethics	code	there
is	reference	to:

the	health,	safety	and	welfare	of	the	public

the	public	interest

the	public	good

public	concern.

The	BCS	code	has	the	statement	that	the	professional	should:

‘have	due	regard	for	public	health,	privacy,	security	and	wellbeing	of	others	and	the	environment’.

There	is	no	further	indication	of	how	these	should	be	interpreted.	We	can	look	at	some	individual	cases
to	illustrate	what	might	be	considered.

Fortunately,	there	are	very	few	examples	which	have	involved	loss	of	life	and	certainly	none	where	large
numbers	of	deaths	were	caused.	However,	there	have	been	a	number	of	incidents	where	extremely
large	sums	of	money	were	wasted	because	of	rather	simplistic	errors.

The	first	example	is	the	Ariane	5	rocket	which	exploded	40	seconds	after	blast-off	in	1996.
Approximately	500	million	dollars’	worth	of	investment	in	development,	scientific	equipment	and	launch
costs	were	wasted.	The	problem	was	caused	by	a	line	of	code	that	tried	to	convert	a	64-bit	floating	point
number	into	a	16-bit	integer.	The	resulting	overflow	crashed	the	program	and	as	a	result	also	the
rocket.

The	second	example	also	relates	to	space	exploration.	The	NASA	Mars	Climate	Orbiter	project	centred
on	a	space	probe	that	was	due	to	orbit	Mars	to	study	the	climate.	The	probe	reached	Mars	but
unfortunately	failed	to	get	into	orbit.	The	cause	of	the	problem	was	that	all	of	the	software	was
supposed	to	use	the	SI	system	of	units	for	all	calculations.	One	group	of	software	engineers	used	the
Imperial	system	of	units.	This	mismatch	only	caused	a	problem	at	the	stage	when	the	calculations
concerned	with	achieving	orbit	around	Mars	were	executed.	This	time	the	loss	to	the	public	purse	was
125	million	dollars.

These	examples	illustrate	the	public	interest	in	successful	software	engineering.	There	is	a	strong
argument	that	the	correct	application	of	the	code	of	ethics	with	respect	to	specification,	development
and	testing	of	software	could	have	saved	a	lot	of	money.

A	different	type	of	disaster	is	the	system	that	never	gets	built.	In	2011	the	UK	government	scrapped	the
National	Programme	for	IT	in	the	NHS	(National	Health	Service),	which	had	been	commissioned	in
2002.	The	project	failed	to	produce	a	workable	system.	The	estimated	amount	spent	on	the	program
was	12	billion	pounds.	The	initial	estimated	cost	was	less	than	three	billion	pounds.	In	examples	like
this	the	software	engineers	are	not	to	blame,	but	if	correctly	applied,	the	part	of	the	code	of	ethics
specifically	targeted	at	project	management	would	not	have	allowed	this	type	of	failure	to	occur.

In	the	three	examples	outlined	above,	the	public	concern	was	solely	related	to	the	costs	associated	with
a	failed	project.	There	was	no	public	concern	relating	to	the	ethics	of	the	endeavour	itself.	In	contrast
there	are	many	areas	associated	with	computer-based	systems	where	there	is	public	concern	about	the
nature	of	the	endeavour	or	at	least	about	what	it	has	led	to.	Here	are	some	examples:

powerful	commercial	companies	being	able	to	exert	pressure	on	less	powerful	companies	to	ensure
that	the	powerful	company’s	products	are	used	when	alternatives	might	be	more	suitable	or	less
costly

companies	providing	systems	that	do	not	guarantee	security	against	unauthorised	access

organisations	that	try	to	conceal	information	about	a	security	breach	that	has	occurred	in	their
systems

private	data	transmitted	by	individuals	to	other	individuals	being	stored	and	made	available	to
security	services

social	media	sites	allowing	abusive	or	illegal	content	to	be	transmitted

search	engines	providing	search	results	with	no	concern	about	the	quality	of	the	content.

There	is	by	no	means	a	consistent	public	attitude	to	concerns	like	this.	This	makes	it	difficult	for	an
individual	software	engineer	to	make	a	judgement	with	respect	to	public	good.	Even	if	the	judgement	is
that	a	company	is	not	acting	in	the	public	good,	it	will	always	be	difficult	for	an	individual	to	exert	any
influence.	There	are	recent	examples	where	individuals	have	taken	action	which	has	resulted	in	their
life	being	severely	affected.

Discussion	Point:
This	section	has	deliberately	been	presented	in	generalisations.	You	should	carry	out	a	search	for	some
individual	examples	and	then	consider	actions	that	could	have	been	taken	and	justified	as	being	for	the
public	good.

10.04	Ownership	and	copyright
Copyright	is	a	formal	recognition	of	ownership.	If	an	individual	creates	and	publishes	some	work	that
has	an	element	of	originality,	the	individual	becomes	the	owner	and	can	therefore	claim	copyright.	An
exception	is	if	the	individual	is	working	for	an	organisation.	An	organisation	can	claim	copyright	for	a
published	work	if	it	is	created	by	one	or	more	individuals	that	work	for	the	organisation.	Copyright
cannot	apply	to	an	idea	and	it	cannot	be	claimed	on	any	part	of	a	published	work	that	was	previously
published	by	a	different	individual	or	organisation.

Copyright	can	apply	to	any	of:

a	literary	(written)	work

a	musical	composition

a	film

a	music	recording

a	radio	or	TV	broadcast

a	work	of	art

a	computer	program.

The	justification	for	the	existence	of	copyright	has	two	components.	The	first	is	that	the	creation	takes
time	and	effort	and	requires	original	thinking,	so	the	copyright	holder	should	have	the	opportunity	to
earn	money	for	it.	The	second	is	that	it	is	unfair	for	some	other	individual	or	organisation	to	reproduce
the	work	and	to	make	money	from	it	without	any	payment	to	the	original	creator.

As	with	the	case	of	data	protection	discussed	in	Chapter	9	(Section	9.01),	laws	are	needed	to	protect
copyright.	Different	countries	have	different	details	in	their	laws	but	there	is	an	international
agreement	that	copyright	laws	cannot	be	avoided,	for	example	by	someone	publishing	the	work	in
another	country	without	the	original	copyright	holder’s	permission.

Typical	copyright	laws	will	include:

a	requirement	for	registration	recording	the	date	of	creation	of	the	work

a	defined	period	when	copyright	will	apply

a	policy	to	be	applied	if	an	individual	holding	copyright	dies

an	agreed	method	for	indicating	the	copyright,	for	example	the	use	of	the	©	symbol.

When	copyright	is	in	place	there	will	be	implications	for	how	the	work	can	be	used.	The	copyright
owner	can	include	a	statement	concerning	how	the	work	might	be	used.	For	instance,	the	ACM	has	the
following	statement	relating	to	the	code	of	ethics	discussed	in	Section	10.02:

This	Code	may	be	published	without	permission	as	long	as	it	is	not	changed	in	any	way	and	it	carries
the	copyright	notice.	Copyright	©	1999	by	the	Association	for	Computing	Machinery,	Inc.	and	the
Institute	for	Electrical	and	Electronics	Engineers,	Inc.

This	is	one	of	several	possible	variations	referring	to	permissions	that	are	granted	when	the	work	has
not	been	sold.	If	someone	has	bought	a	copy	of	a	copyrighted	product	there	is	no	restriction	on	copies
being	made	provided	that	these	are	solely	for	the	use	of	the	individual.	A	general	regulation	relates	to
books	in	a	library,	where	a	library	user	can	photocopy	part	of	a	book.

10.05	Software	licensing
Commercial	software
In	one	respect	commercial	software	is	no	different	to	any	other	commercial	product.	It	is	created	and
made	available	for	sale	by	a	company	that	is	aiming	to	make	a	profit.	There	is,	however,	a	significant
difference.	If	you	buy	a	computer	you	become	the	owner	but	if	you	buy	software	you	do	not	become	the
owner.	The	ownership	remains	with	the	vendor.	As	a	buyer	you	have	paid	for	an	end-user	licence	that
allows	you	to	use	the	software.	It	is	normal	that	the	software	license	has	to	be	paid	for	but	there	are	a
number	of	different	options	that	might	be	available:

A	fee	is	paid	for	each	individual	copy	of	the	software.

A	company	might	have	the	option	of	buying	a	site	licence	which	allows	a	defined	number	of	copies
to	be	running	at	any	one	time.

Special	rates	might	be	available	for	educational	use.

A	company	that	normally	sells	the	software	licence	may	sometimes	provide	a	license	free	of	charge.
There	are	two	possibilities.	Shareware	is	commercial	software	which	is	made	available	on	a	trial	basis
for	a	limited	time.	It	might	be	the	full	package	available	at	the	time	or	a	limited	version	of	it.	A	beta	test
version	of	new	software	might	be	considered	to	come	in	the	shareware	category.	Freeware	might	be	a
limited	version	of	a	full	package	or	possibly	an	earlier	version.	The	difference	is	that	there	is	no	time
limit	for	the	licence.

Whatever	license	is	obtained	by	the	user	of	the	software	the	source	code	will	not	be	provided	and	the
license	will	define	limitations	on	the	use	of	the	software.

Examples	of	when	using	commercial	software	can	be	justified	include:

The	software	is	available	for	immediate	use	and	provides	the	functionality	required

The	software	has	been	created	to	be	used	in	conjunction	with	already	installed	software

There	will	be	continuous	maintenance	and	support	provided

Taking	advantage	of	a	shareware	offer	might	allow	suggestions	to	be	made	as	to	how	the	software
could	be	improved

Freeware	can	often	offer	sufficient	functionality	to	serve	a	user’s	limited	needs.

Open	or	free	licensing
For	open	licensing	there	are	two	major	operations	under	way.	Both	are	global	non-profit	organisations.
They	are	very	similar	in	what	they	provide	but	there	is	a	difference	in	their	underlying	philosophies.

The	Open	Source	Initiative	makes	open	source	software	available.	The	philosophy	here	is	that	the	use
of	open	source	software	will	allow	collaborative	development	of	software	to	take	place.	The	software	is
normally	made	available	free	of	charge.	The	source	code	is	provided.	The	user	of	the	software	is	free	to
use	it,	modify	it,	copy	it	or	distribute	it	in	accordance	with	the	terms	defined	by	the	license.

The	Free	Software	Foundation	is	so-named	because	the	philosophy	is	that	users	should	be	free	to	use
software	in	any	way	they	wish.	The	software	is	not	provided	entirely	free	of	charge;	there	is	a	small	fee
to	cover	distribution	costs.	The	free	software	is	still	open	source.	However,	there	is	a	special	feature	of
the	license	which	is	called	‘copyleft’.	This	is	the	condition	that	if	the	software	is	modified	the	source
code	for	the	modified	version	must	be	made	available	to	other	users	under	the	same	conditions	of
usage.

Examples	of	when	using	open	source	software	can	be	justified	include:

The	full	functionality	needed	can	be	provided	for	at	most	a	nominal	cost

The	software	could	provide	the	required	functionality	with	just	a	few	modifications	to	the	source

code

A	consortium	of	developers	are	collaborating	in	producing	a	new	software	suite

The	future	development	of	the	software	or	the	continuous	provision	of	the	existing	software	is
controlled	by	the	user.

Discussion	Point:
How	often	do	you	think	that	open	licence	software	is	being	used?	Should	it	be	used	more	often?

TASK	10.01
Carry	out	a	search	to	investigate	some	of	the	software	available	under	an	open	licence.

10.06	Artificial	intelligence	(AI)
Artificial	intelligence	(AI)	depends	on	and	draws	from	many	other	disciplines	including:	philosophy,
psychology,	neuroscience,	mathematics,	linguistics	and	control	engineering.	The	only	definitions	of	AI
that	are	acceptable	are	at	the	same	time	so	generalised	that	they	are	not	very	practical.	The	following	is
a	typical	example:

AI	concerns	the	use	of	a	computer	or	computer-controlled	device	to	perform	tasks	normally	associated
with	intelligent	behaviour	by	humans.

We	will	consider	five	aspects	of	intelligent	human	behaviour	and	discuss	some	applications	of	AI	that
mimic	this	human	behaviour.

Problem	solving
One	example	is	the	development	of	a	system	that	can	play	chess.	This	can	be	considered	as	displaying
artificial	intelligence	but	this	is	only	demonstrated	because	the	rules	of	chess	are	limited.	A	computer
with	sufficient	storage	capacity	and	processing	power	can	investigate	so	many	options	for	a	possible
sequence	of	moves	that	a	human	cannot	compete.

A	second	example	is	the	traditional	form	of	expert	system	that,	for	example,	has	been	developed	to	aid
medical	diagnosis.	This	is	supplied	with	data	and	rules	from	living	medical	experts.	The	expert	system
contains	more	knowledge	than	is	possible	for	an	individual	doctor	to	have.	However,	if	the	expert
system	is	given	a	new	situation	that	is	not	covered	by	the	data	and	rules	it	has	been	given,	it	cannot
attempt	a	new	or	creative	approach	–	unlike	a	human.

Linguistics
Voice	recognition	and	voice	synthesis	techniques	are	already	developed	and	in	use.	One	example	is	if
you	phone	a	help	line	where	you	might	be	answered	by	a	computer.	Provided	that	you	answer	questions
clearly	the	computer	might	be	able	to	identify	your	needs	and	pass	you	on	to	an	appropriate	human	who
can	help.	However,	this	is	a	long	way	away	from	the	computer	itself	creating	new	questions	based	on
your	answers	and	providing	the	help	you	need.

Perception
Traditionally	robots	have	been	used	in	manufacturing	processes.	Here	the	robot	is	programmed	to
perform	repetitive	tasks.	The	action	of	the	robot	each	time	is	triggered	by	some	mechanism.	However,	if
anything	unexpected	happens	the	robot	continues	to	operate	as	normal,	regardless	of	any	damage
being	caused.

There	is	now	much	research	focussed	on	the	development	of	autonomous	robots.	These	have	to	be
fitted	with	sensors	to	enable	the	robot	to	take	appropriate	action	depending	on	the	information	received
from	the	sensors.	This	is	an	example	of	perception	in	AI.

A	development	of	this	concept	is	the	driverless	car.	There	are	several	examples	available	or	in
development	but	so	far	they	have	only	been	able	to	perform	limited	tasks.	An	example	is	the	capability
for	a	car	to	park	itself	in	a	vacant	parking	space.

Reasoning
There	are	examples	of	the	application	of	AI	where	a	program	has	been	able	to	draw	inferences	(reach
conclusions	based	on	evidence)	which	is	a	requirement	for	reasoning.	The	best	examples	concern	the
proving	of	mathematical	theorems.	Attempts	have	also	been	made	to	develop	techniques	that	can	verify
that	software	that	has	been	created	does	indeed	correctly	and	fully	match	the	documented
specification.

Learning
This	is	currently	a	very	active	area	for	the	application	of	AI	techniques.	Machine	learning	is	said	to	take
place	if	a	system	that	has	a	task	to	perform	is	seen	to	improve	its	performance	as	it	gains	experience.

The	AI	system	has	access	to	‘experience’	in	the	form	of	a	massive	set	of	data.	By	the	use	of	appropriate
statistical	algorithms	the	system	learns	from	this	data.

One	example	is	when	the	actions	of	users	visiting	websites	to	buy	products	are	stored.	The	AI	system
then	attempts	to	identify	appropriate	products	to	be	advertised	when	a	user	returns	to	the	website.	If
sales	progressively	increase	there	is	evidence	that	learning	is	taking	place.

Another	example	is	the	program	that	investigates	incoming	emails	and	makes	decisions	as	to	whether
these	can	be	classified	as	spam	and	therefore	should	be	refused	entry	to	the	user	inbox.

The	impact	of	AI
The	use	of	the	Internet	dominates	the	lives	of	a	large	proportion	of	the	world’s	population.	Global
organisations	that	provide	the	systems	underpinning	this	user	activity	are	collecting	and	storing
massive	amounts	of	data	concerning	how	the	Internet	is	being	used.	If	this	data	is	only	being	used	to
enable	the	organisation	to	increase	its	profits,	this	could	be	seen	as	normal	business	practice.	However,
if	the	data	is	not	being	securely	stored	it	could	get	into	the	wrong	hands	and	be	used	for	criminal	or
subversive	activity.

There	are	different	concerns	with	respect	to	the	introduction	of	autonomous	mechanical	products	such
as	robots,	robotic	devices	and	driverless	vehicles	into	our	daily	lives.	There	are	arguments	that
technological	developments	lead	to	employment	of	more	people	to	manufacture,	service	and	install	the
new	products.	There	is	a	further	argument	that	more	technology	leads	to	less	manual	labour	and
therefore	to	increased	leisure	time.	One	counter	argument	is	that	more	technology	leads	to	fewer	jobs
because	machines	are	doing	the	work.	Another	is	that	such	developments	simply	make	the	rich	richer
and	the	poor	poorer.

Some	people	are	excited	by	the	introduction	of	driverless	vehicles,	but	other	people	believe	that	the
potential	for	accidents	will	be	increased	and	that	there	are	not	enough	measures	to	prevent	accidents.

Robots	can	be	used	in	environments	that	would	be	dangerous	for	humans	to	enter.	Giving	the	robot	the
capability	to	act	autonomously	would	make	it	more	useful	in	such	environments.

The	environmental	impact	of	robot	manufacture	and	disposal	is	probably	the	most	significant	issue.
Robots	are	manufactured	and	require	materials	for	their	construction.	There	is	only	a	limited	supply	of
the	raw	materials	needed.	Also,	all	mechanical	and	electronic	devices	eventually	end	up	on	the	scrap
heap	contributing	to	the	already	serious	problem	of	waste	products	harming	the	environment	and
creatures	living	in	this	environment.

The	use	of	improved	expert	systems	to	aid	practising	doctors	and	nurses	is	clearly	a	benefit.	However,	if
these	systems	came	to	replace	doctors	and	nurses	the	social	consequences	are	difficult	to	predict.

Discussion	Point:
Have	you	seen	any	recent	information	about	new	developments	in	AI?

Reflection	Point:
Is	there	an	organisation	in	your	country	for	professional	computer	scientists?	If	so,	does	it	encourage
young	people	to	join?

Summary
There	are	different	definitions	of	ethics.
Professional	organisations	provide	rules	of	conduct	that	include	guidance	on	ethical	behaviour.
There	is	a	history	of	software	disasters	that	might	have	been	prevented	if	good	software
engineering	practice	had	been	employed.
Copyright	is	formal	recognition	of	ownership.
The	use	of	software	is	controlled	by	a	license
Only	open	source	software	is	provided	with	the	source	code	which	allows	freedom	of	usage
Artificial	Intelligence	is	currently	mainly	focused	on	the	development	of	autonomous	mechanical
products	and	machine	learning	based	on	access	to	massive	data	sets.

■
■
■

■
■
■
■

Exam-style	Questions

[8]

[1]

[2]

[1]

[2]

[4]

[2]

[8]

[4]

Complete	the	following	sentences:

As	a	computer	professional	your	primary	concern	when	faced	with	an	issue	should	be

 

If	an	issue	arises	you	should	exercise	your	             	and	possibly	seek
                        

You	have	a	responsibility	to	act	in	accordance	with	the	welfare	of

 

You	are	expected	to	act	in	the	interests	of	your	           	and	of	your
                           

You	should	not	accept	           	for	which	you	lack
                              

Explain	two	reasons	why	documentation	is	mentioned	so	often	in	the	ACM/IEEE	code	of	conduct.

Copyright	is	an	important	consideration	when	something	is	created.

State	what	copyright	primarily	defines.

When	copyright	is	registered,	some	data	will	be	recorded.	Identify	two	examples	of	the	type
of	data	that	would	be	recorded.

Copyright	legislation	defines	two	conditions	that	will	apply	to	the	copyrighted	work.	Identify
one	of	these.

When	copyright	has	been	established	there	are	options	for	how	usage	will	be	controlled.	Give
two	alternatives	for	the	instructions	that	could	be	included	in	the	copyright	statement	for	the
created	item.

When	software	is	obtained	there	will	be	an	associated	licence	defining	how	it	can	be	used.

For	commercial	software,	describe	two	different	ways	in	which	the	licence	might	be	applied
and	explain	the	benefits	to	the	customer	of	one	of	these.

Define	the	difference	between	freeware	and	shareware.

Identify	two	applications	of	artificial	intelligence.	For	each	one	identify	an	aspect	of	human
intelligence	that	the	application	mimics.	Either	explain	how	the	application	will	be	a	benefit	or
explain	why	there	would	be	concern	about	its	use.

Bobby	is	a	senior	programmer	at	a	software	house	which	produces	intruder	detection	software.

He	also	runs	his	own	software	company	which	develops	and	sells	various	computer	applications.

The	following	table	shows	seven	activities	which	Bobby	carries	out.

Put	a	tick	(✓✓)	in	the	appropriate	column	to	identify	if	the	activity	is	ethical	or	unethical.

Activity Ethical Unethical

Gives	away	passwords	used	in	the	intruder
detection	software

Uses	source	code	developed	at	the	software
house	for	the	software	he	develops	for	his
own	company

Insists	that	staff	work	to	deadlines

Turns	down	training	opportunities	offered
by	his	employer

1 a

i

ii

iii

iv

v

b

2 a

i

ii

iii

iv

b

i

ii

3

4

[7]

[6]

Writes	and	sells	software	that	reads
confidential	data	from	client	computers

Fakes	test	results	of	safety-critical	software

Has	the	software	applications	developed
overseas	for	sale	in	his	own	country

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	12	Q5	November	2015

A	team	of	software	engineers	is	developing	a	new	e-commerce	program	for	a	client.

State	three	of	the	principles	of	the	ACM/IEEE	Software	Engineering	Code	of	Ethics.	Illustrate	each
one,	with	an	example,	describing	how	it	will	influence	their	working	practices.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	11	Q6	June	2016

5

Chapter	11:	
Databases

11.01	Limitations	of	a	file-based	approach
Data	integrity	problems	in	a	single	file
Let’s	consider	a	simple	scenario.	A	theatrical	agency	makes	bookings	for	bands	and	is	setting	up	a
computerised	system.	Text	files	are	to	be	used.	One	of	these	text	files	is	to	store	data	about	individual
band	members.	Each	line	of	the	file	is	to	contain	the	following	data	for	one	band	member:

Name

Contact	details

Banking	details

Band	name

Band	agent	name

Band	agent	contact	details

The	intention	is	that	this	file	could	be	used	if	the	agency	needed	to	contact	the	band	member	directly	or
through	the	band’s	agent.	It	could	also	be	used	after	a	gig	when	the	band	member	has	to	be	paid.
Ignoring	what	would	constitute	contact	details	or	banking	details,	we	can	look	at	a	snapshot	of	some	of
the	data	that	might	be	stored	for	the	member’s	given	name,	the	member’s	family	name	and	the	band
name.	The	file	might	have	a	thousand	or	more	lines	of	text.	The	following	is	a	selection	of	some	of	the
data	that	might	be	contained	in	various	lines	in	the	file:

Xiangfei Jha ComputerKidz

Mahesh Ravuru ITWizz

Dylan Stoddart

Graham Vandana ITWizz

Vandana Graham ITWizz

Mahesh Ravuru ITWizz

Precious Olsen ComputerKidz

Precious Olsen ITWizz

It	is	clear	that	there	are	problems	with	this	data.	It	would	appear	that	when	the	data	for	Vandana
Graham	was	first	entered,	her	names	were	inserted	in	the	wrong	order.	A	later	correct	entry	was	made
without	deletion	of	the	original	incorrect	data.	This	type	of	problem	is	not	unique	to	a	file-based	system.
There	is	no	validation	technique	that	could	detect	the	original	error.	By	contrast,	validation	should	have
led	to	the	correction	of	the	missing	band	name	for	Dylan	Stoddart.	The	Precious	Olsen	data	are
examples	of	duplication	of	data	and	inconsistent	data.

There	is	also	possibly	an	error	that	is	not	evident	from	looking	at	the	file	contents.	A	band	name	could
be	entered	here	when	that	band	doesn’t	exist.

The	above	discussion	shows	how	a	file-based	approach	can	lead	to	data	integrity	problems	in	an
individual	file.	The	reason	is	the	lack	of	in-built	control	when	data	is	entered.	The	database	approach
can	prevent	such	problems	or,	at	least,	minimise	the	chances	of	them	happening.

The	data	privacy	issue	with	a	single	file
A	different	problem	is	a	lack	of	data	privacy.	The	file	above	was	designed	so	that	the	finance	section
could	find	banking	details	and	the	recruitment	section	could	find	contact	details.	The	problem	is	that
there	cannot	be	any	control	of	access	to	part	of	a	file,	so	for	example,	staff	in	the	recruitment	section
would	be	able	to	access	the	banking	details	of	band	members.	Data	privacy	would	be	properly	handled
by	a	database	system.

Data	redundancy	and	possible	inconsistency	in	multiple	files

Mindful	of	this	privacy	problem,	the	agency	decides	to	store	data	in	different	files	for	different
departments	of	the	organisation.	Table	11.01	summarises	the	main	data	to	be	stored	in	each
department’s	file.

Department Data	items	in	the	section’s	file

Contract Member	names Band	name Gig	details

Finance Member	names Bank	details Gig	details

Publicity Band	name Gig	details

Recruitment Member	names Band	name Agent	details

Table	11.01	Data	to	be	held	in	the	department	files

There	is	now	data	duplication	across	the	files.	This	is	commonly	referred	to	as	data	redundancy.	This
does	not	mean	that	the	data	is	no	longer	of	use.	Rather,	it	is	a	recognition	that	once	data	has	been
stored	in	one	file	there	should	be	no	need	for	it	to	be	stored	again	in	a	different	file.	Unfortunately,
some	data	redundancy	cannot	be	avoided	in	file-based	systems.	This	can	lead	to	data	inconsistency,
either	because	of	errors	in	the	original	entry	or	because	of	errors	in	subsequent	editing.	This	is	a
different	cause	of	data	lacking	integrity.	One	of	the	primary	aims	of	the	database	approach	is	the
elimination	of	data	redundancy.

Data	dependency	concerns
The	above	account	has	focused	on	the	problems	associated	with	storing	the	data	in	the	files.	We	now
need	to	consider	the	problems	that	might	occur	when	programs	access	the	files.

Traditionally	a	programmer	wrote	a	program	and	at	the	same	time	defined	the	data	files	that	the
program	would	need.	For	the	agency,	each	department	would	have	its	own	programs	that	would	access
the	department’s	data	files.	When	a	programmer	creates	a	program	for	a	department,	the	programmer
has	to	know	how	the	data	is	organised	in	these	files,	for	example,	that	the	fourth	item	on	a	line	in	the
file	is	a	band	name.	This	is	an	example	of	‘data	dependency’.

It	is	very	likely	that	the	files	used	by	one	department	might	have	some	data	which	is	the	same	as	the
data	in	the	files	of	other	departments.	However,	in	the	scenario	presented	above	there	is	no	plan	for	file
sharing.

A	further	issue	is	that	the	agency	might	decide	that	there	is	a	need	for	a	change	in	the	data	stored.	For
instance,	they	might	see	an	increasing	trend	for	bands	to	perform	with	additional	session	musicians.
Their	data	will	need	to	be	entered	into	some	files.	This	will	require	the	existing	files	to	be	re-written.	In
turn,	this	will	require	the	programs	to	be	re-written	so	that	the	new	files	are	read	correctly.	In	a
database	scenario	the	existing	programs	could	still	be	run	even	though	additional	data	was	added.	The
only	programming	change	needed	would	be	the	writing	of	additional	programs	to	use	this	additional
data.

The	other	aspect	of	data	dependency	is	that	when	file	structures	have	been	defined	to	suit	specific
programs,	they	may	not	be	suited	to	supporting	new	applications.	The	agency	might	feel	the	need	for	an
information	system	to	analyse	the	success	or	otherwise	of	the	gigs	they	have	organised	over	a	number
of	years.	Extracting	the	data	for	this	from	the	sort	of	file-based	system	described	here	would	be	a
complex	task	that	would	take	considerable	time	to	complete.

11.02	The	relational	database
In	the	relational	database	model,	each	item	of	data	is	stored	in	a	relation	which	is	a	special	type	of
table.	The	strange	choice	of	name	comes	from	a	mathematical	theory.	A	relational	database	is	a
collection	of	relational	tables.

When	a	table	is	created	in	a	relational	database	it	is	first	given	a	name	and	then	the	attributes	are
named.	In	a	database	design,	a	table	would	be	given	a	name	with	the	attribute	names	listed	in
brackets	after	the	table	name.	For	example,	the	design	for	a	database	for	the	theatrical	agency	might
contain	the	table	definitions	shown	in	Figure	11.01.

Member(MemberID,	MemberGivenName,	MemberFamilyName,	BandName,	...)
Band(BandName,	AgentID,	...)

Figure	11.01	Two	tables	in	a	database	design	for	the	theatrical	agency

A	logical	view	of	some	data	stored	in	these	tables	is	given	in	Table	11.02	and	Table	11.03.	Each
attribute	is	associated	with	one	column	in	the	table	and	is	in	effect	a	column	header.	The	entries	in	the
rows	beneath	this	column	header	are	attribute	values.

MemberID MemberGivenName MemberFamilyName BandName ...

0005 Xiangfei Jha ComputerKidz ...

0009 Mahesh Ravuru ITWizz ...

0001 Dylan Stoddart ComputerKidz ...

0025 Vandana Graham ITWizz ...

Table	11.02	Logical	view	of	the	Member	table	in	a	relational	database

BandName AgentID ...

ComputerKidz 01 ...

ITWizz 07 ...

Table	11.03	Logical	view	of	the	Band	table	in	a	relational	database

This	is	described	as	a	logical	view	because	an	underlying	principle	for	a	relational	database	is	that
there	is	no	ordering	defined	for	the	attribute	columns.	At	least	one	database	product	does	allow	a	view
of	a	table	and	its	contents.	However,	this	is	not	in	keeping	with	the	fundamental	relational	database
concept	that	a	query	should	be	used	to	inspect	the	data	in	a	table.	Queries	are	discussed	later	in	the
chapter.

A	row	in	a	relation	should	be	referred	to	as	a	tuple	but	this	formal	name	is	not	always	used.	Often	a
row	is	called	a	‘record’	and	the	attribute	values	‘fields’.	The	tuple	is	the	collection	of	data	stored	for	one
‘instance’	of	the	relation.	In	Table	11.02,	each	tuple	relates	to	one	individual	band	member.	A
fundamental	principle	of	a	relational	database	is	that	a	tuple	is	a	set	of	‘atomic’	values;	each	attribute
has	one	value	or	no	value.

The	most	important	feature	of	the	relational	database	concept	is	the	primary	key.	A	primary	key	may
be	a	single	attribute	or	a	combination	of	attributes.	Every	table	must	have	a	primary	key	and	each	tuple
in	the	table	must	have	a	value	for	the	primary	key	and	that	value	must	be	unique.

Once	a	table	and	its	attributes	have	been	defined,	the	next	task	is	to	choose	the	primary	key.	In	some
cases	there	may	be	more	than	one	attribute	for	which	unique	values	are	guaranteed.	In	this	case,	each
one	is	a	candidate	key	and	one	will	be	selected	as	the	primary	key.	A	candidate	key	that	is	not	selected
as	the	primary	key	is	then	referred	to	as	a	secondary	key.	Often	there	is	no	candidate	key	and	so	a
primary	key	has	to	be	created.	The	design	in	Figure	11.01	illustrates	this	with	the	introduction	of	the
attribute	MemberID	as	the	primary	key	for	the	Member	table.	Note	that	the	primary	key	is	underlined

in	the	database	design.

The	primary	key	ensures	integrity	within	the	table.	The	DBMS	will	not	allow	an	attempt	to	insert	a
value	for	a	primary	key	when	that	value	already	exists.	Therefore,	each	tuple	automatically	becomes
unique.	This	is	one	of	the	features	of	the	relational	model	that	helps	to	ensure	data	integrity.	The
primary	key	also	provides	a	unique	reference	to	any	attribute	value	that	a	query	selects.

A	database	can	contain	stand-alone	tables,	but	it	is	more	usual	for	each	table	to	have	some	relationship
to	another	table.	This	relationship	is	implemented	by	using	a	foreign	key.

Let’s	discuss	the	use	of	a	foreign	key	using	the	database	design	shown	in	Figure	11.01.	When	the
database	is	being	created,	the	Band	table	is	created	first.	BandName	is	chosen	as	the	primary	key
because	unique	names	for	bands	can	be	guaranteed.	Then	the	Member	table	is	created.	MemberID	is
defined	as	the	primary	key	and	the	attribute	BandName	is	identified	as	a	foreign	key	referencing	the
primary	key	in	the	Band	table.	Once	this	relationship	between	primary	and	foreign	keys	has	been
established,	the	DBMS	will	prevent	any	entry	for	BandName	in	the	Member	table	being	made	if	the
corresponding	value	does	not	exist	in	the	Band	table.	This	provides	referential	integrity	which	is
another	reason	why	the	relational	database	model	helps	to	ensure	data	integrity.

Question	11.01
BandName	is	a	primary	key	for	the	Band	table.	Does	this	mean	that	as	a	foreign	key	in	the	Member
table	it	must	have	unique	values?	Explain	your	reasoning.

11.03	Entity–relationship	modelling
We	can	use	a	top-down	method	called	stepwise	refinement	to	break	down	the	process	of	database
design	into	simple	steps	(see	also	Chapter	12,	Section	12.08).	At	each	step	more	detail	is	added	to	the
design.	In	database	design	this	approach	uses	an	entity-relationship	(E–R)	diagram.	Typically,	this	can
be	created	either	by	a	database	designer	or	a	systems	analyst	working	with	the	designer.	We	introduced
the	term	‘relationship’	earlier	in	connection	with	the	use	of	a	foreign	key.	An	entity	(strictly	speaking	an
entity	type)	could	be	a	thing,	a	type	of	person,	an	event,	a	transaction	or	an	organisation.	Most
importantly,	there	must	be	a	number	of	‘instances’	of	the	entity.	An	entity	is	something	that	will	become
a	table	in	a	relational	database.

WORKED	EXAMPLE	11.01

Creating	an	entity–relationship	diagram	for	the	theatrical	agency

Let’s	consider	a	scenario	for	the	theatrical	agency	which	will	be	sufficient	to	model	a	part	of	the
final	database	they	would	need.	The	starting	point	for	a	top-down	design	is	a	statement	of	the
requirement:

The	agency	needs	a	database	to	handle	bookings	for	bands.	Each	band	has	a	number	of	members.
Each	booking	is	for	a	venue.	Each	booking	might	be	for	one	or	more	bands.

Step	1:	Choose	the	entities

You	look	for	the	nouns.	You	ignore	‘agency’	because	there	is	only	the	one.	You	choose	Booking,
Band,	Member	and	Venue.	For	each	of	these	there	will	be	more	than	one	instance.	You	are	aware
that	each	booking	is	for	a	gig	at	a	venue	but	you	ignore	this	because	you	think	that	the	Booking
entity	will	be	sufficient	to	hold	the	required	data	about	a	gig.

Step	2:	Identify	the	relationships

This	requires	experience,	but	the	aim	is	not	to	define	too	many.	You	choose	the	following	three:
Booking	with	Venue

Booking	with	Band

Band	with	Member.

You	ignore	the	fact	that	there	will	be,	for	example,	a	relationship	between	Member	and	Venue
because	you	think	that	this	will	be	handled	through	the	other	relationships	that	indirectly	link
them.	You	can	now	draw	a	preliminary	E–R	diagram	as	shown	in	Figure	11.02.

Figure	11.02	A	preliminary	entity–relationship	diagram

Step	3:	Decide	the	cardinalities	of	the	relationships

Now	comes	the	crucial	stage	of	deciding	on	what	are	known	as	the	‘cardinalities’	of	the
relationships.	At	present	we	have	a	single	line	connecting	each	pair	of	entities.	This	line	actually
defines	two	relationships	which	might	be	described	as	the	‘forward’	one	and	the	‘backward’	one	on
the	diagram	as	drawn.	However,	this	only	becomes	apparent	at	the	final	stage	of	drawing	the
relationship.	First,	we	have	to	choose	one	of	the	following	descriptions	for	the	cardinality	of	each
relation:

one-to-one	or	1:1

one-to-many	or	1:M

many-to-one	or	M:1

many-to-many	or	M:M.

Let’s	consider	the	relationship	between	Member	and	Band.	We	argue	that	one	Member	is	a

member	of	only	one	Band.	(This	needs	to	be	confirmed	as	a	fact	by	the	agency.)	We	then	argue	that
one	Band	has	more	than	one	Member	so	it	has	many.	Therefore,	the	relationship	between	Member
and	Band	is	M:1.	In	its	simplest	form,	this	relationship	can	be	drawn	as	shown	in	Figure	11.03.

Figure	11.03	The	M:1	relationship	between	Member	and	Band

This	can	be	given	more	detail	by	including	the	fact	that	a	member	must	belong	to	a	Band	and	a
Band	must	have	more	than	one	Member.	To	reflect	this,	the	relationship	can	be	drawn	as	shown	in
Figure	11.04.

Figure	11.04	The	M:1	relationship	with	more	detail

At	each	end	of	the	relationship	there	are	two	symbols.	One	of	the	symbols	shows	the	minimum
cardinality	and	the	other	the	maximum	cardinality.	In	this	particular	case,	the	minimum	and
maximum	values	just	happen	to	be	the	same.	However,	using	the	diagram	to	document	that	a
Member	must	belong	to	a	Band	is	important.	It	indicates	that	when	the	database	is	created	it	must
not	be	possible	to	create	a	new	entry	in	the	Member	table	unless	there	is	a	valid	entry	for
BandName	in	that	table.

For	the	relationship	between	Booking	and	Venue	we	argue	that	one	Booking	is	for	one	Venue	(there
must	be	a	venue	and	there	cannot	be	more	than	one)	and	that	one	Venue	can	be	used	for	many
Bookings	so	the	relationship	between	Booking	and	Venue	is	M:1.	However,	a	Venue	might	exist	that
has	so	far	never	had	a	booking	so	the	relationship	can	be	drawn	as	shown	in	Figure	11.05.

Figure	11.05	The	M:1	relationship	between	Booking	and	Venue

Finally	for	the	relationship	between	Band	and	Booking	we	argue	that	one	Booking	can	be	for	many
Bands	and	that	one	Band	has	many	Bookings	(hopefully!)	so	the	relationship	is	M:M.	However,	a
new	band	might	not	yet	have	a	booking.	Also,	there	might	be	only	one	Band	for	a	booking	so	the
relationship	can	be	drawn	as	shown	in	Figure	11.06.

Figure	11.06	The	M:M	relationship	between	Band	and	Booking

Step	4:	Create	the	full	E–R	diagram

At	this	stage	we	should	name	each	relationship.	The	full	E–R	diagram	for	the	limited	scenario	that
has	been	considered	is	as	shown	in	Figure	11.07.

Figure	11.07	The	E–R	diagram	for	the	theatrical	agency’s	booking	database

To	illustrate	how	the	information	should	be	read	from	such	a	diagram	we	can	look	at	the	part
shown	in	Figure	11.08.	Despite	the	fact	that	there	is	a	many-to-many	relationship,	a	reading	of	a
relationship	always	considers	just	one	entity	to	begin	the	sentence.	So,	reading	forwards	and	then
backwards,	we	say	that:

One	Band	is	booked	for	zero	or	many	Bookings

One	Booking	is	for	one	or	many	Bands

Figure	11.08	Part	of	the	annotated	E–R	diagram

Question	11.02
If	you	are	deciding	on	the	cardinality	of	the	relationship	between	two	entities	does	it	matter	which	one
is	put	on	the	left	and	which	on	the	right?

	TIP
Be	careful	not	to	confuse	the	two	completely	different	terms	relation	and	relationship.

11.04	A	logical	entity–relationship	model
A	fully	annotated	E–R	diagram	of	the	type	developed	in	Section	11.03	holds	all	of	the	information	about
the	relationships	that	exist	for	the	data	that	is	to	be	stored	in	a	system.	It	can	be	defined	as	a
conceptual	model	because	it	does	not	relate	to	any	specific	way	of	implementing	a	system.	If	the	system
is	to	be	implemented	as	a	relational	database,	the	E–R	diagram	has	to	be	converted	to	a	logical	model.
To	do	this	we	can	start	with	a	simplified	E–R	diagram	that	just	identifies	cardinalities.

If	a	relationship	is	1:M,	no	further	refinement	is	needed.	The	relationship	shows	that	the	entity	at	the
many	end	needs	to	have	a	foreign	key	referencing	the	primary	key	of	the	entity	at	the	one	end.

If	there	were	a	1:1	relationship	there	are	options	for	implementation.	However,	such	relationships	are
extremely	rare	and	we	do	not	need	to	consider	them	here.

The	problem	relationship	is	the	M:M,	where	a	foreign	key	cannot	be	used.	A	foreign	key	attribute	can
only	have	a	single	value,	so	it	cannot	handle	the	many	references	required.	Another	way	of	looking	at
this	problem	is	to	argue	that	a	foreign	key	is	required	in	each	entity	but	neither	table	could	be	created
first	because	the	other	table	needed	to	exist	for	the	foreign	key	to	be	defined.	The	solution	for	the	M:M
relationship	is	to	create	a	link	entity.	For	Band	and	Booking,	the	logical	entity	model	will	contain	the
link	entity	shown	in	Figure	11.09.

Figure	11.09	A	link	entity	inserted	to	resolve	a	M:M	relationship

Extension	Question	11.01
Is	it	possible	to	annotate	these	relationships?

With	the	link	entity	in	the	model	it	is	now	possible	to	have	two	foreign	keys	in	the	link	entity;	one
referencing	the	primary	key	of	Band	and	one	referencing	the	primary	key	of	Booking.

Each	entity	in	the	logical	E–R	diagram	will	become	a	table	in	the	relational	database.	It	is	therefore
possible	to	choose	primary	keys	and	foreign	keys	for	the	tables.	These	can	be	summarised	in	a	key
table.	Table	11.04	shows	sensible	choices	for	the	theatrical	agency’s	booking	database.

Table	name Primary	key Foreign	key

Member MemberID BandName

Band BandName

Band-Booking BandName	&	BookingID BandName,	BookingID

Booking BookingID VenueName

Venue VenueName

Table	11.04	A	key	table	for	the	agency	booking	database

The	decisions	about	the	primary	keys	are	determined	by	the	uniqueness	requirement.	The	link	entity
cannot	use	either	BandName	or	BookingID	alone	but	the	combination	of	the	two	in	a	compound	primary
key	will	work.

TASK	11.01
Consider	the	following	scenario.	An	organisation	books	cruises	for	passengers.	Each	cruise	visits
a	number	of	ports.	Create	a	conceptual	E–R	diagram	and	convert	it	to	a	logical	E–R	diagram.
Create	a	key	table	for	the	database	that	could	be	implemented	from	the	design.

11.05	Normalisation
Normalisation	is	a	design	technique	for	constructing	a	set	of	table	designs	from	a	list	of	data	items.	It
can	also	be	used	to	improve	on	existing	table	designs.

	TIP
Unfortunately,	you	will	be	coming	across	a	completely	different	use	of	the	term
normalisation	in	Chapter	16.

WORKED	EXAMPLE	11.02

Normalising	data	for	the	theatrical	agency

To	illustrate	the	technique,	let’s	consider	the	document	shown	in	Figure	11.10.	This	is	a	booking
data	sheet	that	the	theatrical	company	might	use.

Booking	data	sheet:	2016/023

Venue:

Cambridge	International	Theatre

Camside

CA1

Booking	date:	23.06.2016

Bands	booked Number	of	band	members Headlining

ComputerKidz 5 Y

ITWizz 3 N

DeadlyDuo 2 N

Figure	11.10	Example	booking	data	sheet

The	data	items	on	this	sheet	(ignoring	headings)	can	be	listed	as	a	set	of	attributes:

(BookingID,	VenueName,	VenueAddress1,	VenueAddress2,	Date,

(BandName,	NumberOfMembers,	Headlining))

The	list	is	put	inside	brackets	because	we	are	starting	a	process	of	table	design.	The	extra	set	of
brackets	around	BandName,	NumberOfMembers,	Headlining	is	because	they	represent	a
repeating	group.	If	there	is	a	repeating	group,	the	attributes	cannot	sensibly	be	put	into	one
relational	table.	A	table	must	have	single	rows	and	atomic	attribute	values	so	the	only	possibility
would	be	to	include	tuples	such	as	those	shown	in	Table	11.05.	There	is	now	data	redundancy	here
with	the	duplication	of	the	BookingID,	venue	data	and	the	date.

Booking
ID

Venue
Name

Venue
Address1

Venue
Address2

Date Band
Name

Number
Of
Members

Headlining

2016/023 Cambridge
International
Theatre

Camside CA1 23.06.2016 Computer
Kidz

5 Y

2016/023 Cambridge
International
Theatre

Camside CA1 23.06.2016 ITWizz 3 N

2016/023 Cambridge
International

Camside CA1 23.06.2016 DeadlyDuo 2 N

Theatre

Table	11.05	Data	stored	in	an	unnormalised	table

Step	1:	Conversion	to	first	normal	form	(1NF)

The	conversion	to	first	normal	form	(1NF)	requires	splitting	the	data	into	two	groups.	At	this	stage
we	represent	the	data	as	table	definitions.	Therefore,	we	have	to	choose	table	names	and	identify	a
primary	key	for	each	table.	One	table	contains	the	non-repeating	group	attributes,	the	other	the
repeating	group	attributes.	For	the	first	table	a	sensible	design	is:

Booking(BookingID,	VenueName,	VenueAddress1,	VenueAddress2,	Date)

The	table	with	the	repeating	group	is	not	so	straightforward.	It	needs	a	compound	primary	key	and
a	foreign	key	to	give	a	reference	to	the	first	table.	The	sensible	design	is:

Band-Booking(BandName,	BookingID(fk),	NumberOfMembers,	Headlining)

Again,	the	primary	key	is	underlined	but	also	the	foreign	key	has	been	identified,	with	(fk).	Because
the	repeating	groups	have	been	moved	to	a	second	table,	these	two	tables	could	be	implemented
with	no	data	redundancy	in	either.	This	is	one	aspect	of	1NF.	Also,	we	can	say	that	for	each	table
the	attributes	are	dependent	on	the	primary	key.

Step	2:	Conversion	to	second	normal	form	(2NF)

For	conversion	to	second	normal	form	(2NF),	the	process	is	to	examine	each	non-key	attribute	and
ask	if	it	is	dependent	on	both	parts	of	the	compound	key.	Any	attributes	that	are	dependent	on	only
one	of	the	attributes	in	the	compound	key	must	be	moved	out	into	a	new	table.	In	this	case,
NumberOfMembers	is	only	dependent	on	BandName.	In	2NF	there	are	now	three	table	definitions:

Booking(BookingID,	VenueName,	VenueAddress1,	VenueAddress2,	Date)

Band-Booking(BandName(fk),	BookingID(fk),	Headlining)

Band(BandName,	NumberOfMembers)

Note	that	the	Booking	table	is	unchanged	from	1NF.	The	Booking	table	is	automatically	in	2NF;
only	tables	with	repeating	group	attributes	have	to	be	converted.	The	Band-Booking	table	now	has
two	foreign	keys	to	provide	reference	to	data	in	the	other	two	tables.	The	characteristics	of	a	table
in	2NF	is	that	it	either	has	a	single	primary	key	or	it	has	a	compound	primary	key	with	any	non-key
attribute	dependent	on	both	components.

Step	3:	Conversion	to	third	normal	form	(3NF)

For	conversion	to	third	normal	form	(3NF)	each	table	has	to	be	examined	to	see	if	there	are	any
non-key	dependencies;	that	means	we	must	look	for	any	non-key	attribute	that	is	dependent	on
another	non-key	attribute.	If	there	is,	a	new	table	must	be	defined.

In	our	example,	VenueAddress1	and	VenueAddress2	are	dependent	on	VenueName.	With	the
addition	of	the	fourth	table	we	have	the	following	3NF	definitions:

Band(BandName,	NumberOfMembers)

Band-Booking(BandName(fk),	BookingID(fk),	Headlining)

Booking(BookingID,	Date,	VenueName(fk))

Venue(VenueName,	VenueAddress1,	VenueAddress2)

Note	that	once	again	a	new	foreign	key	has	been	identified	to	keep	a	reference	to	data	in	the	newly
created	table.	These	four	table	definitions	match	four	of	the	entities	in	the	logical	E–R	model	for
which	the	keys	were	identified	in	Table	11.04.	This	will	not	always	happen.	A	logical	E–R	diagram
will	describe	a	2NF	set	of	entities	but	not	necessarily	a	3NF	set.

To	summarise,	if	a	set	of	tables	are	in	3NF	it	can	be	said	that	each	non-key	attribute	is	dependent	on
the	key,	the	whole	key	and	nothing	but	the	key.

Question	11.03

In	Step	2	of	Worked	Example	11.02,	why	is	the	Headlining	attribute	not	placed	in	the	Band	table?

TASK	11.02
Normalise	the	data	shown	in	Figure	11.11.

Figure	11.11	An	order	form

11.06	The	Database	Management	System	(DBMS)
The	database	approach
It	is	vital	to	understand	that	a	database	is	not	just	a	collection	of	data.	A	database	is	an	implementation
according	to	the	rules	of	a	theoretical	model.	The	basic	concept	was	proposed	some	40	years	ago	by
ANSI	(American	National	Standards	Institute)	in	its	three-level	model.	The	three	levels	are:

the	external	level

the	conceptual	level

the	internal	level.

The	architecture	is	illustrated	in	Figure	11.12	in	the	context	of	a	database	to	be	set	up	for	our	theatrical
agency.

Figure	11.12	The	ANSI	three-level	architecture	for	the	theatrical	agency	database

The	physical	storage	of	the	data	is	represented	here	as	being	on	disk.	The	details	of	the	storage	(the
internal	schema)	are	known	only	at	the	internal	level,	the	lowest	level	in	the	ANSI	architecture.	This	is
controlled	by	the	database	management	system	(DBMS)	software.

The	programmers	who	wrote	this	software	are	the	only	ones	who	know	the	structure	for	the	storage	of
the	data	on	disk.	The	software	will	accommodate	any	changes	that	might	be	needed	in	the	storage
medium.

At	the	next	level,	the	conceptual	level,	there	is	a	single	universal	view	of	the	database.	This	is	controlled
by	the	database	administrator	(DBA)	who	has	access	to	the	DBMS.	In	the	ANSI	architecture	the
conceptual	level	has	a	conceptual	schema	describing	the	organisation	of	the	data	as	perceived	by	a	user
or	programmer.	This	may	also	be	described	as	a	logical	schema.

At	the	external	level	there	are	individual	user	and	programmer	views.	Each	view	has	an	external
schema	describing	which	parts	of	the	database	are	accessible.	A	view	can	support	a	number	of	user
programs.

An	important	aspect	of	the	provision	of	views	is	that	they	can	be	used	by	the	DBA	as	a	mechanism	for
ensuring	security.	Individual	users	or	groups	of	users	can	be	given	appropriate	access	rights	to	control
what	actions	are	allowed	for	that	view.	For	example,	a	user	may	be	allowed	to	read	data	but	not	to
amend	data.	Alternatively,	there	may	only	be	access	to	a	limited	number	of	the	tables	in	the	database.

The	facilities	provided	by	a	DBMS
You	need	to	remember	that	databases	come	in	a	variety	of	forms	ranging	from	a	simple	system	created
for	one	individual	through	to	the	central	database	for	some	large	organisation.	Some	of	the	facilities
provided	by	a	DBMS	are	only	relevant	for	large	organisations,	when	their	use	will	be	controlled	by	a
DBA.

Whatever	the	size	of	the	database,	one	option	for	its	creation	is	to	use	the	special-purpose	language
SQL	which	is	discussed	in	the	next	section	of	this	chapter.	There	are	alternatives	to	SQL	for	most	types
of	DBMS.	The	DBMS	provides	software	tools	through	a	developer	interface.	These	allow	for	tables	to
be	created	and	attributes	to	be	defined	together	with	their	data	types.	In	addition,	the	DBMS	provides
facilities	for	a	programmer	to	develop	a	user	interface.	It	also	provides	a	query	processor	that	allows	a
query	to	be	created	and	processed.	The	query	is	the	mechanism	for	extracting	and	manipulating	data
from	the	database.	The	other	feature	likely	to	be	provided	by	the	DBMS	is	the	capability	for	creating	a
report	to	present	formatted	output.	A	programmer	can	incorporate	access	to	queries	and	reports	in	the
user	interface.

DBMS	functions	likely	to	be	used	by	a	DBA
The	DBA	is	responsible	for	setting	up	the	user	and	programmer	views	and	for	defining	the	appropriate,
specific	access	rights.

An	important	feature	of	the	DBMS	is	the	data	dictionary	which	is	part	of	the	database	that	is	hidden
from	view	from	everyone	except	the	DBA.	It	contains	metadata	about	the	data.	This	includes	details	of
all	the	definitions	of	tables,	attributes	and	so	on	but	also	of	how	the	physical	storage	is	organised.

There	are	a	number	of	features	that	can	improve	performance.	Of	special	note	is	the	capability	to
create	an	index	for	a	table.	This	is	needed	if	the	table	contains	a	large	number	of	attributes	and	a	large
number	of	tuples.	An	index	is	a	secondary	table	that	is	associated	with	an	attribute	that	has	unique
values.	The	index	table	contains	the	attribute	values	and	pointers	to	the	corresponding	tuples	in	the
original	table.	The	index	can	be	on	the	primary	key	or	on	a	secondary	key.	Searching	an	index	table	is
much	quicker	than	searching	the	full	table.

The	integrity	of	the	data	in	the	database	is	a	key	concern.	One	potential	cause	of	problems	occurs	when
a	transaction	is	started	but	a	system	problem	prevents	its	completion.	The	result	would	be	a	database	in
an	undefined	state.	The	DBMS	should	have	a	built-in	feature	that	prevents	this	from	happening.	As	with
all	systems,	regular	backup	is	a	requirement.	The	DBA	will	be	responsible	for	backup	of	the	stored	data.

Discussion	Point:
How	many	of	the	above	concepts	are	recognisable	in	your	experience	of	using	a	database?

11.07	Structured	Query	Language	(SQL)
SQL	is	the	programming	language	provided	by	a	DBMS	to	support	all	of	the	operations	associated	with
a	relational	database.	Even	when	a	database	package	offers	high-level	software	tools	for	user
interaction,	they	create	an	implementation	using	SQL.

Data	Definition	Language	(DDL)
Data	Definition	Language	(DDL)	is	the	part	of	SQL	provided	for	creating	or	altering	tables.	These
commands	only	create	the	structure.	They	do	not	put	any	data	into	the	database.

The	following	are	some	examples	of	DDL	that	could	be	used	in	creating	the	database	designed	in
Worked	example	11.02	for	the	theatrical	agency:

CREATE	DATABASE	BandBooking;
CREATE	TABLE	Band	(
					BandName	varchar(25),
					NumberOfMembers	integer);
ALTER	TABLE	Band	ADD	PRIMARY	KEY	(BandName);
ALTER	TABLE	Band-Booking	ADD	FOREIGN	KEY	(BandName	REFERENCES
Band(BandName);

These	examples	illustrate	a	number	of	general	points	regarding	the	writing	of	SQL.

The	SQL	consists	of	a	sequence	of	commands.

Each	command	is	terminated	by;

A	command	can	occupy	more	than	one	line.

There	is	no	case	sensitivity.

There	has	been	a	decision	made	here	to	use	upper	case	for	the	commands	and	lower	case	for	table
names,	attribute	names	and	datatypes.

When	a	command	contains	a	list	of	items	these	are	separated	by	a	comma.

For	the	CREATE	TABLE	command	this	list	is	enclosed	in	parentheses

These	examples	show	that	once	the	database	has	been	created,	the	tables	can	be	created	and	the
attributes	defined.	It	is	possible	to	define	a	primary	key	and	a	foreign	key	within	the	CREATE	TABLE
command	but	the	ALTER	TABLE	command	can	be	used	as	shown	(it	can	also	be	used	to	add	extra
attributes).

When	an	attribute	is	defined,	its	data	type	must	be	specified.	As	with	procedural	languages	there	can
be	different	data	types	or	different	names	for	data	types	depending	on	which	DBMS	is	being	used.	One
feature	common	to	all	databases	is	that	the	number	of	characters	allowed	for	an	attribute	can	be
defined	by	including	the	number	in	brackets.	In	the	above	example	BandName	varchar(25)	allows	up	to	25
characters	for	the	band	name.

The	following	list	shows	some	of	the	names	that	might	be	used	to	define	a	data	type:	character,	varchar,
boolean,	integer,	real,	date,	time.	In	this	chapter	these	will	be	written	in	lower	case,	but	you	might	see
them	written	in	upper	case	in	other	sources.

TASK	11.03
For	the	database	defined	in	Worked	Example	11.02,	complete	the	DDL	for	creating	the	four
tables.	Use	varchar(8)	for	BookingID,	integer	for	NumberOfMembers,	date	for	Date,	character	for
Headlining	and	varchar(25)	for	all	other	data.

Data	Manipulation	Language	(DML)
There	are	three	categories	of	use	for	Data	Manipulation	Language	(DML)

The	insertion	of	data	into	the	tables	when	the	database	is	created

The	modification	or	removal	of	data	in	the	database

The	reading	of	data	stored	in	the	database

The	following	illustrate	the	two	possible	ways	that	SQL	can	be	written	to	populate	a	table	with	data:
INSERT	INTO	Band	(‘ComputerKidz’,	5);
INSERT	INTO	Band-Booking	(BandName,	BookingID)
VALUES	(‘ComputerKidz’,‘2016/023’);

The	first	example	shows	a	simpler	version	that	can	be	used	if	the	order	of	the	attributes	is	known.	The
second	shows	the	safer	method;	the	attributes	are	defined	then	the	values	are	listed.	The	following	are
some	points	to	note.

Parentheses	are	used	in	both	versions.

A	separate	INSERT	command	has	to	be	used	for	each	tuple	in	the	table.

There	is	an	order	defined	for	the	attributes.

Although	the	SQL	will	have	a	list	of	INSERT	commands	the	subsequent	use	of	the	table	has	no
concept	of	the	tuples	being	ordered.

The	main	use	of	DML	is	to	obtain	data	from	a	database	using	a	query.	A	query	always	starts	with	the
SELECT	command.

The	simplest	form	for	a	query	has	the	attributes	for	which	values	are	to	be	listed	as	output	identified
after	SELECT	and	the	table	name	identified	after	FROM.	For	example:

SELECT	BandName	FROM	Band;

Note	that	the	components	of	the	query	are	separated	by	spaces.

The	Band	table	only	has	two	attributes.	To	list	the	values	for	both	there	are	two	options:
SELECT	BandName,	NumberOfMembers
FROM	Band;

or
SELECT	*	FROM	Band;

which	uses	*	to	indicate	all	attributes.	Note	that	in	the	first	example	the	attributes	are	separated	by
commas	but	no	parentheses	are	needed.

It	is	possible	to	include	instructions	in	the	SQL	to	control	the	presentation	of	the	output.	The	following
uses	ORDER	BY	to	ensure	that	the	output	is	sorted	to	show	the	data	with	the	band	names	in
alphabetical	order.

SELECT	BandName,	NumberOfMembers
FROM	Band
ORDER	BY	BandName;

In	this	query	there	is	no	question	of	duplicate	entries	because	BandName	is	the	primary	key	of	the
BandName	table.	However,	in	the	Band-Booking	table	an	individual	value	for	BandName	will	occur
many	times.	If	a	query	were	being	used	to	find	which	bands	already	had	a	booking	there	would	be
repeated	names	in	the	output.	This	can	be	prevented	by	the	use	of	GROUP	BY	as	shown	here:

SELECT	BandName
FROM	Band-Booking
GROUP	BY	BandName;

An	extension	of	the	control	of	the	output	from	a	query	is	to	include	a	condition	to	limit	the	selected
data.	This	is	provided	by	a	WHERE	clause.	The	following	are	examples:

SELECT	BandName
FROM	Band-Booking
WHERE	Headlining	=	‘Y’
GROUP	BY	BandName;

which	produces	a	single	output	for	each	band	that	has	headlined.	Note	how	a	query	can	have	several

component	parts	which	are	best	presented	on	separate	lines.
SELECT	BandName,	NumberOfMembers
FROM	Band
WHERE	NumberOfMembers	>	2
ORDER	BY	BandName;

which	excludes	any	duo	bands.

It	is	possible	to	qualify	the	SELECT	statement	by	using	a	function.	SUM,	COUNT	and	AVG	are	examples
of	functions	that	work	on	data	held	in	several	tuples	for	a	particular	attribute	and	return	one	value.	For
this	reason,	these	functions	are	called	aggregate	functions.	As	an	example,	the	following	code	displays
the	number	of	members	in	a	band:

SELECT	Count(*)
FROM	Band;

This	is	a	special	case	because	there	is	no	need	to	specify	the	attribute.	An	example	using	a	specific
attribute	would	be:

SELECT	AVG(NumberOfMembers)
FROM	Band;

another	example	is:
SELECT	SUM(NumberOfMembers)
FROM	Band;

A	query	can	be	based	on	a	‘join	condition’	between	data	in	two	tables.	The	most	frequently	used	is	an
inner	join	which	is	illustrated	by:

SELECT	VenueName,	Date
FROM	Booking
WHERE	Band-Booking.BookingID	=	Booking.BookingID
AND	Band-Booking.BandName	=	‘ComputerKidz’;

The	SQL	uses	the	full	definitive	name	for	each	attribute	with	the	table	name	and	attribute	name
separated	by	a	dot.	The	query	contains	two	conditions.	The	way	that	the	query	works	is	as	follows.

The	Band-Booking	table	is	searched	for	instances	where	the	BandName	is	ComputerKidz.

For	each	instance	the	BookingID	is	noted.

Then	there	is	a	search	of	the	Booking	table	to	find	the	examples	of	tuples	having	this	value	for
BookingID.

For	each	one	found	the	VenueName	and	Date	are	presented	in	the	output.

Some	versions	of	SQL	require	the	explicit	use	of	INNER	JOIN.	The	following	is	a	possible	generic
syntax:

SELECT	table1.column1,	table2.column2...
FROM	table1
INNER	JOIN	table2
ON	table1.common_field	=	table2.common_field;

The	other	use	of	DML	is	to	modify	the	data	stored	in	the	database.	The	UPDATE	command	is	used	to
change	the	data.	If	the	band	ComputerKidz	recruited	an	extra	member	the	following	SQL	would	make
the	change	needed.

UPDATE	Band
SET	NumberOfMembers	=	6
WHERE	BandName	=	‘ComputerKidz’;

Note	the	use	of	the	WHERE	clause.	If	you	forgot	to	include	this	the	UPDATE	command	would	change
the	number	of	band	members	to	6	for	all	of	the	bands.

The	DELETE	command	is	used	to	remove	data	from	the	database.	This	has	to	be	done	with	care.	If	the
ITWizz	band	decided	to	disband	the	following	SQL	would	remove	the	name	from	the	database.

DELETE	FROM	Band-Booking
WHERE	BandName	=	‘ITWizz’;
DELETE	FROM	Band

WHERE	BandName	=	‘ITWizz’;

Note	that	if	an	attempt	was	made	to	carry	out	the	deletion	from	Band	first	there	would	be	an	error.	This
is	because	BandName	is	a	foreign	key	in	Band-Booking.	Any	entry	for	BandName	in	Band-Booking	must
have	a	corresponding	value	in	Band.

Reflection	Point:
Did	you	find	normalisation	difficult?	It	would	be	surprising	if	you	didn’t.	Are	you	going	to	get	as	much
practice	as	possible?	There	are	many	questions	from	previous	exam	papers	that	contain	examples	to	try.

Summary
A	database	offers	improved	methods	for	ensuring	data	integrity	compared	to	a	file-based
approach.
A	relational	database	comprises	tables	of	a	special	type;	each	table	has	a	primary	key	and	may
contain	foreign	keys.
Entity–relationship	modelling	is	a	top-down	approach	to	database	design.
Normalisation	is	a	database	design	method	that	starts	with	a	collection	of	attributes	and	converts
them	into	first	normal	form	then	into	second	normal	form	and,	finally,	into	third	normal	form.
A	database	architecture	provides,	for	the	user,	a	conceptual	level	interface	to	the	stored	data.
Features	provided	by	a	database	management	system	(DBMS)	include:	a	data	dictionary,	indexing
capability,	control	of	user	access	rights	and	backup	procedures.
Structured	Query	Language	(SQL)	includes	data	definition	language	(DDL)	commands	for
establishing	a	database	and	data	manipulation	language	(DML)	commands	for	creating	queries.

■

■

■
■

■
■

■

Exam-style	Questions

[2]

[4]

[2]

[3]

[2]

[2]

[4]

[4]

[6]

A	relational	database	has	been	created	to	store	data	about	subjects	that	students	are	studying.
The	following	is	a	selection	of	some	data	stored	in	one	of	the	tables.	The	data	represents	the
student’s	name,	the	personal	tutor	group,	the	personal	tutor,	the	subject	studied,	the	level	of
study	and	the	subject	teacher	but	there	are	some	data	missing:

Xiangfei 3 MUB Computing A DER

Xiangfei 3 MUB Maths A BNN

Xiangfei 3 MUB Physics AS DAB

Mahesh 2 BAR History AS IJM

Mahesh 2 BAR Geography AS CAB

Define	the	terms	used	to	describe	the	components	in	a	relational	database	table	using
examples	from	this	table.

If	this	represented	all	of	the	data,	it	would	have	been	impossible	to	create	this	table.	Identify
what	has	not	been	shown	here	and	must	have	been	defined	to	allow	the	creation	as	a
relational	database	table?	Explain	your	answer	and	suggest	a	solution	to	the	problem. 

Is	this	table	in	first	normal	form	(1NF)?	Explain	your	reason.

It	has	been	suggested	that	the	database	design	could	be	improved.	The	design	suggested	contains
the	following	two	tables:

Student(StudentName,	TutorGroup,	Tutor)

StudentSubject(StudentName,	Subject,	Level,	SubjectTeacher)

Identify	features	of	this	design	which	are	characteristic	of	a	relational	database.

Explain	why	the	use	of	StudentName	here	is	a	potential	problem. 

Explain	why	the	Student	table	is	not	in	third	normal	form	(3NF).

Consider	the	following	scenario:

A	company	provides	catering	services	for	clients	who	need	special-occasion,	celebratory	dinners.	For
each	dinner,	a	number	of	dishes	are	to	be	offered.	The	dinner	will	be	held	at	a	venue.	The	company
will	provide	staff	to	serve	the	meals	at	the	venue.

The	company	needs	a	database	to	store	data	related	to	this	business	activity.

An	entity–relationship	model	is	to	be	created	as	the	first	step	in	a	database	design.	Identify	a	list
of	entities.

Identify	pairs	of	entities	where	there	is	a	direct	relationship	between	them.

For	each	pair	of	entities,	draw	the	relationship	and	justify	the	choice	of	cardinality	illustrated	by
the	representation.

Consider	the	following	booking	form	used	by	a	travel	agency.

1 a

i

ii

iii

b

i

ii

iii

2

a

b

c

3

[5]

[3]

[5]

[2]

[5]

[3]

[5]

[2]

[1]

[4]

[2]

[3]

Identify	an	unnormalised	list	of	attributes	using	the	data	shown	in	this	form.	Make	sure	that	you
distinguish	between	the	repeating	and	non-repeating	attributes.

Demonstrate	the	conversion	of	the	data	to	first	normal	form	(1NF).	The	design	of	two	tables
should	be	defined	with	the	keys	identified.

Identify	the	appropriate	table	and	demonstrate	the	conversion	of	the	table	to	two	tables	in	second
normal	form	(2NF).	Explain	your	choice	of	table	to	modify.	Explain	your	identification	of	the	keys
for	these	two	new	tables.

Identify	which	part	of	your	design	is	not	in	Third	Normal	Form	(3NF).

A	small	database	is	to	be	created	with	the	following	three	tables:

STUDENT(StudentID,	StudentName,	StudentOtherName,	DateOfbirth)

SUBJECT(SubjectName,	SubjectTeacher)

TUTORIAL(StudentID(fk),	Subjectname(fk),	WeekNumber,	Day,	PeriodNumber)

Using	the	appropriate	datatypes	from	the	following	list:

CHARACTER,	VARCHAR,	BOOLEAN,	INTEGER,	REAL,	DATE

Write	the	SQL	scripts	to	create	two	of	the	tables	using	the	CREATE	TABLE	command.	Do	not	at
this	stage	identify	any	keys.

Assuming	that	all	three	tables	have	been	created,	write	the	SQL	scripts	to	assign	the	primary	key
in	the	SUBJECT	table	and	the	two	foreign	keys	in	the	TUTORIAL	table.

Write	the	SQL	script	that	will	list	all	of	the	student	names	in	age	order.

There	is	an	aspect	of	the	design	of	the	tables	that	could	cause	problems.	Explain	this	problem.

A	school	stores	a	large	amount	of	data.	This	includes	student	attendance,	qualification	and	contact
details.	The	school’s	software	uses	a	file-based	approach	to	store	this	data.

The	school	is	considering	changing	to	a	DBMS.

State	what	DBMS	stands	for.

Describe	two	ways	in	which	the	database	Administrator	(DBA)	could	use	the	DBMS	software
to	ensure	the	security	of	the	student	data.

A	feature	of	the	DBMS	software	is	a	query	processor.

Describe	how	the	school	secretary	could	use	this	software.

The	DBMS	has	replaced	software	that	used	a	file-based	approach	with	a	relational	database.

Describe	how	using	a	relational	database	has	overcome	the	previous	problems	associated
with	a	file-based	approach.

The	database	design	has	three	tables	to	store	the	classes	that	students	attend.
STUDENT	(StudentID,	FirstName,	LastName,	Year,	TutorGroup)
CLASS	(ClassID,	Subject)
CLASS	-GROUP	(StudentID,	ClassID)

Primary	keys	are	not	shown.

a

b

c

d

4

a

b

c

d

5

a

i

ii

iii

iv

b

[2]

[1]

[4]

[4]

[6]

[2]

[6]

There	is	a	one-to-many	relationship	between	CLASS	and	CLASS	–GROUP.

Describe	how	this	relationship	is	implemented.

Describe	the	relationship	between	CLASS	–GROUP	and	STUDENT.

Write	an	SQL	script	to	display	the	StudentID	and	FirstName	of	all	students	who	are	in	the	tutor
group	10B.	Display	the	list	in	alphabetical	order	of	LastName.

Write	an	SQL	script	to	display	the	LastName	of	all	students	who	attend	the	class	whose	ClasstID
is	CS1 

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	11	Q8	June	2016

A	health	club	offers	classes	to	its	members.	A	member	needs	to	book	into	each	class	in	advance.

The	health	club	employs	a	programmer	to	update	the	class	booking	system.	The	programmer	has
to	decide	how	to	store	the	records.	The	choice	is	between	using	a	relational	database	or	a	file-
based	approach.

Give	three	reasons	why	the	programmer	should	use	a	relational	database.

The	programmer	decides	to	use	three	tables:	MEMBER,	BOOKING	and	CLASS.

Complete	the	entity–relationship	(E–R)	diagram	to	show	the	relationships	between	these	tables.

The	Class	table	has	primary	key	Class	ID	and	stores	the	following	data:

ClassID Description StartDate ClassTime NoOfSessions Adultsonly

DAY01 Yoga	beginners 12/01/2016 11:00 5 TRUE
EVE02 Yoga	beginners 12/01/2016 19:00 5 FALSE
	 	 	 	 	 	
DAY16 Circuits 30/06/2016 10:30 4 FALSE

Write	an	SQL	script	to	create	the	CLASS	table.

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	12	Q9	November	2016

i

ii

iii

iv

6

a

b

c

Part	2
Fundamental	problem-solving	and	programming
skills

Chapter	12:	
Algorithm	design	and	problem-solving

12.01	What	is	computational	thinking?
Computational	thinking	is	a	problem-solving	process	where	a	number	of	steps	are	taken	in	order	to
reach	a	solution.	It	is	a	logical	approach	to	analysing	a	problem,	producing	a	solution	that	can	be
understood	by	humans	and	used	by	computers.

Computational	thinking	involves	five	key	strands:	abstraction,	decomposition,	data	modelling,	pattern
recognition	and	algorithmic	thinking.

Abstraction
Abstraction	involves	filtering	out	information	that	is	not	necessary	to	solve	a	problem.	There	are	many
examples	in	everyday	life	where	abstraction	is	used.	Figure	12.02	shows	part	of	the	underground	map
of	London,	UK.	The	purpose	of	this	map	is	to	help	people	plan	their	journey	within	London.	The	map
does	not	show	a	geographical	representation	of	the	tracks	of	the	underground	train	network	nor	does	it
show	the	streets	above	ground.	It	shows	the	stations	and	which	train	lines	connect	the	stations.	In	other
words,	the	information	that	is	not	necessary	when	planning	how	to	get	from	one	landmark	to	another	is
filtered	out.	The	essential	information	we	need	to	be	able	to	plan	our	route	is	clearly	represented.

Abstraction	gives	us	the	power	to	deal	with	complexity.	An	algorithm	is	an	abstraction	of	a	process	that
takes	inputs,	executes	a	sequence	of	steps,	and	produces	outputs.	An	abstract	data	type	defines	an
abstract	set	of	values	and	operations	for	manipulating	those	values.

TASK	12.01
Use	the	aerial	photograph	in	Figure	12.01	and	draw	a	map	just	showing	the	essential	details	for
finding	a	route	from	landmark	A	to	landmark	B.

Figure	12.01	Aerial	photograph	of	part	of	a	city

Decomposition
Decomposition	means	breaking	problems	down	into	sub-problems	in	order	to	explain	a	process	more
clearly.	Decomposition	leads	us	to	the	concept	of	program	modules	and	using	procedures	and	functions.

Data	modelling

Data	modelling	involves	analysing	and	organising	data	(see	Chapter	13).	We	can	set	up	abstract	data
types	to	model	real-world	concepts,	such	as	queues	or	stacks.	When	a	programming	language	does	not
have	such	data	types	built-in,	we	can	define	our	own	by	building	them	from	existing	data	types.	There
are	more	ways	to	build	data	models.	In	Chapter	27	we	cover	object-oriented	programming	where	we
build	data	models	by	defining	classes.	In	Chapter	29	we	model	data	using	facts	and	rules.	In	Chapter	26
we	cover	random	files.

Pattern	recognition
Pattern	recognition	means	looking	for	patterns	or	common	solutions	to	common	problems	and	using
these	to	complete	tasks	in	a	more	efficient	and	effective	way.	There	are	many	standard	algorithms	to
solve	standard	problems,	such	as	sorting	(see	Section	13.03	and	23.03)	or	searching	(see	Section	13.02
and	23.04).

Algorithm	design
Algorithm	design	involves	developing	step-by-step	instructions	to	solve	a	problem.

12.02	What	is	an	algorithm?
We	use	algorithms	in	everyday	life.	If	you	need	to	change	a	wheel	on	a	car,	you	might	need	to	follow
instructions	(the	algorithm)	from	a	manual.

This	might	sound	all	very	straightforward.	However,	if	the	instructions	are	not	followed	in	the	correct
logical	sequence,	the	process	might	become	much	more	difficult	or	even	impossible.	For	example,	if	you
tried	to	do	Step	1	after	Step	3,	the	wheel	may	spin	and	you	can’t	loosen	the	wheel	nuts.	You	can’t	do
Step	4	before	Step	3.

If	you	want	to	bake	a	cake,	you	follow	a	recipe.

The	recipe	is	an	algorithm.	The	ingredients	are	the	input	and	the	cake	is	the	output.	The	process	is
mixing	the	ingredients	and	cooking	the	mixture	in	the	oven.

Sometimes	a	step	might	need	breaking	down	into	smaller	steps.	For	example,	Step	2	can	be	more
detailed.

2.1	 Beat	the	sugar	and	butter	together	until	fluffy.

2.2	 Add	the	eggs,	one	at	a	time,	mixing	constantly.

2.3	 Sieve	the	flour	and	baking	powder	and	stir	slowly	into	the	egg	mixture.

2.4	 Add	milk	and	mix	to	give	a	creamy	consistency.

Sometimes	there	might	be	different	steps	depending	on	some	other	conditions.	For	example,	consider
how	to	get	from	one	place	to	another	using	the	map	of	the	London	Underground	system	in	Figure
12.02.

Take	a	spanner	and	loosen	the	wheel	nuts.

Position	a	jack	in	an	appropriate	place.

Raise	the	car.

Take	off	the	wheel	nuts	and	the	wheel.

Lift	replacement	wheel	into	position.

Replace	wheel	nuts	and	tighten	by	hand.

Lower	the	car.

Fully	tighten	wheel	nuts.

1

2

3

4

5

6

7

8

Measure	the	following	ingredients:	200g	sugar,	200g	butter,	4	eggs,	200g	flour,	2	teaspoons	baking
powder	and	2	tablespoons	of	milk.

Mix	the	ingredients	together	in	a	large	bowl,	until	the	consistency	of	the	mixture	is	smooth.

Pour	the	mixture	into	a	cake	tin.

Bake	in	the	oven	at	190°	C	for	20	minutes.

Check	it	is	fully	cooked.

Turn	cake	out	of	the	tin	and	cool	on	a	wire	rack.

1

2

3

4

5

6

images

Figure	12.02	Underground	map	of	London,	UK

To	travel	from	King’s	Cross	St.	Pancras	to	Westminster,	we	consider	two	routes:

Route	A:	Take	the	Victoria	Line	to	Green	Park	(4	stations);	then	take	the	Jubilee	Line	to	Westminster
(1	station)

Route	B:	Take	the	Piccadilly	Line	to	Green	Park	(6	stations);	then	take	the	Jubilee	Line	to
Westminster	(1	station).

Route	A	looks	like	the	best	route.	If	there	are	engineering	works	on	the	Victoria	Line	and	trains	are
delayed,	Route	B	might	turn	out	to	be	the	quicker	route.

The	directions	on	how	to	get	from	King’s	Cross	St.	Pancras	to	Westminster	can	be	written	as:

IF	there	are	engineering	works	on	the	Victoria	Line

THEN

Take	the	Piccadilly	Line	to	Green	Park	(6	stations)

Take	the	Jubilee	Line	to	Westminster	(1	station)

ELSE

Take	the	Victoria	Line	to	Green	Park	(4	stations)

Take	the	Jubilee	Line	to	Westminster	(1	station)

TASK	12.02
Write	the	steps	to	be	followed	to:

make	a	sandwich

walk	from	your	school/college	to	the	nearest	shop

log	on	to	your	computer.

Many	problems	have	more	than	one	solution.	Sometimes	it	is	a	personal	preference	which	solution	to
choose.	Sometimes	one	solution	will	be	measurably	better	than	another.

12.03	Expressing	algorithms

	TIP
Computer	scientists	are	interested	in	finding	good	solutions.	A	good	solution	gives	the
correct	results,	takes	up	as	little	computer	memory	as	possible	and	executes	as	fast	as
possible.	The	solution	should	be	concise,	elegant	and	easy	to	understand.

In	computer	science,	when	we	design	a	solution	to	a	problem	we	express	the	solution	(the	algorithm)
using	sequences	of	steps	written	in	structured	English	or	pseudocode.	Structured	English	is	a	subset
of	the	English	language	and	consists	of	command	statements.	Pseudocode	resembles	a	programming
language	without	following	the	syntax	of	a	particular	programming	language.	A	flowchart	is	an
alternative	method	of	representing	an	algorithm.	A	flowchart	consists	of	specific	shapes,	linked
together.

An	algorithm	consists	of	a	sequence	of	steps.	Under	certain	conditions	we	may	wish	not	to	perform
some	steps.	We	may	wish	to	repeat	a	number	of	steps.	In	computer	science,	when	writing	algorithms,
we	use	four	basic	types	of	construct.

Assignment:	a	value	is	given	a	name	(identifier)	or	the	value	associated	with	a	given	identifier	is
changed.

Sequence:	a	number	of	steps	are	performed,	one	after	the	other.

Selection:	under	certain	conditions	some	steps	are	performed,	otherwise	different	(or	no)	steps	are
performed.

Repetition:	a	sequence	of	steps	is	performed	a	number	of	times.	This	is	also	known	as	iteration	or
looping.

Many	problems	we	try	to	solve	with	a	computer	involve	data.	The	solution	involves	inputting	data	to	the
computer,	processing	the	data	and	outputting	results	(as	shown	in	Figure	12.03).

Figure	12.03	Input–process–output

We	therefore	also	need	input	and	output	statements.

We	need	to	know	the	constructs	so	we	know	how	detailed	our	design	has	to	be.	These	constructs	are
represented	in	each	of	the	three	notations	as	shown	in	Table	12.01.

In	this	book,	algorithms	and	program	code	are	typed	using	the	Courier	font.

Structured	English Pseudocode Flowchart

Assignment
and
Sequence

SET	A	TO	34
INCREMENT	B

A	←	34
B	←	B	+	1

Selection IF	A	IS	GREATER	THAN	B
					THEN	...
					ELSE	...

IF	A	>	B
			THEN	...
			ELSE	...
ENDIF

Repetition REPEAT	UNTIL	A	IS	EQUAL	TO
B		...

REPEAT
					...
UNTIL	A	=	B

Input INPUT	A INPUT	"Prompt:	"	A

Output OUTPUT	"Message"
OUTPUT	B

OUTPUT	"Message",	B

Table	12.01	Constructs	for	computing	algorithms

12.04	Variables
When	we	input	data	for	a	process,	individual	values	need	to	be	stored	in	memory.	We	need	to	be	able	to
refer	to	a	specific	memory	location	so	that	we	can	write	statements	of	what	to	do	with	the	value	stored
there.	We	refer	to	these	named	memory	locations	as	variables.	You	can	imagine	these	variables	like
boxes	with	name	labels	on	them.	When	a	value	is	input,	it	is	stored	in	the	box	with	the	specified	name
(identifier)	on	it.

For	example,	the	variable	used	to	store	a	count	of	how	many	guesses	have	been	made	in	a	number
guessing	game	might	be	given	the	identifier	NumberOfGuesses	and	the	player’s	name	might	be	stored	in	a
variable	called	ThisPlayer,	as	shown	in	Figure	12.04.

Figure	12.04	Variables

Variable	identifiers	should	not	contain	spaces,	only	letters,	digits	and	_	(the	underscore	symbol).	To
make	algorithms	easier	to	understand,	the	naming	of	a	variable	should	reflect	the	variable’s	use.	This
means	often	that	more	than	one	word	is	used	as	an	identifier.	The	formatting	convention	used	here	is
known	as	CamelCaps.	It	makes	an	identifier	easier	to	read.

12.05	Assignments
Assigning	a	value
The	following	pseudocode	stores	the	value	that	is	input	(for	example	15)	in	a	variable	with	the	identifier
Number	(see	Figure	12.05(a)).
INPUT	Number

The	following	pseudocode	stores	the	value	1	in	the	variable	with	the	identifier	NumberOfGuesses	(see
Figure	12.05(b)).
NumberOfGuesses	←	1

Figure	12.05	Variables	being	assigned	a	value

Updating	a	value
The	following	pseudocode	takes	the	value	stored	in	NumberOfGuesses	(see	Figure	12.06	(a)),	adds	1	to	that
value	and	then	stores	the	new	value	back	into	the	variable	NumberOfGuesses	(see	Figure	12.06	(b)).
NumberOfGuesses	←	NumberOfGuesses	+	1

Figure	12.06	Updating	the	value	of	a	variable

Copying	a	value
Values	can	be	copied	from	one	variable	to	another.

The	following	pseudocode	takes	the	value	stored	in	Value1	and	copies	it	to	Value2	(see	Figure	12.07).
Value2	←	Value1

Figure	12.07	Copying	the	value	of	a	variable

The	value	in	Value1	remains	the	same	until	it	is	assigned	a	different	value.

Swapping	two	values
If	we	want	to	swap	the	contents	of	two	variables,	we	need	to	store	one	of	the	values	in	another	variable
temporarily.	Otherwise	the	second	value	to	be	moved	will	be	overwritten	by	the	first	value	to	be	moved.

In	Figure	12.08(a),	we	copy	the	content	from	Value1	into	a	temporary	variable	called	Temp.	Then	we	copy
the	content	from	Value2	into	Value1	Figure	12.08(b)).	Finally,	we	can	copy	the	value	from	Temp	into	Value2
(Figure	12.08(c)).

Figure	12.08	Swapping	the	values	of	two	variables

Using	pseudocode	we	write:
Temp	←	Value1
Value1	←	Value2
Value2	←	Temp

WORKED	EXAMPLE	12.01

Using	input,	output,	assignment	and	sequence	constructs

The	problem	to	be	solved:	Convert	a	distance	in	miles	and	output	the	equivalent	distance	in	km.

Step	1:	Write	the	problem	as	a	series	of	structured	English	statements:
INPUT	number	of	miles
Calculate	number	of	km
OUTPUT	calculated	result	as	km

Step	2:	Analyse	the	data	values	that	are	needed.

We	need	a	variable	to	store	the	original	distance	in	miles	and	a	variable	to	store	the	result	of
multiplying	the	number	of	miles	by	1.61.	It	is	helpful	to	construct	an	identifier	table	to	list	the
variables.

Identifier Explanation

Miles Distance	as	a	whole	number	of	miles

Km The	result	from	using	the	given	formula:	Km	=	Miles	*	1.61

Table	12.02	Identifier	table	for	miles	to	km	conversion

Step	3:	Provide	more	detail	by	drawing	a	flowchart	or	writing	pseudocode.

The	detail	given	in	a	flowchart	should	be	the	same	as	the	detail	given	in	pseudocode.	It	should	use
the	basic	constructs	listed	in	Table	12.01.

Figure	12.09	represents	our	algorithm	using	a	flowchart	and	the	equivalent	pseudocode.

Figure	12.09	Flowchart	and	pseudocode	for	miles	to	km	conversion

TASK	12.03
Consider	the	following	algorithm	steps.

1		Input	a	length	in	inches.

2		Calculate	the	equivalent	in	centimetres.

3		Output	the	result.

List	the	variables	required	in	an	identifier	table.

Write	pseudocode	for	the	algorithm.

12.06	Logic	statements
In	Section	12.02,	we	looked	at	an	algorithm	with	different	steps	depending	on	some	other	condition:

IF	there	are	engineering	works	on	the	Victoria	Line

THEN

Take	the	Piccadilly	Line	to	Green	Park	(6	stations)

Take	the	Jubilee	Line	to	Westminster	(1	station)

ELSE

Take	the	Victoria	Line	to	Green	Park	(4	stations)

Take	the	Jubilee	Line	to	Westminster	(1	station)

The	selection	construct	in	Table	12.01	uses	a	condition	to	follow	either	the	first	group	of	steps	or	the
second	group	of	steps	(see	Figure	12.10).

A	condition	consists	of	at	least	one	logic	proposition	(see	Chapter	4,	Section	4.01).	Logic	propositions
use	the	relational	(comparison)	operators	shown	in	Table	12.03.

Figure	12.10	Pseudocode	for	the	selection	construct

Operator Comparison

= Is	equal	to

< Is	less	than

> Is	greater	than

<= Is	less	than	or	equal	to

>= Is	greater	than	or	equal	to

<> Is	not	equal	to

Table	12.03	Relational	operators

Conditions	are	either	TRUE	or	FALSE.	In	pseudocode,	we	distinguish	between	the	relational	operator	=
(which	tests	for	equality)	and	the	assignment	symbol	←.

A	person	is	classed	as	a	child	if	they	are	under	13	and	as	an	adult	if	they	are	over	19.	If	they	are
between	13	and	19	inclusive	they	are	classed	as	teenagers.	We	can	write	these	statements	as	logic
statements.

If	Age	<	13	then	person	is	a	child.

If	Age	>	19	then	person	is	an	adult.

If	Age	>=	13	AND	Age	<=	19	then	person	is	a	teenager.

TASK	12.04
A	town	has	a	bus	service	where	passengers	under	the	age	of	12	and	over	the	age	of	60	do	not
need	to	pay	a	fare.	Write	the	logic	statements	for	free	fares.

A	number-guessing	game	follows	different	steps	depending	on	certain	conditions.	Here	is	a	description
of	the	algorithm.

The	player	inputs	a	number	to	guess	the	secret	number	stored.

If	the	guess	was	correct,	output	a	congratulations	message.

If	the	number	input	was	larger	than	the	secret	number,	output	message	“secret	number	is	smaller”.

If	the	number	input	was	smaller	than	the	secret	number,	output	message	“secret	number	is
greater”.

We	can	re-write	the	number-guessing	game	steps	as	an	algorithm	in	pseudocode:
SET	value	for	secret	number
INPUT	Guess
IF	Guess	=	SecretNumber
			THEN
						OUTPUT	"Well	done.	You	have	guessed	the	secret	number"
			ELSE
						IF	Guess	>	SecretNumber
								THEN
										OUTPUT	"secret	number	is	smaller"
								ELSE
										OUTPUT	"secret	number	is	greater"
						ENDIF
ENDIF

More	complex	conditions	can	be	formed	by	using	the	logical	operators	AND,	OR	and	NOT.	For	example,
the	number-guessing	game	might	allow	the	player	multiple	guesses;	if	the	player	has	not	guessed	the
secret	number	after	10	guesses,	a	different	message	is	output.

WORKED	EXAMPLE	12.02

Using	selection	constructs

The	problem	to	be	solved:	Take	three	numbers	as	input	and	output	the	largest	number.

There	are	several	different	methods	(algorithms)	to	solve	this	problem.	Here	is	one	method.

See	Worked	Example	12.03	for	another	solution.

Identifier Explanation

Input	all	three	numbers	at	the	beginning.

Store	each	of	the	input	values	in	a	separate	variable	(the	identifiers	are	shown	in	Table	12.04).

Compare	the	first	number	with	the	second	number	and	then	compare	the	bigger	one	of	these
with	the	third	number.

The	bigger	number	of	this	second	comparison	is	output.

1

2

3

4

Number1 The	first	number	to	be	input

Number2 The	second	number	to	be	input

Number3 The	third	number	to	be	input

Table	12.04	Identifier	table	for	biggest	number	problem

The	algorithm	can	be	expressed	in	the	following	pseudocode:
INPUT	Number1

INPUT	Number2

INPUT	Number3

IF	Number1	>	Number2

		THEN

		//	Number1	is	bigger

				IF	Number1	>	Number3

						THEN

								OUTPUT	Number1

						ELSE

								OUTPUT	Number3

				ENDIF

		ELSE

		//	Number2	is	bigger

				IF	Number2	>	Number3

						THEN

								OUTPUT	Number2

						ELSE

								OUTPUT	Number3

				ENDIF

ENDIF

When	an	IF	statement	contains	another	IF	statement,	we	refer	to	these	as	nested	IF	statements.

Question	12.01
What	changes	do	you	need	to	make	to	output	the	smallest	number?

WORKED	EXAMPLE	12.03

Using	selection	constructs	(alternative	method)

The	problem	to	be	solved:	Take	three	numbers	as	input	and	output	the	largest	number.

This	is	an	alternative	method	to	Worked	Example	12.02.

The	identifiers	required	for	this	solution	are	shown	in	Table	12.05.

Identifier Explanation

BiggestSoFar Stores	the	biggest	number	input	so	far

Input	the	first	number	and	store	it	in	BiggestSoFar

Input	the	second	number	and	compare	it	with	the	value	in	BiggestSoFar.

If	the	second	number	is	bigger,	assign	its	value	to	BiggestSoFar

Input	the	third	number	and	compare	it	with	the	value	in	BiggestSoFar

If	the	third	number	is	bigger,	assign	its	value	to	BiggestSoFar

The	value	stored	in	BiggestSoFar	is	output.

1

2

3

4

5

6

NextNumber The	next	number	to	be	input

Table	12.05	Identifier	table	for	the	alternative	solution	to	the	biggest	number	problem

The	algorithm	can	be	expressed	in	the	following	pseudocode:
INPUT	BiggestSoFar

INPUT	NextNumber

IF	NextNumber	>	BiggestSoFar

			THEN

						BiggestSoFar	←	NextNumber

ENDIF

INPUT	NextNumber

IF	NextNumber	>	BiggestSoFar

			THEN

						BiggestSoFar	←	NextNumber

ENDIF

OUTPUT	BiggestSoFar

Note	that	when	we	input	the	third	number	in	this	method	the	second	number	gets	overwritten	as	it
is	no	longer	needed.

There	are	several	advantages	of	using	the	method	in	Worked	Example	12.03	compared	to	the	method	in
Worked	Example	12.02.

Only	two	variables	are	used.

The	conditional	statements	are	not	nested	and	do	not	have	an	ELSE	part.	This	makes	them	easier	to
understand.

This	algorithm	can	be	adapted	more	easily	if	further	numbers	are	to	be	compared	(see	Worked
Example	12.04).

The	disadvantage	of	the	method	in	Worked	Example	12.03	compared	to	the	method	in	Worked	Example
12.02	is	that	there	is	more	work	involved	with	this	algorithm.	If	the	second	number	is	bigger	than	the
first	number,	the	value	of	BiggestSoFar	has	to	be	changed.	If	the	third	number	is	bigger	than	the	value	in
BiggestSoFar	then	the	value	of	BiggestSoFar	has	to	be	changed	again.	Depending	on	the	input	values,	this
could	result	in	two	extra	assignment	instructions	being	carried	out.

12.07	Loops
Look	at	the	pseudocode	algorithm	in	Worked	Example	12.03.	The	two	IF	statements	are	identical.	To
compare	10	numbers,	we	would	need	to	write	this	statement	nine	times.	Moreover,	if	the	problem
changed	to	having	to	compare,	for	example,	100	numbers,	our	algorithm	would	become	very	tedious.	If
we	use	a	repetition	construct	(a	loop)	we	can	avoid	writing	the	same	lines	of	pseudocode	over	and	over
again.

WORKED	EXAMPLE	12.04

Repetition	using	REPEAT...UNTIL

The	problem	to	be	solved:	Take	10	numbers	as	input	and	output	the	largest	number.

We	need	one	further	variable	to	store	a	counter,	so	that	we	know	when	we	have	compared	10
numbers.

Identifier Explanation

BiggestSoFar Stores	the	biggest	number	input	so	far

NextNumber The	next	number	to	be	input

Counter Stores	how	many	numbers	have	been	input	so	far

Table	12.06	Identifier	table	for	the	biggest	number	problem	using	REPEAT...UNTIL

The	algorithm	can	be	expressed	in	the	following	pseudocode:
INPUT	BiggestSoFar

Counter	←	1

REPEAT

				INPUT	NextNumber

				Counter	←	Counter	+	1

				IF	NextNumber	>	BiggestSoFar

						THEN

								BiggestSoFar	←	NextNumber

				ENDIF

UNTIL	Counter	=	10

OUTPUT	BiggestSoFar

Note	that	when	we	input	the	next	number	in	this	method	the	previous	number	gets	overwritten	as
it	is	no	longer	needed.

Question	12.02
What	changes	do	you	need	to	make	to	the	algorithm	in	Worked	Example	12.04:

to	compare	100	numbers?

to	take	as	a	first	input	the	number	of	numbers	to	be	compared?

There	is	another	loop	construct	that	does	the	counting	for	us:	the	FOR...NEXT	loop.

WORKED	EXAMPLE	12.05

Repetition	using	FOR...NEXT

The	problem	to	be	solved:	Take	10	numbers	as	input	and	output	the	largest	number.

We	can	use	the	same	identifiers	as	in	Worked	Example	12.04.	Note	that	the	purpose	of	Counter	has
changed.

a

b

Identifier Explanation

BiggestSoFar Stores	the	biggest	number	input	so	far

NextNumber The	next	number	to	be	input

Counter Counts	the	number	of	times	round	the	loop

Table	12.07	Identifier	table	for	biggest	number	problem	using	a	FOR	loop

The	algorithm	can	be	expressed	in	the	following	pseudocode:
INPUT	BiggestSoFar

FOR	Counter	←	2	TO	10

						INPUT	NextNumber

						IF	NextNumber	>	BiggestSoFar

								THEN

										BiggestSoFar	←	NextNumber

						ENDIF

NEXT	Counter

OUTPUT	BiggestSoFar

The	first	time	round	the	loop,	Counter	is	set	to	2.	The	next	time	round	the	loop,	Counter	has
automatically	increased	to	3,	and	so	on.	The	last	time	round	the	loop,	Counter	has	the	value	10.

A	rogue	value	is	a	value	used	to	terminate	a	sequence	of	values.	The	rogue	value	is	of	the	same	data
type	but	outside	the	range	of	normal	expected	values.

WORKED	EXAMPLE	12.06

Repetition	using	a	rogue	value

The	problem	to	be	solved:	A	sequence	of	non-zero	numbers	is	terminated	by	0.	Take	this	sequence
as	input	and	output	the	largest	number.

Note:	In	this	example	the	rogue	value	chosen	is	0.	It	is	very	important	to	choose	a	rogue	value	that
is	of	the	same	data	type	but	outside	the	range	of	normal	expected	values.	For	example,	if	the	input
might	normally	include	0	then	a	negative	value,	such	as	−1,	might	be	chosen.

Look	at	Worked	Example	12.05.	Instead	of	counting	the	numbers	input,	we	need	to	check	whether
the	number	input	is	0	to	terminate	the	loop.	The	identifiers	are	shown	in	Table	12.08.

Identifier Explanation

BiggestSoFar Stores	the	biggest	number	input	so	far

NextNumber The	next	number	to	be	input

Table	12.08	Identifier	table	for	biggest	number	problem	using	a	rogue	value

A	possible	pseudocode	algorithm	is:
INPUT	BiggestSoFar

REPEAT

				INPUT	NextNumber

				IF	NextNumber	>	BiggestSoFar

						THEN

								BiggestSoFar	←	NextNumber

				ENDIF

UNTIL	NextNumber	=	0

OUTPUT	BiggestSoFar

This	algorithm	works	even	if	the	sequence	consists	of	only	one	non-zero	input.	However,	it	will	not

work	if	the	only	input	is	0.	In	that	case,	we	don’t	want	to	perform	the	statements	within	the	loop	at
all.	We	can	use	an	alternative	construct,	the	WHILE...ENDWHILE	loop.
INPUT	NextNumber

BiggestSoFar	←	NextNumber

WHILE	NextNumber	<>	0	DO	//	sequence	terminator	not	encountered

				INPUT	NextNumber

				IF	NextNumber	>	BiggestSoFar

						THEN

								BiggestSoFar	←	NextNumber

				ENDIF

ENDWHILE

OUTPUT	BiggestSoFar

Before	we	enter	the	loop,	we	check	whether	we	have	a	non-zero	number.	To	make	this	work	for	the
first	number,	we	store	it	in	NextNumber		and	also	in	BiggestSoFar.	If	this	first	number	is	zero,	we	don’t
follow	the	instructions	within	the	loop.	For	a	non-zero	first	number	this	algorithm	has	the	same
effect	as	the	algorithm	using	REPEAT...UNTIL.

WORKED	EXAMPLE	12.07

Implementing	the	number-guessing	game	with	a	loop

Consider	the	number-guessing	game	again,	this	time	allowing	repeated	guesses.

The	algorithm	is	expressed	in	structured	English,	as	a	flowchart	and	in	pseudocode.

Algorithm	for	the	number-guessing	game	in	structured	English:
SET	value	for	secret	number

REPEAT	the	following	UNTIL	correct	guess

			INPUT	guess

			count	number	of	guesses

			COMPARE	guess	with	secret	number

			OUTPUT	comment

OUTPUT	number	of	guesses

We	need	variables	to	store	the	following	values:

the	secret	number	(to	be	set	as	a	random	number)

the	number	input	by	the	player	as	a	guess

the	count	of	how	many	guesses	the	player	has	made	so	far.

We	represent	this	information	in	the	identifier	table	shown	in	Table	12.09.

Identifier Explanation

SecretNumber The	number	to	be	guessed

NumberOfGuesses The	number	of	guesses	the	player	has	made

Guess The	number	the	player	has	input	as	a	guess

The	player	repeatedly	inputs	a	number	to	guess	the	secret	number	stored.

If	the	guess	is	correct,	the	number	of	guesses	made	is	output	and	the	game	stops.

If	the	number	input	is	larger	than	the	secret	number,	the	player	is	given	the	message	to	input	a
smaller	number.

If	the	number	input	is	smaller	than	the	secret	number,	the	player	is	given	the	message	to	input
a	larger	number.

1

2

3

4

Table	12.09	Identifier	table	for	number-guessing	game

Algorithm	for	the	number-guessing	game	as	a	flowchart

Pseudocode	for	the	number-guessing	game	with	a	post-condition	loop
SecretNumber	←	Random

NumberOfGuesses	←	0

REPEAT

				INPUT	Guess

				NumberOfGuesses	←	NumberOfGuesses	+	1

				IF	Guess	>	SecretNumber

						THEN

								//	the	player	is	given	the	message	to	input	a	smaller	number

				ENDIF

				IF	Guess	<	SecretNumber

						THEN

								//	the	player	is	given	the	message	to	input	a	larger	number

				ENDIF

UNTIL	Guess	=	SecretNumber

OUTPUT	NumberOfGuesses

Pseudocode	for	the	number-guessing	game	with	a	pre-condition	loop
SecretNumber	←	Random

INPUT	Guess

NumberOfGuesses	←	1

WHILE	Guess	<>	SecretNumber	DO

				IF	Guess	>	SecretNumber

						THEN

								//	the	player	is	given	the	message	to	input	a	smaller	number

				ENDIF

				IF	Guess	<	SecretNumber

						THEN

								//	the	player	is	given	the	message	to	input	a	larger	number

				ENDIF

				INPUT	Guess

				NumberOfGuesses	←	NumberOfGuesses	+	1

ENDWHILE

OUTPUT	NumberOfGuesses

WORKED	EXAMPLE	12.08

Calculating	running	totals	and	averages

The	problem	to	be	solved:	Take	10	numbers	as	input	and	output	the	sum	of	these	numbers	and	the
average.

Identifier Explanation

RunningTotal Stores	the	sum	of	the	numbers	input	so	far

Counter How	many	numbers	have	been	input

NextNumber The	next	number	input

Average The	average	of	the	numbers	input

Table	12.10	Identifier	table	for	running	total	and	average	algorithm

The	following	pseudocode	gives	a	possible	algorithm:
RunningTotal	←	0

FOR	Counter	←	1	TO	10

						INPUT	NextNumber

						RunningTotal	←	RunningTotal	+	NextNumber

NEXT	Counter

OUTPUT	RunningTotal

Average	←	RunningTotal	/	10

OUTPUT	Average

It	is	very	important	that	the	value	stored	in	RunningTotal	is	initialised	to	zero	before	we	start	adding
the	numbers	being	input.

	TIP
Which	type	of	loop?	If	it	is	known	how	many	repetitions	are	required,	choose	a	FOR	loop.
If	the	statements	inside	the	loop	might	never	be	executed,	choose	a	WHILE	loop.	If	the

statements	inside	the	loop	are	to	be	executed	at	least	once,	a	REPEAT	loop	might	be	more
sensible.

TASK	12.05
Change	the	algorithm	in	Worked	Example	12.08	so	that	the	sequence	of	numbers	is	terminated
by	a	rogue	value	of	0.

WORKED	EXAMPLE	12.09

Using	nested	loops

The	problem	to	be	solved:	Take	as	input	two	numbers	and	a	symbol.	Output	a	grid	made	up	entirely
of	the	chosen	symbol,	with	the	number	of	rows	matching	the	first	number	input	and	the	number	of
columns	matching	the	second	number	input.

For	example	the	three	input	values	3,	7	and	&,	result	in	the	output:
&&&&&&&

&&&&&&&

&&&&&&&

We	need	two	variables	to	store	the	number	of	rows	and	the	number	of	columns.	We	also	need	a
variable	to	store	the	symbol.	We	need	a	counter	for	the	rows	and	a	counter	for	the	columns.

Identifier Explanation

NumberOfRows Stores	the	number	of	rows	of	the	grid

NumberOfColumns Stores	the	number	of	columns	of	the	grid

Symbol Stores	the	chosen	character	symbol

RowCounter Counts	the	number	of	rows

ColumnCounter Counts	the	number	of	columns

Table	12.11	Identifier	table	for	the	nested	loop	example

INPUT	NumberOfRows

INPUT	NumberOfColumns

INPUT	Symbol

FOR	RowCounter	←	1	TO	NumberOfRows

 			FOR	ColumnCounter	←	1	TO	NumberOfColumns

 							OUTPUT	Symbol	//	without	moving	to	next	line

 			NEXT	ColumnCounter

				OUTPUT	Newline			//	move	to	the	next	line

NEXT	RowCounter

Each	time	round	the	outer	loop	(counting	the	number	of	rows)	we	complete	the	inner	loop,
outputting	a	symbol	for	each	count	of	the	number	of	columns.	This	type	of	construct	is	called	a
nested	loop.

12.08	Stepwise	refinement
Many	problems	that	we	want	to	solve	are	bigger	than	the	ones	we	met	so	far.	To	make	it	easier	to	solve
a	bigger	problem,	we	break	the	problem	down	into	smaller	steps.	These	might	need	breaking	down
further	until	the	steps	are	small	enough	to	solve	easily.

For	a	solution	to	a	problem	to	be	programmable,	we	need	to	break	down	the	steps	of	the	solution	into
the	basic	constructs	of	sequence,	assignment,	selection,	repetition,	input	and	output.

We	can	use	a	method	called	stepwise	refinement	to	break	down	the	steps	of	our	outline	solution	into
smaller	steps	until	it	is	detailed	enough.	In	Section	12.02	we	looked	at	a	recipe	for	a	cake.	The	step	of
mixing	together	all	the	ingredients	was	broken	down	into	more	detailed	steps.

WORKED	EXAMPLE	12.10

Drawing	a	pyramid	using	stepwise	refinement

The	problem	to	be	solved:	Take	as	input	a	chosen	symbol	and	an	odd	number.	Output	a	pyramid
shape	made	up	entirely	of	the	chosen	symbol,	with	the	number	of	symbols	in	the	final	row
matching	the	number	input.

For	example	the	two	input	values	A	and	9	result	in	the	following	output:
				A

			AAA

		AAAAA

	AAAAAAA

AAAAAAAAA

This	problem	is	similar	to	Worked	Example	12.09,	but	the	number	of	symbols	in	each	row	starts
with	one	and	increases	by	two	with	each	row.	Each	row	starts	with	a	decreasing	number	of	spaces,
to	create	the	slope	effect.

Our	first	attempt	at	solving	this	problem	using	structured	English	is:
01		Set	up	initial	values

02		REPEAT

03					Output	number	of	spaces

04					Output	number	of	symbols

05					Adjust	number	of	spaces	and	number	of	symbols	to	be	output	in	next	row

06		UNTIL	the	required	number	of	symbols	have	been	output	in	one	row

The	steps	are	numbered	to	make	it	easier	to	refer	to	them	later.

This	is	not	enough	detail	to	write	a	program	in	a	high-level	programming	language.	Exactly	what
values	do	we	need	to	set?

We	need	as	input:

the	symbol	character	from	which	the	pyramid	is	to	be	formed

the	number	of	symbols	in	the	final	row	(for	the	pyramid	to	look	symmetrical,	this	needs	to	be	an
odd	number).

We	need	to	calculate	how	many	spaces	we	need	in	the	first	row.	So	that	the	slope	of	the	pyramid	is
symmetrical,	this	number	should	be	half	of	the	final	row’s	symbols.	We	need	to	set	the	number	of
symbols	to	be	output	in	the	first	row	to	1.	We	therefore	need	the	identifiers	listed	in	Table	12.12.

Identifier Explanation

Symbol The	character	symbol	to	form	the	pyramid

MaxNumberOfSymbols The	number	of	symbols	in	the	final	row

NumberOfSpaces The	number	of	spaces	to	be	output	in	the	current	row

NumberOfSymbols The	number	of	symbols	to	be	output	in	the	current	row

Table	12.12	Identifier	table	for	pyramid	example

Using	pseudocode,	we	now	refine	the	steps	of	our	first	attempt.	To	show	which	step	we	are
refining,	a	numbering	system	is	used	as	shown.

Step	01	can	be	broken	down	as	follows:
01			//	Set	up	initial	values	expands	into:

01.1	INPUT	Symbol

01.2	INPUT	MaxNumberOfSymbols

01.3	NumberOfSpaces	←	(MaxNumberOfSymbols	–	1)	/	2

01.4	NumberOfSymbols	←	1

Remember	we	need	an	odd	number	for	MaxNumberOfSymbols.	We	need	to	make	sure	the	input	is	an	odd
number.	So	we	further	refine	Step	01.2:
01.2			//	INPUT	MaxNumberOfSymbols	expands	into:

01.2.1	REPEAT

01.2.2				INPUT	MaxNumberOfSymbols

01.2.3	UNTIL	MaxNumberOfSymbols	MOD	2	=	1

01.2.4	//	MOD	2	gives	the	remainder	after	integer	division	by	2

We	can	now	look	to	refine	Steps	03	and	04:
03	//	Output	number	of	spaces	expands	into:

03.1		FOR	i	←	1	TO	NumberOfSpaces

03.2				OUTPUT	Space	//	without	moving	to	next	line

03.3		NEXT	i

04				//	Output	number	of	symbols	expands	into:

04.1		FOR	i	←	1	TO	NumberOfSymbols

04.2				OUTPUT	Symbol	//	without	moving	to	next	line

04.3		NEXT	i

04.4		OUTPUT	Newline	//	move	to	the	next	line

In	Step	05	we	need	to	decrease	the	number	of	spaces	by	1	and	increase	the	number	of	symbols	by
2:
05			//	Adjust	values	for	next	row	expands	into:

05.1	NumberOfSpaces	←	NumberOfSpaces	–	1

05.2	NumberOfSymbols	←	NumberOfSymbols	+	2

Step	06	essentially	checks	whether	the	number	of	symbols	for	the	next	row	is	now	greater	than	the
value	input	at	the	beginning.
06					UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols

We	can	put	together	all	the	steps	and	end	up	with	a	solution.
01					//	Set	Values

01.1			INPUT	Symbol

01.2			//	Input	max	number	of	symbols	(an	odd	number)

01.2.1	REPEAT

01.2.2					INPUT	MaxNumberOfSymbols

01.2.3	UNTIL	MaxNumberOfSymbols	MOD	2	=	1

01.3			NumberOfSpaces	←	(MaxNumberOfSymbols	–	1)	/	2

01.4			NumberOfSymbols	←	1

02					REPEAT

03									//	Output	number	of	spaces

03.1							FOR	i	←	1	TO	NumberOfSpaces

03.2											OUTPUT	Space	//	without	moving	to	next	line

03.3							NEXT	i

04									//	Output	number	of	symbols

04.1							FOR	i	←	1	TO	NumberOfSymbols

04.2											OUTPUT	Symbol	//	without	moving	to	next	line

04.3							NEXT	i

04.4							OUTPUT	Newline	//	move	to	the	next	line

05									//	Adjust	Values	For	Next	Row

05.1							NumberOfSpaces	←	NumberOfSpaces	–	1

05.2							NumberOfSymbols	←	NumberOfSymbols	+	2

06					UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols

TASK	12.06
Use	stepwise	refinement	to	output	a	hollow	triangle.	For	example	the	two	input	values	A	and	9
result	in	the	following	output:
				A

			A	A

		A			A

	A					A

AAAAAAAAA

A	first	attempt	at	solving	this	problem	using	structured	English	is:
01			Set	up	initial	values

02			REPEAT

03							Output	leading	number	of	spaces

04							Output	symbol,	middle	spaces,	symbol

05							Adjust	number	of	spaces	and	number	of	symbols	to	be	output	in	next	row

06			UNTIL	the	required	number	of	symbols	have	been	output	in	one	row

12.09	Modules
Another	method	of	developing	a	solution	is	to	decompose	the	problem	into	sub-tasks.	Each	sub-task	can
be	considered	as	a	‘module’	that	is	refined	separately.	Modules	are	procedures	and	functions.

A	procedure	groups	together	a	number	of	steps	and	gives	them	a	name	(an	identifier).	We	can	use	this
identifier	when	we	want	to	refer	to	this	group	of	steps.	When	we	want	to	perform	the	steps	in	a
procedure	we	call	the	procedure	by	its	name.

Figure	12.11	Representation	of	a	procedure	in	(a)	pseudocode	and	(b)	a	flowchart

A	function	groups	together	a	number	of	steps	and	gives	them	a	name	(an	identifier).	These	steps
produce	and	return	a	value	that	is	used	in	an	expression.	Worked	Example	12.12	uses	functions.

Note:	Because	a	function	returns	a	value,	the	function	definition	states	the	data	type	of	this	value.	See
more	about	data	types	in	Chapter	13.

The	rules	for	module	identifiers	are	the	same	as	for	variable	identifiers	(see	Section	12.04)

WORKED	EXAMPLE	12.11

Drawing	a	pyramid	using	modules

The	problem	is	the	same	as	in	Worked	Example	12.10.

When	we	want	to	set	up	the	initial	values,	we	call	a	procedure,	using	the	following	statement:
CALL	SetValues

We	can	rewrite	the	top-level	solution	to	our	pyramid	problem	using	a	procedure	for	each	step,	as:
CALL	SetValues

REPEAT

						CALL	OutputSpaces

						CALL	OutputSymbols

						CALL	AdjustValuesForNextRow

UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols

This	top-level	solution	calls	four	procedures.	This	means	each	procedure	has	to	be	defined.	The
procedure	definitions	are:
PROCEDURE	SetValues

						INPUT	Symbol

						CALL	InputMaxNumberOfSymbols	//	need	to	ensure	it	is	an	odd	number

						NumberOfSpaces	←	(MaxNumberOfSymbols	-	1)	/	2

						NumberOfSymbols	←	1

ENDPROCEDURE

PROCEDURE	InputMaxNumberOfSymbols

						REPEAT

										INPUT	MaxNumberOfSymbols

						UNTIL	MaxNumberOfSymbols	MOD	2	=	1

ENDPROCEDURE

PROCEDURE	OutputSpaces

						FOR	Count1	←	1	TO	NumberOfSpaces

										OUTPUT	Space	//	without	moving	to	next	line

						NEXT	Count1

ENDPROCEDURE

PROCEDURE	OutputSymbols

						FOR	Count2	←	1	TO	NumberOfSymbols

										OUTPUT	Symbol	//	without	moving	to	next	line

						NEXT	Count2

						OUTPUT	Newline	//	move	to	the	next	line

ENDPROCEDURE

PROCEDURE	AdjustValuesForNextRow

						NumberOfSpaces	←	NumberOfSpaces	–	1

						NumberOfSymbols	←	NumberOfSymbols	+	2

ENDPROCEDURE

TASK	12.07
Amend	your	algorithm	for	Task	12.05	to	use	modules.

WORKED	EXAMPLE	12.12

Drawing	a	pyramid	using	modules

The	problem	is	the	same	as	in	Worked	Example	12.11.

We	can	rewrite	the	top-level	solution	to	our	pyramid	problem	using	procedures	and	functions.
01			CALL	SetValues

02			REPEAT

03								CALL	OutputSpaces

04								CALL	OutputSymbols

05.1						NumberOfSpaces	←	AdjustedNumberOfSpaces

05.2						NumberOfSymbols	←	AdjustedNumbeOfSymbols

06			UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols

This	top-level	solution	calls	three	procedures.	It	also	makes	use	of	two	functions	in	lines	05.1	and
05.2.

The	procedures	and	functions	have	to	be	defined.
PROCEDURE	SetValues

				INPUT	Symbol

				MaxNumberOfSymbols	←	ValidatedMaxNumberOfSymbols

				NumberOfSpaces	←	(MaxNumberOfSymbols	-	1)	/	2

				NumberOfSymbols	←	1

ENDPROCEDURE

FUNCTION	ValidatedMaxNumberOfSymbols	RETURNS	INTEGER

				REPEAT

								INPUT	MaxNumberOfSymbols

				UNTIL	MaxNumberOfSymbols	MOD	2	=	1

				RETURN	MaxNumberOfSymbols

ENDFUNCTION

PROCEDURE	OutputSpaces

				FOR	Count1	←	1	TO	NumberOfSpaces

								OUTPUT	Space	//	without	moving	to	next	line

				NEXT	Count1

ENDPROCEDURE

PROCEDURE	OutputSymbols

				FOR	Count2	←	1	TO	NumberOfSymbols

							OUTPUT	Symbol	//	without	moving	to	next	line

				NEXT	Count2

				OUTPUT	Newline	//	move	to	the	next	line

ENDPROCEDURE

FUNCTION	AdjustedNumberOfSpaces	RETURNS	INTEGER

				NumberOfSpaces	←	NumberOfSpaces	–	1

				RETURN	NumberOfSpaces

ENDFUNCTION

FUNCTION	AdjustedNumberOfSymbols	RETURNS	INTEGER

				NumberOfSymbols	←	NumberOfSymbols	+	2

				RETURN	NumberOfSymbols

ENDFUNCTION

Note	that	procedure	SetValues	uses	a	function	ValidatedMaxNumberOfSymbols.

One	benefit	of	using	modules	is	that	individual	modules	can	be	reused	in	other	solutions.	Therefore,
modules	should	be	designed	to	be	self-contained.	That	means	they	should	not	rely	on	external	variables.
All	variables	that	are	required	by	a	module	should	be	passed	to	it	using	parameters.	To	illustrate	this,
look	at	Worked	Example	12.13

WORKED	EXAMPLE	12.13

Drawing	a	pyramid	using	modules	and	parameters

The	problem	is	the	same	as	in	Worked	Example	12.12.
01			CALL	SetValues(Symbol,	MaxNumberOfSymbols,	NumberOfSpaces,	NumberOfSymbols)

02			REPEAT

03								CALL	OutputSpaces(NumberOfSpaces)

04								CALL	OutputSymbols(NumberOfSymbols,	Symbol)

05.1						NumberOfSpaces	←	AdjustedNumberOfSpaces(NumberOfSpaces)

05.2						NumberOfSymbols	←	AdjustedNumbeOfSymbols(NumberOfSymbols)

06			UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols

Module	definitions:
PROCEDURE	SetValues(Symbol,	MaxNumberOfSymbols,	NumberOfSpaces,	NumberOfSymbols)

					INPUT	Symbol

					MaxNumberOfSymbols	←	ValidatedMaxNumberOfSymbols

					NumberOfSpaces	←	(MaxNumberOfSymbols	-	1)	/	2

					NumberOfSymbols	←	1

ENDPROCEDURE

FUNCTION	ValidatedMaxNumberOfSymbols	RETURNS	INTEGER

					REPEAT

									INPUT	MaxNumberOfSymbols

					UNTIL	MaxNumberOfSymbols	MOD	2	=	1

					RETURN	MaxNumberOfSymbols

ENDFUNCTION

PROCEDURE	OutputSpaces(NumberOfSpaces)

					FOR	Count1	←	1	TO	NumberOfSpaces

									OUTPUT	Space	//	without	moving	to	next	line

					NEXT	Count1

ENDPROCEDURE

PROCEDURE	OutputSymbols(NumberOfSymbols,	Symbol)

					FOR	Count2	←	1	TO	NumberOfSymbols

									OUTPUT	Symbol	//	without	moving	to	next	line

					NEXT	Count2

					OUTPUT	Newline	//	move	to	the	next	line

ENDPROCEDURE

FUNCTION	AdjustedNumberOfSpaces(NumberOfSpaces)	RETURNS	INTEGER

					NumberOfSpaces	←	NumberOfSpaces	–	1

					RETURN	NumberOfSpaces

ENDFUNCTION

FUNCTION	AdjustedNumbeOfSymbols(NumberOfSymbols)	RETURNS	INTEGER

					NumberOfSymbols	←	NumberOfSymbols	+	2

					RETURN	NumberOfSymbols

ENDFUNCTION

Note	that	the	procedure	OutputSpaces	uses	a	variable,	Count1,	which	is	used	only	within	the	module.
Similarly,	OutputSymbols	uses	variable	Count2	only	within	the	module.	We	call	such	a	variable	a	local
variable	(see	Chapter	14,	Section	14.09).	A	variable	available	to	all	modules	is	known	as	a	global
variable	(see	Chapter	14,	Section	14.09).

	TIP
Good	design	uses	local	variables	as	it	makes	modules	independent	and	re-usable.

Reflection	Point:
Can	you	think	of	other	problems	and	use	decomposition	to	break	them	down	into	basic	constructs,	input
and	output	statements?

Summary
Abstraction	involves	filtering	out	information	that	is	not	needed	to	solve	the	problem.
Decomposition	is	breaking	down	problems	into	sub-problems,	leading	to	the	concept	of	a	program
module.
An	algorithm	is	a	sequence	of	steps	that	can	be	carried	out	to	solve	a	problem.
Algorithms	are	expressed	using	the	four	basic	constructs	of	assignment,	sequence,	selection	and
repetition.
Algorithms	can	be	documented	using	pseudocode.
Stepwise	refinement:	breaking	down	the	steps	of	an	outline	solution	into	smaller	and	smaller
steps.
Logic	statements	use	the	relational	operators	=,	<,	>,	<>,	<=	and	>=	and	the	logic	operators
AND,	OR	and	NOT.
Selection	constructs	and	conditional	loops	use	conditions	to	determine	the	steps	to	be	followed.

■
■

■
■

■
■

■

■

Exam-style	Questions
The	Modulo-11	method	of	calculating	a	check	digit	for	a	sequence	of	nine	digits	is	as	follows:

Each	digit	in	the	sequence	is	given	a	weight	depending	on	its	position	in	the	sequence.	The	leftmost
digit	has	a	weight	of	10.	The	next	digit	to	the	right	has	a	weight	of	9,	the	next	one	8	and	so	on.
Values	are	calculated	by	multiplying	each	digit	by	its	weight.	These	values	are	added	together	and
the	sum	is	divided	by	11.	The	remainder	from	this	division	is	subtracted	from	11	and	this	value	is	the
check	digit.	If	this	value	is	10,	then	the	check	digit	is	X.	Note	that	x	MOD	y	gives	the	remainder	from
the	division	of	x	by	y.

The	flowchart	shows	the	algorithm	for	calculating	the	Modulo-11	check	digit.

Write	pseudocode	from	the	flowchart.

1

[9]

Write	pseudocode	for	the	following	problem	given	in	structured	English.
REPEAT	the	following	UNTIL	the	number	input	is	zero

INPUT	a	number

Check	whether	number	is	positive	or	negative

Increment	positive	number	count	if	the	number	is	positive

2

[7]

[8]

Increment	negative	number	count	if	the	number	is	negative

Write	pseudocode	from	the	given	flowchart.	Use	a	WHILE	loop.3

Chapter	13:
Data	types	and	structures

13.01	Data	types
Primitive	data	types
In	Chapter	12	we	used	variables	to	store	values	required	by	our	algorithm.	Look	at	Worked	Example
12.01.	The	Identifier	Table	12.02	lists	two	variable	identifiers:	Miles	and	Km.	An	identifier	table	should
also	show	what	sort	of	data	(or	data	type)	is	going	to	be	stored	in	each	variable.	The	explanation	shows
that	Miles	will	be	a	whole	number,	but	that	Km	will	be	calculated	using	the	formula	Miles	*	1.61.	This
will	result	in	a	number	that	may	not	be	a	whole	number.

Primitive	data	types	are	those	variables	that	can	be	defined	simply	by	commands	built	into	the
programming	language.	Primitive	data	types	are	also	known	as	atomic	data	types.	In	Computer	Science
a	whole	number	is	referred	to	as	an	INTEGER	and	a	number	with	a	decimal	point	is	referred	to	as	a
REAL.	Conditions	are	either	TRUE	or	FALSE.	These	are	logical	values	known	as	BOOLEAN.	Sometimes
we	may	want	to	store	a	single	character;	this	is	referred	to	as	a	CHAR.

A	value	that	will	always	be	a	whole	number	should	be	defined	to	be	of	type	INTEGER,	such	as	when
counting	the	iterations	of	a	loop.

	TIP
See	Table	13.01	for	a	list	of	data	types	you	should	be	familiar	with.
See	Chapter	1	(Sections	1.02	and	1.03)	on	how	integers	and	characters	are	represented
inside	the	computer.	Chapter	16	(Section	16.03)	covers	the	internal	representation	of	real
(single,	double,	float)	numbers.

Further	data	types
If	we	want	to	store	several	characters;	this	is	known	as	a	string.

Note	that	there	is	a	difference	between	the	number	12	and	the	string	“12”.

The	string	data	type	is	known	as	a	structured	type	because	it	is	essentially	a	sequence	of	characters.	A
special	case	is	the	empty	string:	a	value	of	data	type	string,	but	with	no	characters	stored	in	it.

When	we	write	a	date,	such	as	3	February	2018,	we	can	also	write	this	as	a	set	of	three	numbers:
3/2/2018.	Sometimes	we	might	wish	to	calculate	with	dates,	such	as	taking	one	date	away	from	another
to	find	out	how	many	days,	months	and	years	are	between	these	dates.	To	make	it	easier	to	do	this,
DATE	has	been	designed	as	a	data	type.	To	see	how	different	programming	languages	implement	this
data	type,	see	Chapter	14	Section	14.03.

INTEGER A	signed	whole	number

REAL A	signed	number	with	a	decimal	point

CHAR A	single	character

STRING A	sequence	of	zero	or	more	characters

BOOLEAN The	logical	values	TRUE	and	FALSE

DATE A	date	consisting	of	day,	month	and	year,	sometimes	including	a	time	in
hours,	minutes	and	seconds

Table	13.01	Summary	of	pseudocode	data	types

TASK	13.01
Look	at	the	identifier	tables	in	Chapter	12	(Tables	12.06	and	12.09	to	12.12).	Give	the	data	type
that	is	appropriate	for	each	variable	listed.

13.02	The	record	type
Sometimes	variables	of	different	data	types	are	a	logical	group,	such	as	data	about	a	person	(name,
date	of	birth,	height,	number	of	siblings,	whether	they	are	a	full-time	student).

Name	is	a	STRING;	date	of	birth	is	a	DATE;	height	is	a	REAL;	number	of	siblings	is	an	INTEGER;
whether	they	are	a	full-time	student	is	a	BOOLEAN.

We	can	declare	a	record	type	to	suit	our	purposes.	The	record	type	is	known	as	a	user-defined	type,
because	the	programmer	can	decide	which	variables	(fields)	to	include	as	a	record.

	TIP
A	record	type	is	also	known	as	a	composite	type.

In	pseudocode	a	record	type	is	declared	as:
TYPE	<TypeIdentifier>

				DECLARE	<field	identifier>	:	<data	type>

				.

				.

ENDTYPE

We	can	now	declare	a	variable	of	this	record	type:
DECLARE	<variable	identifier>	:	<record	type>

And	then	access	an	individual	field	using	the	dot	notation:
<variable	identifier>.<field	identifier>

Using	the	example	above	we	can	declare	a	Person	record	type:
TYPE	PersonType

				Name	:	STRING

				DateOfBirth	:	DATE

				Height	:	REAL

				NumberOfSiblings	:	INTEGER

				IsFullTimeStudent	:	BOOLEAN

ENDTYPE

To	declare	a	variable	of	this	type	we	write:
DECLARE	Person	:	PersonType

And	now	we	can	assign	a	value	to	a	field	of	this	Person	record:
Person.Name	←	"Fred"

Person.NumberOfSiblings	←	3

Person.IsFullTimeStudent	←	TRUE

To	output	a	field	of	a	record:
OUTPUT	Person.Name

TASK	13.02
Write	the	declaration	of	a	record	type	to	store	the	details	of	a	book:	Title,	Year	of	publication,
Price,	ISBN.

Write	the	statements	required	to	assign	the	values	“Computer	Science”,	2019,	£44.95,
“9781108733755”	to	the	fields	respectively.

13.03	Arrays
Sometimes	we	want	to	organise	data	values	into	a	list	or	a	table	/	matrix.	In	most	programming
languages	these	structures	are	known	as	arrays.	An	array	is	an	ordered	set	of	data	items,	usually	of	the
same	type,	grouped	together	using	a	single	identifier.	Individual	array	elements	are	addressed	using	an
array	index	for	each	array	dimension.

A	list	is	a	one-dimensional	(1D)	array	and	a	table	or	matrix	is	a	two-dimensional	(2D)	array.

	TIP
When	writing	pseudocode,	arrays	need	to	be	declared	before	they	are	used.	This	means
choosing	an	identifier,	the	data	type	of	the	values	to	be	stored	in	the	array	and	upper
bound	and	lower	bound	for	each	dimension.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

13.04	One-dimensional	arrays
When	we	write	a	list	on	a	piece	of	paper	and	number	the	individual	items,	we	would	normally	start	the
numbering	with	1.	You	can	view	a	1D	array	like	a	numbered	list	of	items.	Many	programming	languages
number	array	elements	from	0	(the	lower	bound),	including	VB.NET,	Python	and	Java.	Depending	on	the
problem	to	be	solved,	it	might	make	sense	to	ignore	element	0.	The	upper	bound	is	the	largest	number
used	for	numbering	the	elements	of	an	array.

In	pseudocode,	a	1D	array	declaration	is	written	as:
DECLARE	<arrayIdentifier>	:	ARRAY[<lowerBound>:<upperBound>]	OF	<dataType>

Here	is	a	pseudocode	example:
DECLARE	List1	:	ARRAY[1:3]	OF	STRING		//	3	elements	in	this	list

DECLARE	List2	:	ARRAY[0:5]	OF	INTEGER	//	6	elements	in	this	list

DECLARE	List3	:	ARRAY[1:100]	OF	INTEGER	//	100	elements	in	this	list

DECLARE	List4	:	ARRAY[0:25]	OF	CHAR		//	26	elements	in	this	list

Accessing	1D	arrays
A	specific	element	in	an	array	is	accessed	using	an	index	value.	In	pseudocode,	this	is	written	as:
<arrayIdentifier>[x]

The	nth	element	within	the	array	MyList	is	referred	to	as	MyList[n].

Here	is	a	pseudocode	example:
NList[25]	←	0		//	set	25th	element	to	zero
AList[3]	←	'D'	//	set	3rd	element	to	letter	D

WORKED	EXAMPLE	13.01

Working	with	a	one-dimensional	array

The	problem	to	be	solved:	Take	seven	numbers	as	input	and	store	them	for	later	use.

We	could	use	seven	separate	variables.	However,	if	we	wanted	our	algorithm	to	work	with	70
numbers,	for	example,	then	setting	up	70	variables	would	be	complicated	and	waste	time.	Instead,
we	can	make	use	of	a	data	structure	known	as	a	‘linear	list’	or	a	1D	array.

This	array	is	given	an	identifier,	for	example	MyList,	and	each	element	within	the	array	is	referred
to	using	this	identifier	and	its	position	(index)	within	the	array.	For	example,	MyList[4]	refers	to	the
element	at	position	4	in	the	MyList	array.	If	we	are	counting	the	element	at	position	0	as	the	first
element,	MyList[4]	refers	to	the	fifth	element.

We	can	use	a	loop	to	access	each	array	element	in	turn.	If	the	numbers	input	to	the	pseudocode
algorithm	below	are	25,	34,	98,	7,	41,	19	and	5	then	the	algorithm	will	produce	the	result	in	Figure
13.01.
FOR	Index	←	0	TO	6

				INPUT	MyList[Index]

NEXT	Index

Index MYList

25

34

98

7

41

19

5

Figure	13.01	Mylist	array	populated	by	a	loop

TASK	13.03
Define	two	arrays,	one	for	your	friends’	names	and	one	for	their	ages	as	shown	in	Figure	13.02.

Figure	13.02	Arrays	for	names	and	ages

WORKED	EXAMPLE	13.02

Searching	a	1D	array

The	problem	to	be	solved:	Take	a	number	as	input.	Search	for	this	number	in	an	existing	1D	array
of	seven	numbers	(see	Worked	Example	13.01).

Start	at	the	first	element	of	the	array	and	check	each	element	in	turn	until	the	search	value	is
found	or	the	end	of	the	array	is	reached.	This	method	is	called	a	linear	search.

Identifier Data	type Explanation
MyList ARRAY[0:6]	OF	INTEGER Data	structure	(1D	array)	to	store	seven

numbers

MaxIndex INTEGER The	number	of	elements	in	the	array

SearchValue INTEGER The	value	to	be	searched	for

Found BOOLEAN TRUE	if	the	value	has	been	found
FALSE	if	the	value	has	not	been	found

Index INTEGER Index	of	the	array	element	currently	being
processed

Table	13.02	Identifier	table	for	linear	search	algorithm

MaxIndex	←	6

INPUT	SearchValue

Found	←	FALSE

Index	←	–1

REPEAT

				Index	←	Index	+	1

				IF	MyList[Index]	=	SearchValue

						THEN

								Found	←	TRUE

				ENDIF

UNTIL	FOUND	=	TRUE	OR	Index	>=	MaxIndex

IF	Found	=	TRUE

		THEN

				OUTPUT	"Value	found	at	location:	"	Index

		ELSE

				OUTPUT	"Value	not	found"

ENDIF

The	complex	condition	to	the	REPEAT...UNTIL	loop	allows	us	to	exit	the	loop	when	the	search	value	is
found.	Using	the	variable	Found	makes	the	algorithm	easier	to	understand.	Found	is	initialised	(first
set)	to	FALSE	before	entering	the	loop	and	set	to	TRUE	if	the	value	is	found.

If	the	value	is	not	in	the	array,	the	loop	terminates	when	Index	is	greater	than	or	equal	to	MaxIndex.
That	means	we	have	come	to	the	end	of	the	array.	Note	that	using	MaxIndex	in	the	logic	statement	to
terminate	the	loop	makes	it	much	easier	to	adapt	the	algorithm	when	the	array	consists	of	a
different	number	of	elements.	The	algorithm	only	needs	to	be	changed	in	the	first	line,	where
MaxIndex	is	given	a	value.

TASK	13.04
Use	the	algorithm	in	Worked	Example	13.02	as	a	design	pattern.	Write	an	algorithm	using	the
arrays	from	Task	13.03	to	search	for	a	friend’s	name	and	output	their	age.

WORKED	EXAMPLE	13.03

Sorting	elements	in	a	1D	array

The	simplest	way	to	sort	an	unordered	list	of	values	is	the	following	method.

Figure	13.03	shows	what	happens	to	the	values	as	we	work	down	the	array,	following	this
algorithm.

Figure	13.03	Swapping	values	working	down	the	array

When	we	have	completed	the	first	pass	through	the	entire	array,	the	largest	value	is	in	the	correct
position	at	the	end	of	the	array.	The	other	values	may	or	may	not	be	in	the	correct	order.

We	need	to	work	through	the	array	again	and	again.	After	each	pass	through	the	array	the	next
largest	value	will	be	in	its	correct	position,	as	shown	in	Figure	13.04.

Compare	the	first	and	second	values.	If	the	first	value	is	larger	than	the	second	value,	swap
them.

Compare	the	second	and	third	values.	If	the	second	value	is	larger	than	the	third	value,	swap
them.

Compare	the	third	and	fourth	values.	If	the	third	value	is	larger	than	the	fourth	value,	swap
them.

Keep	on	comparing	adjacent	values,	swapping	them	if	necessary,	until	the	last	two	values	in	the
list	have	been	processed.

1

2

3

4

Original
list

	 After	pass
1

	 After	pass
2

	 After	pass
3

	 After	pass
4

	 After	pass
5

	 After	pass
6

25 	 25 	 25 	 7 	 7 	 7 	 5
34 	 34 	 7 	 25 	 19 	 5 	 7
98 	 7 	 34 	 19 	 5 	 19 	 19
7 	 41 	 19 	 5 	 25 	 25 	 25
41 	 19 	 5 	 34 	 34 	 34 	 34
19 	 5 	 41 	 41 	 41 	 41 	 41
5 	 98 	 98 	 98 	 98 	 98 	 98

Figure	13.04	States	of	the	array	after	each	pass

In	effect	we	perform	a	loop	within	a	loop,	a	nested	loop.	This	method	is	known	as	a	bubble	sort.
The	name	comes	from	the	fact	that	smaller	values	slowly	rise	to	the	top,	like	bubbles	in	a	liquid.

The	identifiers	needed	for	the	algorithm	are	listed	in	Table	13.03.

Identifier Data	type Explanation

MyList ARRAY[0:6]	OF	INTEGER Data	structure	(1D	array)	to	store	seven
numbers

MaxIndex INTEGER The	upper	bound	of	the	array

n INTEGER The	number	of	pairs	of	elements	to	compare	in
each	pass

i INTEGER Counter	for	outer	loop

j INTEGER Counter	for	inner	loop

Temp INTEGER Variable	for	temporary	storage	while	swapping
values

Table	13.03	Identifier	table	for	bubble	sort	algorithm

The	algorithm	in	pseudocode	is:

n	←	MaxIndex	–	1

FOR	i	←	0	TO	MaxIndex	–	1

				FOR	j	←	0	TO	n

								IF	MyList[j]	>	MyList[j	+	1]

										THEN

												Temp	←	MyList[j]

												MyList[j]	←	MyList[j	+	1]

												MyList[j	+	1]	←	Temp

								ENDIF

				NEXT	j

				n	←	n	–	1	//	this	means	the	next	time	round	the	inner	loop,	we	don't

														//	look	at	the	values	already	in	the	correct	positions.

NEXT	i

The	values	to	be	sorted	may	already	be	in	the	correct	order	before	the	outer	loop	has	been	through
all	its	iterations.	Look	at	the	list	of	values	in	Figure	13.05.	It	is	only	slightly	different	from	the	first
list	we	sorted.

Original
list

	 After	pass
1

	 After	pass
2

	 After	pass
3

	 After	pass
4

	 After	pass
5

	 After	pass
6

5 	 5 	 5 	 5 	 5 	 5 	 5
34 	 34 	 7 	 7 	 7 	 7 	 7
98 	 7 	 34 	 19 	 19 	 19 	 19

7 	 41 	 19 	 25 	 25 	 25 	 25
41 	 19 	 25 	 34 	 34 	 34 	 34
19 	 25 	 41 	 41 	 41 	 41 	 41
25 	 98 	 98 	 98 	 98 	 98 	 98

Figure	13.05	States	of	the	list	after	each	pass

After	the	third	pass	the	values	are	all	in	the	correct	order	but	our	algorithm	will	carry	on	with
three	further	passes	through	the	array.	This	means	we	are	making	comparisons	when	no	further
comparisons	need	to	be	made.

If	we	have	gone	through	the	whole	of	the	inner	loop	(one	pass)	without	swapping	any	values,	we
know	that	the	array	elements	must	be	in	the	correct	order.	We	can	therefore	replace	the	outer	loop
with	a	conditional	loop.

We	can	use	a	variable	NoMoreSwaps	to	store	whether	or	not	a	swap	has	taken	place	during	the	current
pass.	We	initialise	the	variable	NoMoreSwaps	to	TRUE.	When	we	swap	a	pair	of	values	we	set	NoMoreSwaps
to	FALSE.	At	the	end	of	the	pass	through	the	array	we	can	check	whether	a	swap	has	taken	place.

The	identifier	table	for	this	improved	algorithm	is	shown	in	Table	13.04.

Identifier Data	type Explanation

MyList ARRAY[0:6]	OF	INTEGER Data	structure	(1D	array)	to	store	seven
numbers

MaxIndex INTEGER The	upper	bound	of	the	array

n INTEGER The	number	of	pairs	of	elements	to	compare	in
each	pass

NoMoreSwaps BOOLEAN TRUE	when	no	swaps	have	occurred	in	current
pass
FALSE	when	a	swap	has	occurred

j INTEGER Counter	for	inner	loop

Temp INTEGER Variable	for	temporary	storage	while	swapping
values

Table	13.04	Identifier	table	for	improved	bubble	sort	algorithm

This	improved	algorithm	in	pseudocode	is:
n	←	MaxIndex	–	1

REPEAT

				NoMoreSwaps	←	TRUE

				FOR	j	←	0	TO	n

								IF	MyList[j]	>	MyList[j	+	1]

										THEN

												Temp	←	MyList[j]

												MyList[j]	←	MyList[j	+	1]

												MyList[j	+	1]	←	Temp

												NoMoreSwaps	←	FALSE

								ENDIF

				NEXT	j

				n	←	n	–	1

UNTIL	NoMoreSwaps	=	TRUE

Discussion	Point:
What	happens	if	the	array	elements	are	already	in	the	correct	order?

TASK	13.05
Rewrite	the	algorithm	in	Worked	Example	13.03	to	sort	the	array	elements	into	descending	order.

13.05	Two-dimensional	arrays
When	we	write	a	table	of	data	(a	matrix)	on	a	piece	of	paper	and	want	to	refer	to	individual	elements	of
the	table,	the	convention	is	to	give	the	row	number	first	and	then	the	column	number.	When	declaring	a
2D	array,	the	number	of	rows	is	given	first,	then	the	number	of	columns.	Again	we	have	lower	and
upper	bounds	for	each	dimension.

In	pseudocode,	a	2D	array	declaration	is	written	as:

		DECLARE	<identifier>	:	ARRAY[<lBound1>:<uBound1>,

		<lBound2>:<uBound2>]	OF	<dataType>

The	array	elements	in	a	2D	array	can	be	numbered	from	0.	Sometimes	it	is	more	intuitive	to	use	rows
from	row	1	and	columns	from	column	1,	as	shown	with	the	board	game	in	Worked	Example	13.05.

To	declare	a	2D	array	to	represent	a	game	board	of	six	rows	and	seven	columns,	the	pseudocode
statement	is:
		Board	:	ARRAY[1:6,1:7]	OF	INTEGER

Accessing	2D	arrays
A	specific	element	in	a	table	is	accessed	using	an	index	pair.	In	pseudocode	this	is	written	as:
		<arrayIdentifier>[x,y]

Pseudocode	example:
		Board[3,4]	←	0	//	sets	the	element	in	row	3	and	column	4	to	zero

When	we	want	to	access	each	element	of	a	1D	array,	we	use	a	loop	to	access	each	element	in	turn.
When	working	with	a	2D	array,	we	need	a	loop	to	access	each	row.	Within	each	row	we	need	to	access
each	column.	This	means	we	use	a	loop	within	a	loop	(nested	loops).

In	structured	English	our	algorithm	is:
For	each	row

			For	each	column

						Assign	the	initial	value	to	the	element	at	the	current	position

WORKED	EXAMPLE	13.04

Working	with	two-dimensional	arrays	and	nested	loops

Using	pseudocode,	the	algorithm	to	set	each	element	of	array	ThisTable	to	zero	is:
FOR	Row	←	0	TO	MaxRowIndex

				FOR	Column	←	0	TO	MaxColumnIndex

								ThisTable[Row,	Column]	←	0

				NEXT	Column

NEXT	Row

We	need	the	identifiers	shown	in	Table	13.05.

Identifier Data	type Explanation
ThisTable ARRAY[0:3,	0:5]	OF	INTEGER Table	data	structure	(2D	array)	to	store	values

MaxRowIndex INTEGER The	upper	bound	of	the	row	index

MaxColumnIndex INTEGER The	upper	bound	of	the	column	index

Row INTEGER Counter	for	the	row	index

Column INTEGER Counter	for	the	column	index

Table	13.05	Identifier	table	for	working	with	a	table

When	we	want	to	output	the	contents	of	a	2D	array,	we	again	need	nested	loops.	We	want	to	output
all	the	values	in	one	row	of	the	array	on	the	same	line.	At	the	end	of	the	row,	we	want	to	output	a
new	line.
FOR	Row	←	0	TO	MaxRowIndex

				FOR	Column	←	0	TO	MaxColumnIndex

								OUTPUT	ThisTable[Row,	Column]	//	stay	on	same	line

				NEXT	Column

				OUTPUT	Newline						//	move	to	next	line	for	next	row

NEXT	Row

TASK	13.06

WORKED	EXAMPLE	13.05

Creating	a	program	to	play	Connect	4

Connect	4	is	a	game	played	by	two	players.	In	the	commercial	version	shown	in	Figure	13.06,	one
player	uses	red	tokens	and	the	other	uses	black.	Each	player	has	21	tokens.	The	game	board	is	a
vertical	grid	of	six	rows	and	seven	columns.

Figure	13.06	A	Connect	4	board

Columns	get	filled	with	tokens	from	the	bottom.	The	players	take	it	in	turns	to	choose	a	column
that	is	not	full	and	drop	a	token	into	this	column.	The	token	will	occupy	the	lowest	empty	position
in	the	chosen	column.	The	winner	is	the	player	who	is	the	first	to	connect	four	of	their	own	tokens
in	a	horizontal,	vertical	or	diagonal	line.	If	all	tokens	have	been	used	and	neither	player	has
connected	four	tokens,	the	game	ends	in	a	draw.

If	we	want	to	write	a	program	to	play	this	game	on	a	computer,	we	need	to	work	out	the	steps
required	to	‘solve	the	problem’,	that	means	to	let	players	take	their	turn	in	placing	tokens	and
checking	for	a	winner.	We	will	designate	our	players	(and	their	tokens)	by	‘O’	and	‘X’.	The	game
board	will	be	represented	by	a	2D	array.	To	simplify	the	problem,	the	winner	is	the	player	who	is
the	first	to	connect	four	of	their	tokens	horizontally	or	vertically.

			Our	first	attempt	in	structured	English	is:

Declare	a	2D	array	to	store	the	board	data	for	the	game	Noughts	and	Crosses.	The	empty
squares	of	the	board	are	to	be	represented	by	a	space.	Player	A’s	counters	are	to	be
represented	by	“O”.	Player	B’s	counters	are	to	be	represented	by	“X”.

Initialise	the	array	to	start	with	each	square	being	empty.

Write	a	statement	to	represent	player	A	placing	their	counter	in	the	top	left	square.

Write	a	statement	to	represent	player	B	placing	their	counter	in	the	middle	square.

1

2

3

4

		Initialise	board

		Set	up	game

		Display	board

		While	game	not	finished

					Player	makes	a	move

					Display	board

					Check	if	game	finished

					If	game	not	finished,	swap	player

			The	top-level	pseudocode	version	using	modules	is:
		01	CALL	InitialiseBoard

		02	CALL	SetUpGame

		03	CALL	OutputBoard

		04	WHILE	GameFinished	=	FALSE	DO

		05					CALL	PlayerMakesMove

		06					CALL	OutputBoard

		07					CALL	CheckGameFinished

		08					IF	GameFinished	=	FALSE

		09							THEN

		10									CALL	SwapThisPlayer

		11					ENDIF

		12	ENDWHILE

Note	that	Steps	03	and	06	are	the	same.	This	means	that	we	can	save	ourselves	some	effort.	We
only	need	to	define	this	module	once,	but	can	call	it	from	more	than	one	place.	This	is	one	of	the
advantages	of	using	modules.

The	identifier	table	for	the	program	is	shown	in	Table	13.06.

Identifier Data	type Explanation
Board ARRAY[1:6,1:7]	OF

CHAR
2D	array	to	represent	the	board

InitialiseBoard 	 Procedure	to	initialise	the	board	to	all	blanks

SetUpGame 	 Procedure	to	set	initial	values	for	GameFinished
and	ThisPlayer

GameFinished BOOLEAN FALSE	if	the	game	is	not	finished
TRUE	if	the	board	is	full	or	a	player	has	won

ThisPlayer CHAR 'O'	when	it	is	Player	O’s	turn
'X'	when	it	is	Player	X’s	turn

OutputBoard 	 Procedure	to	output	the	current	contents	of	the
board

PlayerMakesMove 	 Procedure	to	place	the	current	player’s	token
into	the	chosen	board	location

CheckGameFinished 	 Procedure	to	check	if	the	token	just	placed
makes	the	current	player	a	winner	or	board	is
full

SwapThisPlayer 	 Procedure	to	change	player’s	turn

Table	13.06	Initial	identifier	table	for	Connect	4	game

Now	we	can	refine	each	procedure	(module).	This	is	likely	to	add	some	more	identifiers	to	our
identifier	table.	The	additional	entries	required	are	shown	after	each	procedure.

		PROCEDURE	InitialiseBoard

						FOR	Row	←	1	TO	6

										FOR	Column	←	1	TO	7

														Board[Row,	Column]	←	BLANK	//	use	a	suitable	value	for	blank

										NEXT	Column

						NEXT	Row

		ENDPROCEDURE

Identifier Data	type Explanation
Row INTEGER Loop	counter	for	the	rows

Column INTEGER Loop	counter	for	the	columns

BLANK CHAR A	value	that	represents	an	empty	board	location

Table	13.07	Additional	identifiers	for	the	InitialiseBoard	procedure

		PROCEDURE	SetUpGame

						ThisPlayer	←	'O'	//	Player	O	always	starts

						GameFinished	←	FALSE

		ENDPROCEDURE

		PROCEDURE	OutputBoard

						FOR	Row	←	6	DOWNTO	1

										FOR	Column	←	1	TO	7

														OUTPUT	Board[Row,	Column]	//	don't	move	to	next	line

										NEXT	Column

										OUTPUT	Newline	//	move	to	next	line

						NEXT	Row

		ENDPROCEDURE

		PROCEDURE	PlayerMakesMove

						ValidColumn	←	PlayerChoosesColumn	//	a	module	returns	column	number

						ValidRow	←	FindFreeRow	//	a	module	returns	row	number

						Board[ValidRow,	ValidColumn]	←	ThisPlayer

		ENDPROCEDURE

Identifier Data	type Explanation
ValidColumn INTEGER The	column	number	the	player	has	chosen

PlayerChoosesColumn INTEGER Function	to	get	the	current	player’s	valid	choice
of	column

ValidRow INTEGER The	row	number	that	represents	the	first	free
location	in	the	chosen	column

FindFreeRow INTEGER Function	to	find	the	next	free	location	in	the
chosen	column

Table	13.08	Additional	identifiers	for	the	PlayerMakesMove	procedure

		FUNCTION	PlayerChoosesColumn	RETURNS	INTEGER//	returns	a	valid	column	number

						OUTPUT	"Player	",	ThisPlayer,	"'s	turn."

						REPEAT

										OUTPUT	"Enter	a	valid	column	number:	"

										INPUT	ColumnNumber

						UNTIL	ColumnNumberValid	=	TRUE	//	check	whether	the	column	number	is	valid

						RETURN	ColumnNumber

		ENDFUNCTION

Identifier Data	type Explanation
ColumnNumber INTEGER The	column	number	chosen	by	the

current	player

ColumnNumberValid BOOLEAN Function	to	check	whether	the	chosen
column	is	valid

Table	13.09	Additional	identifiers	for	PlayerChoosesColumn	function

Note	that	we	need	to	define	the	function	ColumnNumberValid.	A	column	is	valid	if	it	is	within	the
range	1	to	7	inclusive	and	there	is	still	at	least	one	empty	location	in	that	column.

		FUNCTION	ColumnNumberValid	RETURNS	BOOLEAN

				//	returns	whether	or	not	the	column	number	is	valid

						Valid	←	FALSE

						IF	ColumnNumber	>=	1	AND	ColumnNumber	<=	7

								THEN

										IF	Board[6,	ColumnNumber]	=	BLANK	//	at	least	1	empty	space	in	column

												THEN

														Valid	←	TRUE

										ENDIF

						ENDIF

						RETURN	Valid

		ENDFUNCTION

Identifier Data	type Explanation
Valid BOOLEAN FALSE	if	column	number	is	not	valid

TRUE	if	column	number	is	valid

Table	13.10	Additional	identifier	for	the	ColumnNumberValid	function

		FUNCTION	FindFreeRow	RETURNS	INTEGER

				//	returns	the	next	free	position

						ThisRow	←	1

						WHILE	Board[ThisRow,	ValidColumn]	<>	BLANK	DO	//	find	first	empty	cell

										ThisRow	←	ThisRow	+	1

						ENDWHILE

						RETURN	ThisRow

		ENDFUNCTION

Identifier Data	type Explanation
ThisRow INTEGER Points	to	the	next	row	to	be	checked

Table	13.11	Additional	identifier	for	the	FindFreeRow	function

		PROCEDURE	CheckGameFinished

						WinnerFound	←	FALSE

						CALL	CheckIfPlayerHasWon

						IF	WinnerFound	=	TRUE

								THEN

										GameFinished	←	TRUE

										OUTPUT	ThisPlayer	"	is	the	winner"

								ELSE

										CALL	CheckForFullBoard

						ENDIF

		ENDPROCEDURE

Note	that	the	CheckGameFinished	procedure	uses	two	further	procedures	that	we	need	to	define.

Identifier Data	type Explanation
WinnerFound BOOLEAN FALSE	if	no	winning	line

TRUE	if	a	winning	line	is	found

CheckIfPlayerHasWon 	 Procedure	to	check	if	there	is	a	winning
line

CheckVerticalLineInValidColumn 	 Procedure	to	check	if	there	is	a	winning
vertical	line	in	the	column	the	last	token
was	placed	in

CheckForFullBoard 	 Procedure	to	check	whether	the	board	is
full

Table	13.12	Additional	identifiers	for	the	CheckGameFinished	procedure

		PROCEDURE	CheckIfPlayerHasWon

						WinnerFound	←	False

						CALL	CheckHorizontalLine

						IF	WinnerFound	=	FALSE

								THEN

										CALL	CheckVerticalLine

		ENDPROCEDURE

		PROCEDURE	CheckHorizontalLine

						FOR	i	←	1	TO	4

									IF	Board[ValidRow,	i]	=	ThisPlayer	AND

											Board[ValidRow,	i	+	1]	=	ThisPlayer	AND

											Board[ValidRow,	i	+	2]	=	ThisPlayer	AND

											Board[ValidRow,	i	+	3]	=	ThisPlayer

											THEN

													WinnerFound	←	TRUE

									ENDIF

						NEXT	i

		ENDPROCEDURE

		PROCEDURE	CheckVerticalLine

						IF	ValidRow	=	4	OR	ValidRow	=	5	OR	ValidRow	=	6

								THEN

										IF	Board[ValidRow,	ValidColumn]	=	ThisPlayer	AND

												Board[ValidRow	–	1,	ValidColumn]	=	ThisPlayer	AND

												Board[ValidRow	–	2,	ValidColumn]	=	ThisPlayer	AND

												Board[ValidRow	–	3,	ValidColumn]	=	ThisPlayer

												THEN

														WinnerFound	←	TRUE

										ENDIF

						ENDIF

		ENDPROCEDURE

		PROCEDURE	CheckForFullBoard

						BlankFound	←	FALSE

						ThisRow	←	0

						REPEAT

										ThisColumn	←	0

										ThisRow	←	ThisRow	+	1

										REPEAT

														ThisColumn	←	ThisColumn	+	1

														IF	Board[ThisRow,	ThisColumn]	=	BLANK

																THEN

																		BlankFound	←	TRUE

														ENDIF

										UNTIL	ThisColumn	=	7	OR	BlankFound	=	TRUE

						UNTIL	ThisRow	=	6	OR	BlankFound	=	TRUE

						IF	BlankFound	=	FALSE

								THEN

										OUTPUT	"It	is	a	draw"

										GameFinished	←	TRUE

						ENDIF

		ENDPROCEDURE

Identifier Data	type Explanation
BlankFound BOOLEAN FALSE	if	no	blank	location	found	on	the	board

TRUE	if	a	blank	location	found	on	the	board

ThisRow INTEGER Loop	counter	for	rows

ThisColumn INTEGER Loop	counter	for	columns

Table	13.13	Additional	identifiers	for	the	CheckForFullBoard	procedure

		PROCEDURE	SwapThisPlayer

						IF	ThisPlayer	=	'O'

								THEN

										ThisPlayer	←	'X'

								ELSE

										ThisPlayer	←	'O'

						ENDIF

		ENDPROCEDURE

We	can	also	use	arrays	of	records.	Using	the	Person	record	type	from	Section	13.02,	we	can	declare	an
array	of	that	type	for	100	person	records:
DECLARE	Person	:	ARRAY[1:100]	OF	PersonType

We	can	then	access	an	individual’s	data.	For	example	the	first	person’s	name	in	the	array	is	set	as
follows:
Person[1].Name	←	"Fred"

OUTPUT	Person[1].Name

This	is	particularly	useful	when	we	have	several	people’s	data	to	work	with	and	do	not	want	to	use	a
separate	1D	array	for	each	field.

TASK	13.07

Declare	an	array	of	BookType	(see	Task	13.02)	for	200	books.

Set	the	first	book’s	details	to	the	values	given	in	Task	13.02.

1

2

13.06	Text	files
Data	need	to	be	stored	permanently.	One	approach	is	to	use	a	file.	For	example,	any	data	held	in	an
array	while	your	program	is	executing	will	be	lost	when	the	program	stops.	You	can	save	the	data	out	to
a	file	and	read	it	back	in	when	your	program	requires	it	on	subsequent	executions.

A	text	file	consists	of	a	sequence	of	characters	formatted	into	lines.	Each	line	is	terminated	by	an	end-
of-line	marker.	The	text	file	is	terminated	by	an	end-of-file	marker.

	TIP
You	can	check	the	contents	of	a	text	file	(or	even	create	a	text	file	required	by	a	program)
by	using	a	text	editor	such	as	NotePad.

Writing	to	a	text	file
Writing	to	a	text	file	usually	means	creating	a	text	file.

The	following	pseudocode	statements	provide	facilities	for	writing	to	a	file:
		OPENFILE	<filename>	FOR	WRITE							//	open	the	file	for	writing

		WRITEFILE	<filename>,	<stringValue>		//	write	a	line	of	text	to	the	file

		CLOSEFILE	<filename>															//	close	file

Reading	from	a	text	file
An	existing	file	can	be	read	by	a	program.	The	following	pseudocode	statements	provide	facilities	for
reading	from	a	file:
		OPENFILE	<filename>	FOR	READ										//	open	file	for	reading

		READFILE	<filename>,	<stringVariable>			//	read	a	line	of	text	from	the	file

		CLOSEFILE	<filename>																	//	close	file

Appending	to	a	text	file
Sometimes	we	may	wish	to	add	data	to	an	existing	file	rather	than	create	a	new	file.	This	can	be	done	in
Append	mode.	It	adds	the	new	data	to	the	end	of	the	existing	file.

The	following	pseudocode	statements	provide	facilities	for	appending	to	a	file:
		OPENFILE	<filename>	FOR	APPEND					//	open	file	for	append

		WRITEFILE	<filename>,	<stringValue>	//	write	a	line	of	text	to	the	file

		CLOSEFILE	<filename>														//	close	file

The	end-of-file	(EOF)	marker
If	we	want	to	read	a	file	from	beginning	to	end,	we	can	use	a	conditional	loop.	Text	files	contain	a
special	marker	at	the	end	of	the	file	that	we	can	test	for.	Testing	for	this	special	end-of-file	marker	is	a
standard	function	in	many	programming	languages.	Every	time	this	function	is	called	it	will	test	for	this
marker.	The	function	will	return	FALSE	if	the	end	of	the	file	is	not	yet	reached	and	will	return	TRUE	if
the	end-of-file	marker	has	been	reached.

In	pseudocode	we	call	this	function	EOF().	We	can	use	the	construct	REPEAT...UNTIL	EOF().	If	it	is	possible
that	the	file	contains	no	data,	it	is	better	to	use	the	construct	WHILE	NOT	EOF().

For	example,	the	following	pseudocode	statements	read	a	text	file	and	output	its	contents:
		OPENFILE	"Test.txt"	FOR	READ

		WHILE	NOT	EOF("Test.txt")	DO

						READFILE	"Test.txt",	TextString

						OUTPUT	TextString

		ENDWHILE

		CLOSEFILE	"Test.txt"

TASK	13.08

Write	pseudocode	to	save	the	array	data	from	Task	13.06	to	a	text	file.

Write	pseudocode	to	read	the	values	stored	in	the	text	file	back	into	the	board	array.

1

2

13.07	Abstract	Data	Types	(ADTs)
An	Abstract	Data	Type	is	a	collection	of	data	and	a	set	of	associated	operations:

create	a	new	instance	of	the	data	structure

find	an	element	in	the	data	structure

insert	a	new	element	into	the	data	structure

delete	an	element	from	the	data	structure

access	all	elements	stored	in	the	data	structure	in	a	systematic	manner.

The	remainder	of	this	chapter	describes	the	following	ADTs:	stack,	queue	and	linked	list.	It	also
demonstrates	how	they	can	be	implemented	from	arrays.

In	the	following	ADTs	data	items	are	represented	as	a	single	character,	but	this	would	normally	be	a	set
of	data,	possibly	stored	as	fields	in	a	record.

13.08	Stacks
What	are	the	features	of	a	stack	in	the	real	world?	To	make	a	stack,	we	pile	items	on	top	of	each	other.
The	item	that	is	accessible	is	the	one	on	top	of	the	stack.	If	we	try	to	find	an	item	in	the	stack	and	take
it	out,	we	are	likely	to	cause	the	pile	of	items	to	collapse.

Figure	13.07	An	empty	stack	(left)	and	a	stack	with	four	items	pushed	(right)

Figure	13.07	shows	how	we	can	represent	a	stack	when	we	have	added	four	items	in	this	order:	A,	B,	C,
D.	Note	that	the	slots	are	shown	numbered	from	the	bottom	as	this	feels	more	natural.

The	BaseOfStackPointer	will	always	point	to	the	first	slot	in	the	stack.	The	TopOfStackPointer	will	point	to
the	last	element	pushed	(added)	onto	the	stack.	When	an	element	is	popped	(removed)	from	the	stack,
the	TopOfStackPointer	will	decrease	to	point	to	the	element	now	at	the	top	of	the	stack.	When	the	stack	is
empty,	TopOfStackPointer	will	have	the	value	–1.

To	implement	this	stack	using	a	1D	array,	we	write:
DECLARE	Stack:ARRAY[0	:	7]	OF	CHAR

TASK	13.09

Draw	a	diagram	to	show	the	contents	of	the	stack	shown	in	Figure	13.07	after	“E”	has	been
pushed	onto	the	stack.

Draw	a	diagram	to	show	the	contents	of	the	stack	shown	in	Figure	13.07	after	one	item	has
been	popped	off	the	stack.

1

2

13.09	Queues
What	are	the	features	of	a	queue	in	the	real	world?	When	people	form	a	queue,	they	join	the	queue	at
the	end.	People	leave	the	queue	from	the	front	of	the	queue.	If	it	is	an	orderly	queue,	no-one	pushes	in
between	and	people	don’t	leave	the	queue	from	any	other	position.

Figure	13.08	shows	how	we	can	represent	a	queue	when	five	items	have	joined	the	queue	in	this	order:
A,	B,	C,	D,	E.

Figure	13.08	An	empty	queue	(left)	and	a	queue	after	5	items	have	joined	(right)

To	implement	a	queue	using	an	array,	we	can	assume	that	the	front	of	the	queue	is	at	position	0.	When
the	queue	is	empty,	the	EndOfQueuePointer	will	have	the	value	–1.	When	one	value	joins	the	queue,	the
EndOfQueuePointer	will	be	incremented	before	adding	the	value	to	the	array	element	where	the	pointer	is
pointing	to.	When	the	item	at	the	front	of	the	queue	leaves,	we	need	to	move	all	the	other	items	one	slot
forward	and	adjust	EndOfQueuePointer.

TASK	13.10

This	method	involves	a	lot	of	moving	of	data.	A	more	efficient	way	to	make	use	of	the	slots	is	the
concept	of	a	‘circular’	queue.	Pointers	show	where	the	front	and	end	of	the	queue	are.	Eventually	the
queue	will	‘wrap	around’	to	the	beginning.	Figure	13.09	shows	a	circular	queue	after	11	items	have
joined	and	five	items	have	left	the	queue.

Figure	13.09	A	circular	queue

Draw	a	diagram	to	show	the	contents	of	the	queue	after	“F”	has	joined	the	non-empty	queue
shown	in	Figure	13.08.

Draw	a	diagram	to	show	the	contents	of	the	queue	after	one	item	has	left	the	non-empty	queue
shown	in	Figure	13.08.

1

2

13.10	Linked	lists
In	Section	13.03	we	used	an	array	as	a	linear	list.	In	a	linear	list,	the	list	items	are	stored	in	consecutive
locations.	This	is	not	always	appropriate.	Another	method	is	to	store	an	individual	list	item	in	whatever
location	is	available	and	link	the	individual	item	into	an	ordered	sequence	using	pointers.

An	element	of	a	linked	list	is	called	a	node.	A	node	can	consist	of	several	data	items	and	a	pointer,
which	is	a	variable	that	stores	the	address	of	the	node	it	points	to.

A	pointer	that	does	not	point	at	anything	is	called	a	null	pointer.	It	is	usually	represented	by	∅.	A
variable	that	stores	the	address	of	the	first	element	is	called	a	start	pointer.

In	Figure	13.10,	the	data	value	in	the	node	box	represents	the	key	field	of	that	node.	There	are	likely	to
be	many	data	items	associated	with	each	node.	The	arrows	represent	the	pointers.	It	does	not	show	at
which	address	a	node	is	stored,	so	the	diagram	does	not	give	the	value	of	the	pointer,	only	where	it
conceptually	links	to.

Figure	13.10	Conceptual	diagram	of	a	linked	list

Figure	13.11	shows	how	a	new	node,	A,	is	inserted	at	the	beginning	of	the	list.	The	content	of
StartPointer	is	copied	into	the	new	node’s	pointer	field	and	StartPointer	is	set	to	point	to	the	new	node,
A.

Figure	13.11	Conceptual	diagram	of	adding	a	new	node	to	the	beginning	of	a	linked	list

In	Figure	13.12,	a	new	node,	P,	is	inserted	at	the	end	of	the	list.	The	pointer	field	of	node	L	points	to	the
new	node,	P.	The	pointer	field	of	the	new	node,	P,	contains	the	null	pointer.

Figure	13.12	Conceptual	diagram	of	adding	a	new	node	to	the	end	of	a	linked	list

To	delete	the	first	node	in	the	list	(see	Figure	13.13),	we	copy	the	pointer	field	of	the	node	to	be	deleted
into	StartPointer.

Figure	13.13	Deleting	the	first	node	in	a	linked	list

To	delete	the	last	node	in	the	list	(see	Figure	13.14),	we	set	the	pointer	field	for	the	previous	node	to
the	null	pointer.

Figure	13.14	Conceptual	diagram	of	deleting	the	last	node	of	a	linked	list

Sometimes	the	nodes	are	linked	together	in	order	of	key	field	value	to	produce	an	ordered	linked	list.
This	means	a	new	node	may	need	to	be	inserted	or	deleted	from	between	two	existing	nodes.

To	insert	a	new	node,	C,	between	existing	nodes,	B	and	D	(see	Figure	13.15),	we	copy	the	pointer	field
of	node	B	into	the	pointer	field	of	the	new	node,	C.	We	change	the	pointer	field	of	node	B	to	point	to	the
new	node,	C.

Figure	13.15	Conceptual	diagram	of	adding	a	new	node	into	a	linked	list

To	delete	a	node,	D,	within	the	list	(see	Figure	13.16),	we	copy	the	pointer	field	of	the	node	to	be
deleted,	D,	into	the	pointer	field	of	node	B.

Figure	13.16	Conceptual	diagram	of	deleting	a	node	within	a	linked	list

Remember	that,	in	real	applications,	the	data	would	consist	of	much	more	than	a	key	field	and	one	data
item.	This	is	why	linked	lists	are	preferable	to	linear	lists.	When	list	elements	need	reordering,	only
pointers	need	changing	in	a	linked	list.	In	a	linear	list,	all	data	items	would	need	to	be	moved.

Using	linked	lists	saves	time,	however	we	need	more	storage	space	for	the	pointer	fields.

To	implement	a	linked	list	using	arrays,	we	can	use	a	1D	array	to	store	the	data	and	a	1D	array	to	store
the	pointer.	Reading	the	array	values	across	at	the	same	index,	one	row	represents	a	node.

A	value	is	added	to	the	next	free	element	of	the	Data	array	and	pointers	are	adjusted	to	incorporate	the
node	in	the	correct	position	within	the	linked	list.

Figure	13.17	shows	how	two	arrays	can	be	used	to	implement	the	linked	list	from	Figure	13.10.

Figure	13.17	Using	arrays	to	implement	the	linked	list	shown	in	Figure	13.10

Figure	13.18	shows	how	a	new	node	is	added	to	the	beginning	of	a	linked	list	implemented	using
arrays.	Note	that	the	value	“A”	is	added	at	index	3	but	the	start	pointer	is	adjusted	to	make	this	the	new
first	element	of	the	list.

Figure	13.18	Adding	a	new	node	to	the	beginning	of	a	linked	list

Figure	13.19	shows	how	a	new	node	is	added	to	the	end	of	a	linked	list	implemented	using	arrays.	Note
that	the	value	“P”	is	added	at	index	3.	The	node	that	previously	contained	the	null	pointer	(at	index	0)
has	its	pointer	adjusted	to	point	to	the	new	node.

Figure	13.19	Adding	a	new	node	to	the	end	of	a	linked	list	implemented	using	arrays

When	deleting	a	node,	only	pointers	need	to	be	adjusted.	The	old	data	can	remain	in	the	array,	but	it
will	no	longer	be	accessible	as	no	pointer	will	point	to	it.

Figure	13.20	shows	how	the	start	pointer	is	adjusted	to	effectively	delete	the	first	element	of	the	linked
list.	Note	that	the	start	pointer	now	contains	the	pointer	value	of	the	deleted	node.

Figure	13.20	Deleting	the	first	node	in	a	linked	list	implemented	using	arrays

Figure	13.21	shows	how	the	pointer	value	of	the	penultimate	node	of	the	linked	list	is	changed	to	the
null	pointer.

Figure	13.21	Deleting	the	last	node	of	a	linked	list	implemented	using	arrays

When	adding	a	node	that	needs	to	be	inserted	into	the	list,	the	data	is	added	to	any	free	element	of	the
Data	array.	The	pointer	of	the	new	node	is	set	to	point	to	the	index	of	the	node	that	comes	after	the
insertion	point.	Note	that	this	is	the	value	of	the	pointer	of	the	node	preceding	the	insertion	point.	The
pointer	of	the	node	preceding	the	insertion	point	is	set	to	point	to	the	new	node.

Figure	13.22	Adding	a	new	node	into	a	linked	list	implemented	using	arrays

Again,	when	deleting	a	node,	only	pointers	need	to	be	adjusted.	Figure	13.23	shows	how	the	pointer	of
the	node	to	be	deleted	is	copied	into	the	pointer	of	the	preceding	node.

Figure	13.23	Deleting	a	node	within	a	linked	list	implemented	using	arrays

Unused	nodes	need	to	be	easy	to	find.	A	suitable	technique	is	to	link	the	unused	nodes	to	form	another
linked	list:	the	free	list.	Figure	13.24	shows	our	linked	list	and	its	free	list.

Figure	13.24	Conceptual	diagram	of	a	linked	list	and	a	free	list

When	an	array	of	nodes	is	first	initialised	to	work	as	a	linked	list,	the	linked	list	will	be	empty.	So	the
start	pointer	will	be	the	null	pointer.	All	nodes	need	to	be	linked	to	form	the	free	list.	Figure	13.25
shows	an	example	of	an	implementation	of	a	linked	list	before	any	data	is	inserted	into	it.

Figure	13.25	A	linked	list	and	a	free	list	implemented	using	arrays

Assume	“L”,	“B”	and	“D”	were	added	to	the	linked	list	and	to	be	kept	in	alphabetical	order.

Figure	13.26	shows	how	the	values	are	stored	in	the	Data	array	and	the	pointers	of	the	linked	list	and
free	list	adjusted.

Figure	13.26	Linked	list	and	free	list	implemented	using	arrays

If	the	node	containing	“B”	is	to	be	deleted,	the	array	element	of	that	node	needs	to	be	linked	back	into
the	free	list.	Figure	13.27	shows	how	this	is	done	by	adding	the	node	to	the	front	of	the	free	list.

Figure	13.27	Linked	list	and	free	list	implemented	using	arrays

TASK	13.11
A	linked	list	is	to	be	set	up	using	the	values	in	the	UserID	array	shown	below.

Without	moving	any	of	the	contents	of	the	UserID	array,	insert	the	pointer	values	so	that	the	linked
list	is	in	alphabetical	order.

In	Section	13.02	we	looked	at	the	user-defined	record	type.	We	grouped	together	related	data	items
into	record	data	structures.	To	use	a	record	variable,	we	first	define	a	record	type.	Then	we	declare
variables	of	that	record	type.

We	can	store	the	linked	list	in	an	array	of	records.	One	record	represents	a	node	and	consists	of	the
data	and	a	pointer	(see	Figure	13.28).

Figure	13.28	A	linked	list	before	any	nodes	are	used

	TIP
A	stack	can	be	implemented	from	a	linked	list.	The	start	pointer	is	seen	as	the	top	of	stack
pointer	and	a	data	item	is	only	added	to	the	start	of	the	linked	list	and	a	node	is	only
removed	from	the	start	of	the	linked	list.

	TIP
A	queue	can	be	implemented	from	a	linked	list.	The	start	pointer	is	seen	as	the	front	of
the	queue.	Data	items	are	always	added	to	the	end	of	the	linked	list	and	items	are	always
removed	from	the	start	of	the	linked	list.

Reflection	Point:
What	is	the	difference	between	standard	data	types,	ADTs	and	user-defined	data	types?

Summary
Standard	data	types	are	INTEGER,	REAL,	CHAR,	STRING,	BOOLEAN,	DATE.
A	record	structure	holds	a	set	of	data	of	different	data	types	under	one	identifier.
Use	the	dot	notation	to	address	fields	of	a	record.

■
■
■

Arrays	have	dimensions	with	upper	and	lower	bounds.
Individual	array	elements	are	accessed	using	an	index	(1D	arrays)	or	two	indexes	(2D	arrays).
A	bubble	sort	algorithm	compares	pairs	of	values	in	a	linear	list	and	swaps	them	if	required.
A	linear	search	checks	each	value	in	turn	for	a	required	value.
Text	files	can	be	written	to	and	read	from	and	store	data	between	program	runs.
Stacks,	queues	and	linked	lists	are	examples	of	Abstract	Data	Types	(ADTs)	and	can	be
implemented	using	arrays.

■
■
■
■
■
■

Exam-style	Questions

	
[0]
[1]
[2]
: 
: 

[20]

	
[0]
[1]
[2]
: 
: 

[20]

[8]

[3]

Complete	the	following	variable	identifier	table:

Variable Example	value Data	type
ColourCode “034AB45” 	

ProductionDate 2018/03/31 	

Weight 67.45 	

NumberInStock 98 	

SizeCode ‘X’ 	

Completed FALSE 	

A	stack	and	a	queue	are	used	to	reverse	the	order	of	a	set	of	values.

Complete	the	diagram:

Front	of	Queue	=> A

	Base	of	Stack	=>

	 	Front	of	Queue	=> 	
B 	 	
C 	 	
D 	 	
E 	 	
	 	 	
	 	 	
	 	 	

[2]

Alicia	uses	two	1D	arrays,	UserList	and	PasswordList.	For	twenty	users,	she	stores	each	user	ID	in
UserList	and	the	corresponding	password	in	PasswordList.	For	example,	the	person	with	user	ID	Fred12
has	password	rzt456.

UserList
Matt05
Fred12
Anna9

Xenios4

	 	

PasswordList
pqklmn4
rzt456
jedd321

wkl@tmp6

Alicia	wants	to	write	an	algorithm	to	check	whether	a	user	ID	and	password,	entered	by	a	user,	are
correct.	She	designs	the	algorithm	to	search	UserList	for	the	user	ID.	If	the	user	ID	is	found,	the
password	stored	in	PasswordList	is	to	be	compared	to	the	entered	password.	If	the	passwords	match,
the	login	is	successful.	In	all	other	cases,	login	is	unsuccessful.

Complete	the	identifier	table.

Identifier Data	type Explanation
UserList 	 1D	array	to	store	user	IDs

      	 1D	array	to	store	passwords

MaxIndex
	 Upper	bound	of	the	array

MyUserID 	 User	ID	entered	to	login

1

2

3

a

[10]

[2]

[2]

MyPassword 	      
UserIdFound

	
FALSE	if	user	ID	not	found	in
UserList
TRUE	if	     

LoginOK 	
FALSE	if	     
TRUE	if	     

Index 	 Pointer	to	current	array	element

Complete	the	pseudocode	for	Alicia’s	algorithm:
MaxIndex	←	20

INPUT	MyUserID

INPUT	MyPassword

UserIdFound	←	FALSE

LoginOK	←

Index	←	–1

REPEAT

				INDEX	←

				IF	UserList[...............]	=

						THEN

								UserIdFound	←	TRUE

				ENDIF

UNTIL	OR

IF	UserIdFound	=	TRUE

		THEN

				IF	PasswordList[...............]	=

						THEN

								LoginOK	←	TRUE

			

ENDIF

IF

		THEN

				OUTPUT	"Login	successful"

		ELSE

				OUTPUT	"User	ID	and/or	password	incorrect"

ENDIF

Instead	of	using	two	1D	arrays,	Alicia	could	have	used	an	array	of	records.

Write	pseudocode	to	declare	the	record	structure	UserRecord.

Write	pseudocode	to	declare	the	User	array.

b

c i

ii

Chapter	14:
Programming	and	data	representation

14.01	Programming	languages
Chapters	12	and	13	introduced	the	concept	of	solving	a	problem	and	representing	a	solution	using	a
flowchart	or	pseudocode.	We	expressed	our	solutions	using	the	basic	constructs:	assignment,	sequence,
selection,	iteration,	input	and	output.

To	write	a	computer	program,	we	need	to	know	the	syntax	(the	correct	structure	of	statements)	of	these
basic	constructs	in	our	chosen	programming	language.	This	chapter	introduces	syntax	for	Python,
Visual	Basic	console	mode	and	Java.

Note	that	for	convenience	and	easy	reference,	definitive	pseudocode	syntax	is	repeated	in	this	chapter
at	the	appropriate	points.

You	only	need	learn	to	program	in	one	of	the	three	languages	covered	in	this	book.	Programming
language	is	only	examined	at	A	Level	but	it	is	important	to	start	learning	it	from	AS	Level	to	ensure	you
are	well-prepared.	For	the	AS	Level	exams	you	should	use	pseudocode	rather	than	programming
language.

	TIP
The	only	way	of	knowing	whether	the	algorithm	you	have	designed	is	a	suitable	solution
to	the	problem	you	are	trying	to	solve,	is	to	implement	your	pseudocode	in	your	chosen
programming	language	and	test	the	program	by	running	it.

Python
Python	was	conceived	by	Guido	van	Rossum	in	the	late	1980s.	Python	2.0	was	released	in	2000	and
Python	3.0	in	2008.	Python	is	a	multi-paradigm	programming	language,	meaning	that	it	fully	supports
both	object-oriented	programming	and	structured	programming.	Many	other	paradigms,	including	logic
programming,	are	supported	using	extensions.	These	paradigms	are	covered	in	Chapters	26,	27	and	29.

The	Python	programs	in	this	book	have	been	prepared	using	Python	3	(see	Python	for	a	free	download)
and	Python’s	Integrated	DeveLopment	Environment	(IDLE).

Key	characteristics	of	Python	include	the	following.

Every	statement	must	be	on	a	separate	line.

Indentation	is	significant.	This	is	known	as	the	‘off-side	rule’.

Keywords	are	written	in	lower	case.

Python	is	case	sensitive:	the	identifier	Number1	is	seen	as	different	from	number1	or	NUMBER1.

Everything	in	Python	is	an	object	(see	Chapter	27).

Code	makes	extensive	use	of	a	concept	called	‘slicing’	(see	Section	14.07).

Programs	are	interpreted	(see	Chapter	8,	Section	8.05	for	information	on	interpreted	and	compiled
programs).

You	can	type	a	statement	into	the	Python	Shell	and	the	Python	interpreter	will	run	it	immediately	(see
Figure	14.01).

Figure	14.01	Running	a	statement	in	the	Python	shell

You	can	also	type	program	code	into	a	Python	editor	(such	as	IDLE),	save	it	with	a	.py	extension	and
then	run	the	program	code	from	the	Run	menu	in	the	editor	window	(see	Figure	14.02).

Figure	14.02	(a)	A	saved	program	in	the	Python	editor	window	and	(b)	running	in	the	Python	shell

Visual	Basic	Console	Mode	(VB.NET)
VB.NET	is	a	multi-paradigm,	high-level	programming	language,	implemented	on	the	.NET	Framework.
Microsoft	launched	VB.NET	in	2002	as	the	successor	to	its	original	Visual	Basic	language.	Microsoft’s
integrated	development	environment	(IDE)	for	developing	in	VB.NET	is	Visual	Studio.	Visual	Studio
Express	and	Visual	Studio	Community	are	freeware.

The	Visual	Basic	programs	in	this	book	have	been	prepared	using	Microsoft	Visual	Basic	2010	Express
Console	Application.	(Free	download	available	from	Visual	Studio	Express)

Key	characteristics	of	VB.NET	include	the	following.

Every	statement	should	be	on	a	separate	line.	Statements	can	be	typed	on	the	same	line	with	a
colon	(:)	as	a	separator.	However,	this	is	not	recommended.

Indentation	is	good	practice.

VB.NET	is	not	case	sensitive.	Modern	VB.NET	editors	will	automatically	copy	the	case	from	the	first
definition	of	an	identifier.

The	convention	is	to	use	CamelCaps	(also	known	as	PascalCaps)	for	identifiers	and	keywords.

Programs	need	to	be	compiled	(see	Chapter	8,	Section	8.05	for	information	on	interpreted	and
compiled	programs).

You	type	your	program	code	into	the	Integrated	Development	Environment	(IDE)	as	shown	in	Figure
14.03	(a),	save	the	program	code	and	then	click	on	the	Run	button	 .	This	starts	the	compiler.	If	there
are	no	syntax	errors	the	compiled	program	will	then	run.	Output	will	be	shown	in	a	separate	console
window	(see	Figure	14.03	(b)).

Note	that	the	console	window	shuts	when	the	program	has	finished	execution.	To	keep	the	console
window	open	so	you	can	see	the	output	(see	Figure	14.03),	the	last	statement	of	your	program	should
be
Console.ReadLine()

a

b

Figure	14.03	(a)	A	saved	program	in	the	VB.NET	editor	and	(b)	running	in	the	program	execution
(console)	window

Java
Java	was	originally	developed	by	James	Gosling	at	Sun	Microsystems	(now	owned	by	Oracle)	and
released	in	1995.	The	Java	Runtime	Environment	(JRE)	is	intended	for	end	users,	and	the	Java
Development	Kit	(JDK)	is	intended	for	software	developers	and	includes	development	tools	such	as	the
Java	compiler	and	a	debugger.

Java	was	intended	to	be	platform	independent.	The	Java	programs	in	this	book	have	been	prepared
using	NetBeans	8.2.	However,	any	text	editor	can	be	used	to	write	Java	source	code.

Key	characteristics	of	Java	include	the	following.

Every	statement	ends	with	a	semicolon	(;).	More	than	one	statement	can	go	on	a	single	line,	but	this
is	not	recommended.

Indentation	is	good	practice.

Java	is	case	sensitive.

The	convention	is	to	use	camelCaps	for	identifiers,	lower	case	for	keywords	and	capitalised
identifiers	for	classes.

A	compound	statement	consists	of	a	sequence	of	statements	enclosed	between	braces	{	}.

Whenever	Java	syntax	requires	a	statement,	a	compound	statement	can	be	used.

Programs	need	to	be	compiled	(see	Chapter	8,	Section	8.05	for	information	on	interpreted	and
compiled	programs)	into	bytecode	and	then	run	using	the	Java	Virtual	Machine.

a

b

Java	was	designed	almost	exclusively	as	an	object-oriented	language.	All	code	is	written	inside	classes.
Only	the	simple	data	types	(such	as	integer,	real)	are	not	objects.	Strings	are	objects.

Source	files	must	be	named	after	the	public	class	they	contain,	appending	the	suffix	.java,	for	example,
Ex1.java.	It	must	first	be	compiled	into	bytecode,	using	a	Java	compiler,	producing	a	file	named
Ex1.class.	Only	then	can	it	be	executed.

The	method	name	“main”	is	not	a	keyword	in	the	Java	language.	It	is	simply	the	name	of	the	method	the
Java	launcher	calls	to	pass	control	to	the	program.

You	type	your	program	statements	into	the	Integrated	Development	Environment	(IDE)	as	shown	in
Figure	14.04,	save	the	program	code	and	then	click	on	the	Run	button	().	This	starts	the	compiler.	If
there	are	no	syntax	errors	the	compiled	program	code	will	then	run.	Output	will	be	shown	in	the	Output
window	(see	Figure	14.04).

Figure	14.04	A	Java	program	in	the	NetBeans	editor	and	running	in	the	Output	window

14.02	Programming	basics
Declaration	of	variables
Most	programming	languages	require	you	to	declare	the	type	of	data	to	be	stored	in	a	variable,	so	the
correct	amount	of	memory	space	can	be	reserved	by	the	compiler.	A	variable	declared	to	store	a	whole
number	(integer)	cannot	then	be	used	to	store	alphanumeric	characters	(strings),	or	the	other	way
around.	VB.NET	and	Java	require	variables	to	be	declared	before	they	are	used.

Python	handles	variables	differently	to	most	programming	languages.	It	tags	values.	This	is	why	Python
does	not	have	variable	declarations.

	TIP
It	is	good	programming	practice	to	include	a	comment	about	the	variables	you	are
planning	to	use	and	the	type	of	data	you	will	store	in	them.

In	pseudocode,	variable	declarations	are	written	as:
		DECLARE	<identifier>	:	<dataType>

For	example,	you	may	declare	the	following	variables:
		DECLARE	Number1	:	INTEGER	//	this	declares	Number1	to	store	a	whole	number

		DECLARE	YourName	:	STRING	//	this	declares	YourName	to	store	a

																												//	sequence	of	characters

		DECLARE	N1,	N2,	N3	:	INTEGER		//	declares	3	integer	variables

		DECLARE	Name1,	Name2	:	STRING	//	declares	2	string	variables

Syntax	definitions
The	syntax	of	variable	declarations	in	language	code	is	as	follows:

Python Python	does	not	have	variable	declarations

VB.NET Dim	<identifier>[,	<identifier>]	As	<dataType>
Each	line	of	declarations	must	start	with	the	keyword	Dim.

Java <datatype>	<identifier>[,	<identifier>];

Code	examples

Python
#	Number1	of	type	Integer
#	YourName	of	type	String
#	N1,	N2,	N3	of	type	integer;
#	Name1,	Name2	of	type	string;

There	are	no	declarations,	but
comments	should	be	made	at	the
beginning	of	a	module	(see	the	section
about	comments	at	the	end	of	Section
14.02).

VB.NET Dim	Number1	As	Integer
Dim	YourName	As	Integer
Dim	N1,	N2,	N3	As	Integer
Dim	Name1,	Name2	As	String

You	can	group	more	than	one	variable
of	the	same	type	on	the	same	line.

Java int	number1;
String	yourName;
int	n1,	n2,	n3;
String	name1,	name2;

You	can	group	more	than	one	variable
of	the	same	type	on	the	same	line.

Declaration	and	assignment	of	constants
Sometimes	we	use	a	value	in	a	solution	that	never	changes,	for	example,	the	value	of	the	mathematical
constant	pi	(π).	Instead	of	using	the	actual	value	in	program	statements,	it	is	good	practice	and	helps

readability,	if	we	give	a	constant	value	a	name	and	declare	it	at	the	beginning	of	the	program.

In	pseudocode,	constant	declarations	are	written	as:
		CONSTANT	<identifier>	=	<value>

For	example:
		CONSTANT	Pi	=	3.14

Syntax	definitions

Python <identifier>	=	<value>

VB.NET Const	<identifier>	=	<value>
Each	line	of	declarations	must	start	with	the	keyword	Const.

Java static	final	<datatype>	<identifier>	=	<value>;
Each	line	of	constant	declarations	must	start	with	the
keywords
static	final

Code	examples

Python PI	=	3.14 Python	convention	is	to	write	constant	identifiers
using	uppercase	only.	The	values	can	be	changed,
although	you	should	treat	constants	as	not
changeable.

VB.NET Const	Pi	=	3.14 The	value	of	a	constant	in	VB.NET	cannot	be
altered	within	the	program.

Java static	final	double	PI	=	3.14; The	value	of	a	constant	in	Java	cannot	be	altered
within	the	program.

Assignment	of	variables
Once	we	have	declared	a	variable,	we	can	assign	a	value	to	it	(See	Chapter	12,	Section	12.05).

In	pseudocode,	assignment	statements	are	written	as:
		<identifier>	←	<expression>

For	example:
		A	←	34

		B	←	B	+	1

Syntax	definitions	and	code	examples

Python <identifier>	=	<expression> A	=	34
B	=	B	+	1

The	assignment	operator	is	=

VB.NET <identifier>	=	<expression> A	=	34
B	=	B	+	1

The	assignment	operator	is	=

Java <identifier>	=	<expression>; A	=	34;
B	=	B	+	1;

The	assignment	operator	is	=

VB.NET	allows	you	to	initialise	a	variable	as	part	of	the	declaration	statement,	for	example:
		Dim	Number1	As	Integer	=	0

Java	allows	you	to	initialise	a	variable	as	part	of	the	declaration	statement,	for	example:
		int	number1	=	0;

VB.NET	and	Python	allow	increment	statements	such	as	B	=	B	+	1	to	be	written	as	B	+=	1.

Java	allows	increment	statements	such	as	b	=	b	+	1	to	be	written	as	b++;

Arithmetic	operators

Assignments	don’t	just	give	initial	values	to	variables.	We	also	use	an	assignment	when	we	need	to	store
the	result	of	a	calculation.	The	arithmetic	operators	used	for	calculations	are	shown	in	Table	14.01.

Operation Pseudocode Python VB.NET Java

Addition + + + +

Subtraction - - - -

Multiplication * * * *

Division / / / /	(when	dividing	float	or	double	types)

Exponent ^ ** ^ No	operator	available,	only	method:
Math.pow(n,e)

Integer	division DIV // \ /	(when	dividing	integer	types)

Modulus MOD % Mod %

Table	14.01	Arithmetic	operators

	TIP
The	result	of	integer	division	is	the	whole	number	part	of	the	division.	For	example,	7	DIV
2	gives	3.

	TIP
The	result	of	the	modulus	operation	is	the	remainder	of	a	division.	For	example,	7	MOD	2
gives	1.

When	more	than	one	operator	appears	in	an	expression,	the	order	of	evaluation	depends	on	the
mathematical	rules	of	precedence:	parentheses,	exponentiation,	multiplication,	division,	addition,
subtraction.

Question	14.01
Evaluate	each	of	the	following	expressions:
4	*	3	–	3	^	2
(4	*	3	–	3)	^	2
4	*	(3	–	3)	^	2
4	*	(3	–	3	^	2)

Outputting	information	to	the	screen
In	pseudocode,	output	statements	are	written	as:
		OUTPUT	<string>

		OUTPUT	<identifier(s)>

When	outputting	text	and	data	to	the	console	screen,	we	can	list	a	mixture	of	output	strings	and
variable	values	in	the	print	list.

Syntax	definitions

Python print(<printlist>)

print(<printlist>,	end	='')

Print	list	items	are	separated	by	commas	(,).	To	avoid	moving
onto	the	next	line	after	the	output,	use	end	='')

VB.NET Console.WriteLine(<printlist>)

Console.Write(<printlist>)

Print	list	items	are	joined	using	&.
Console.WriteLine	will	move	onto	the	next	line	after	the
output;	Console.Write	will	remain	on	the	same	line.

Java System.out.print(<printlist>);

System.out.println(<printlist>);

Print	list	items	are	joined	using	+.
System.out.println	will	move	onto	the	next	line	after	the
output;	System.out.print	will	remain	on	the	same	line.

In	the	examples	below,	the	print	list	consists	of	four	separate	items:

“Hello	”	and	“.	Your	number	is	”	are	strings	and

YourName	and	Number1	are	variables,	for	which	we	print	the	value.

In	pseudocode,	we	can	indicate	whether	a	new	line	should	be	output	at	the	end	by	a	comment	at	the
end	of	the	statement.
OUTPUT	"Hello	",	YourName,	".	Your	number	is	",	Number1	//	newline

OUTPUT	"Hello	"	//	no	new	line

Code	examples

Python print("Hello	",	YourName,
			".	Your	number	is	",	Number1)
print("Hello	",	end=	'')

VB.NET Console.WriteLine("Hello	"	&	YourName	&
			".	Your	number	is	"	&	Number1)
Console.Write("Hello")

Java System.out.println("Hello	"	+	yourName	+
			".	Your	number	is	"	+	number1);
System.out.print("Hello");

In	the	code	examples	above	you	can	see	how	output	statements	can	be	spread	over	more	than	one	line
when	they	are	very	long.	You	must	break	the	line	between	two	print	list	items.	You	cannot	break	in	the
middle	of	a	string,	unless	you	make	the	string	into	two	separate	strings.

In	Python	and	VB.NET	you	can	also	use	the	placeholder	method	for	output:	the	variables	to	be	printed
are	represented	by	sequential	numbers	in	{	}	in	the	message	string	and	the	variables	are	listed	in	the
correct	order	after	the	string,	separated	by	commas:

Python print	("Hello	{0}.	Your	number	is	{1}".format(YourName,	Number1))

VB.NET Console.WriteLine("Hello	{0}.	Your	number	is	{1}",	YourName,
Number1)

Getting	input	from	the	user
When	coding	an	input	statement,	it	is	good	practice	to	prompt	the	user	as	to	what	they	are	meant	to
enter.	For	example,	consider	the	pseudocode	statement:
		INPUT	"Enter	a	number:	"	A

Note	the	space	between	the	colon	and	the	closing	quote.	This	is	significant.	It	gives	a	space	before	the
user	types	their	input.

Code	examples

Python A	=	input("Enter	a	number:	") The	prompt	is	provided	as	a	parameter
to	the	input	function.	Single	quotes	are
also	accepted.	All	input	is	taken	to	be	a
string;	if	you	want	to	use	the	input	as	a
number	the	input	string	has	to	be
converted	using	a	function	(see	Section
14.07).

VB.NET Console.Write("Enter	a	number:	")
A	=	Console.ReadLine()

The	prompt	has	to	be	supplied	as	an
output	statement	separately.

Java import	java.util.Scanner;
Scanner	console	=	new	Scanner(System.in);
System.out.print("Enter	a	number:	");
a	=	console.next();

The	Scanner	class	has	to	be	imported
from	the	Java	library	first	and	a	scanner
object	has	to	be	created	before	it	can	be
used	to	read	an	input	string.
The	prompt	has	to	be	supplied	as	an
output	statement	separately.

Comments
It	is	good	programming	practice	to	add	comments	to	explain	code	where	necessary.

Code	examples

Python #	this	is	a	comment

#	this	is	another	comment

VB.NET '	this	is	a	comment

'	this	is	another	comment

Java //	this	is	a	comment

//	this	is	another	comment

/*	this	is	a	multi-line

			comment

*/

TASK	14.01
Use	the	IDE	of	your	chosen	programming	language	(in	future	just	referred	to	as	‘your	language’).
Type	the	program	statements	equivalent	to	the	following	pseudocode	(you	may	need	to	declare
the	variable	YourName	first):
INPUT	"What	is	your	name?	"	YourName

OUTPUT	"Have	a	nice	day	",	YourName

Save	your	program	as	Example1	and	then	run	it.	Is	the	output	as	you	expected?

14.03	Data	types
Every	programming	language	has	built-in	data	types.	Table	14.02	gives	a	subset	of	those	available.	The
number	of	bytes	of	memory	allocated	to	a	variable	of	the	given	type	is	given	in	brackets	for	VB.NET	and
Java.

Description	of
data

Pseudocode Python VB.NET Java

Whole	signed
numbers

INTEGER int Integer	(4	bytes) int	(4	bytes)

Signed	numbers
with	a	decimal
point

REAL float Single	(4	bytes)
Double	(8	bytes)

float	(4	bytes)
double	(8	bytes)

A	single	character CHAR

Use	single	(')
quotation	marks	to
delimit	a	character

Not	available Char	(2	bytes	–
Unicode)

char	(2	bytes	–
Unicode)

A	sequence	of
characters	(a
string)

STRING

Use	double	(")
quotation	marks	to
delimit	a	string.

str	(stored	as
ASCII	but	Unicode
strings	are	also
available)
Use	single	('),
double	(")	or	triple
('''	or	""")
quotation	marks	to
delimit	a	string.

String	(2	bytes	per
character)
Use	double	(")
quotation	marks	to
delimit	a	string.

String

(2	bytes	per
character)
Use	double	(")
quotation	marks	to
delimit	a	string.

Logical	values:
True	(represented
as	1)	and
False	(represented
as	0)

BOOLEAN bool

possible	values:
True

False

Boolean	(2	bytes)
possible	values:
True

False

Boolean

possible	values:
true

false

Table	14.02	Simple	data	types

In	Python,	a	single	character	is	represented	as	a	string	of	length	1.

In	VB.NET,	each	character	in	a	string	requires	two	bytes	of	memory	and	each	character	is	represented
in	memory	as	Unicode	(in	which,	the	values	from	1	to	127	correspond	to	ASCII).

Date	has	various	internal	representations	but	is	output	in	conventional	format.

Description	of
data

Pseudocode Python VB.NET Java

Date	value DATE Use	the	datetime
class

Date	(8
bytes)

Date	is	a	class	in	Java.	To	make	use
of	it	use:
import	java.util.Date;

Table	14.03	The	Date	data	types

In	Python	and	Java,	date	is	not	available	as	a	built-in	data	type.	Date	is	provided	as	a	class	(see	Table
14.03).

VB.NET	stores	dates	and	times	from	1.1.0001	(0	hours)	to	31.12.9999	(23:59:59	hours)	with	a
resolution	of	100	nanoseconds	(this	unit	is	called	a	‘tick’).	Floating-point	(decimal)	numbers	are	stored
in	binary-coded	decimal	format	(see	Section	1.02).

There	are	many	more	data	types.	Programmers	can	also	design	and	declare	their	own	data	types	(see
Chapter	16	(Section	16.01)	and	Chapter	26	(Section	26.01).

TASK	14.02

Look	at	the	identifier	tables	in	Chapter	12	(Tables	12.02	and	12.04	to	12.12).	Decide	which
data	type	from	your	language	is	appropriate	for	each	variable	listed.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.01	in	Chapter	12.

1

2

14.04	Boolean	expressions
In	Chapter	12	(Section	12.06),	we	covered	logic	statements.	These	were	statements	that	included	a
condition.	Conditions	are	also	known	as	Boolean	expressions	and	evaluate	to	either	True	or	False.	True
and	False	are	known	as	Boolean	values.

Simple	Boolean	expressions	involve	comparison	operators	(see	Table	14.04).	Complex	Boolean
expressions	also	involve	Boolean	operators	(see	Table	14.05).

Operation Pseudocode Python VB.NET Java

equal = == = ==

not	equal <> != <> !=

greater	than > > > >

less	than < < < <

greater	than	or	equal	to >= >= >= >=

less	than	or	equal	to <= <= <= <=

Table	14.04	Comparison	operators

Operation Pseudocode Python VB.NET Java

AND	(logical	conjunction) AND and And &&

OR	(logical	inclusion) OR or Or ||

NOT	(logical	negation) NOT not Not !

Table	14.05	Boolean	operators

14.05	Selection
IF...THEN	statements
In	pseudocode	the	IF...THEN	construct	is	written	as:

IF	<Boolean	expression>
		THEN
				<statement(s)>
ENDIF

Syntax	definitions

Python if	<Boolean	expression>:
		<statement(s)>

Note	that	the	THEN	keyword	is	replaced
by	a	colon	(:).	Indentation	is	used	to
show	which	statements	form	part	of	the
conditional	statement.

VB.NET If	<Boolean	expression>	Then
		<statement(s)>
End	If

Note	the	position	of	Then	on	the	same
line	as	the	Boolean	expression.	The	End
If	keywords	should	line	up	with	the	If
keyword.

Java if	(<Boolean	expression>)
		<statement>;

Note	that	the	Boolean	expression	is
enclosed	in	brackets.
If	more	than	one	statement	is	required
as	part	of	the	conditional	statement,	the
statements	must	be		enclosed	in	braces
{		}.

Pseudocode	example:
IF	x	<	0
		THEN
				OUTPUT	"Negative"
ENDIF

Code	examples

Python if	x	<	0:
		print("Negative")

VB.NET If	x	<	0	Then
		Console.WriteLine("Negative")
End	If

Java if	(x	<	0)
		System.out.println("Negative");

TASK	14.03
Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.03	in	Chapter	12.

IF...THEN...ELSE	statements
In	pseudocode,	the	IF...THEN...ELSE	construct	is	written	as:

IF	<Boolean	expression>
		THEN
				<statement(s)>
		ELSE
				<statement(s)>
ENDIF

Syntax	definitions

Python if	<Boolean	expression>:
		<statement(s)>
else:
		<statement(s)>

Indentation	is	used	to	show	which
statements	form	part	of	the	conditional
statement;	the	else	keyword	must	line
up	with	the	corresponding	if	keyword.

VB.NET If	<Boolean	expression>	Then
		<statement(s)>
Else
		<statement(s)>
End	If

The	Else	keyword	is	on	its	own	on	a
separate	line.	It	is	good	programming
practice	to	line	it	up	with	the
corresponding	If	keyword	and	indent
the	statements	within	the	conditional
statement.

Java if	(<Boolean	expression>)
		<statement>;
else
		<statement>;

If	more	than	one	statement	is	required
in	the	else	part	of	the	statement,	the
statements	must	be	enclosed	in	braces
{		}.

Pseudocode	example:
IF	x	<	0
		THEN
				OUTPUT	"Negative"
		ELSE
				OUTPUT	"Positive"
ENDIF

Code	examples

Python if	x	<	0:
		print("Negative")
else:
		print("Positive")

VB.NET If	x	<	0	Then
		Console.WriteLine("Negative")
Else
		Console.WriteLine("Positive")
End	If

Java if	(x	<	0)
		System.out.println("Negative");
else
		System.out.println("Positive");

Nested	IF	statements
In	pseudocode,	the	nested	IF	statement	is	written	as:

IF	<Boolean	expression>
		THEN
				<statement(s)>
		ELSE
				IF	<Boolean	expression>
						THEN
								<statement(s)>
						ELSE
								<statement(s)>
				ENDIF
ENDIF

Syntax	definitions

Python if	<Boolean	expression>:
		<statement(s)>
elif	<Boolean	expression>:

Note	the	keyword	elif	(an	abbreviation
of	else	if).	This	keyword	must	line	up

		<statement(s)>
else:
		<statement(s)>

with	the	corresponding	if.
There	can	be	as	many	elif	parts	to	this
construct	as	required.

VB.NET If	<Boolean	expression>	Then
		<statement(s)>
ElseIf
		<statement(s)>
Else
		<statement(s)>
End	If

If	ElseIf	is	used	as	one	word,	only	one
End	If	is	required	at	the	end	of	this
construct.
There	can	be	as	many	ElseIf	parts	as
required.

Java if	(<Boolean	expression>)
		<statement>;
else	if	(<Boolean	expression>)
		<statement>;
else
		<statement>;

	

Pseudocode	example:
IF	x	<	0
		THEN
				OUTPUT	"Negative"
		ELSE
				IF	x	=	0
						THEN
								OUTPUT	"Zero"
						ELSE
								OUTPUT	"Positive"
				ENDIF
ENDIF

Code	examples

Python if	x	<	0:
		print("Negative")
elif	x	==	0:
			print("Zero")
else:
			print("Positive")

VB.NET If	x	<	0	Then
			Console.WriteLine("Negative")
ElseIf	x	=	0	Then
			Console.WriteLine("Zero")
Else
			Console.WriteLine("Positive")
End	If

Java if	(x	<	0)
{
			System.out.println('Negative');
}
else	if	(x	==	0)
{
			System.out.println('Zero');
}
else
{
			System.out.println('Positive');
}

TASK	14.04
Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.02	in	Chapter	12.

CASE	statements

An	alternative	selection	construct	is	the	CASE	statement.	Each	considered	CASE	condition	can	be:

a	single	value

single	values	separated	by	commas

a	range.

In	pseudocode,	the	CASE	statement	is	written	as:
CASE	OF	<expression>
		<value1>	            :	<statement(s)>
		<value2>,<value3>	   :	<statement(s)>
		<value4>	TO	<value5>	:	<statement(s)>
		.
		.
		OTHERWISE	<statement(s)>
ENDCASE

The	value	of	<expression>	determines	which	statements	are	executed.	There	can	be	as	many	separate
cases	as	required.	The	OTHERWISE	clause	is	optional	and	useful	for	error	trapping.

Syntax	definitions

Python Python	does	not	have	a	CASE	statement.	You	need	to	use	nested	If
statements	instead.

VB.NET Select	Case	<expression>
		Case	value1
				<statement(s)>
		Case	value2,value3
				<statement(s)>
		Case	value4	To	value5
				<statement(s)>
		.
		.
			.
		Case	Else
				<statement(s)>
End	Select

Java switch	(<expression>)
{
		case	value1:
				<statement(s)>;
				break;
		case	value2:	case	value3:
				<statement(s)>;
				break;
		.
		.
		.
		default:	<statement(s)>;
}

In	pseudocode,	an	example	CASE	statement	is:
CASE	OF	Grade
		"A"						:	OUTPUT	"Top	grade"
		"F",	"U"	:	OUTPUT	"Fail"
		"B".."E"	:	OUTPUT	"Pass"
OTHERWISE	OUTPUT	"Invalid	grade"
ENDCASE

Code	examples

Python if	Grade	==	"A":
		print("Top	grade")
elif	Grade	==	"F"	or	Grade	==	"U":

		print("Fail")
elif	Grade	in	("B",	"C",	"D",	"E"):
		print("Pass")
else:
		print("Invalid	grade")

VB.NET Select	Case	Grade
		Case	"A"
				Console.WriteLine("Top	grade")
		Case	"F","U"
				Console.WriteLine("Fail")
		Case	"B"	To	"E"
				Console.WriteLine("Pass")
		Case	Else
				Console.WriteLine("Invalid	grade")
End	Select

Java switch	(grade)
{
		case	'A':
				System.out.println("Top	Grade");
				break;
		case	'F':	case	'U':
				System.out.println("Fail");
				break;
		case	'B':	case	'C':	case	'D':	case	'E':
				System.out.println("Pass");
				break;
		default:
				System.out.println("Invalid	grade");
}

TASK	14.05
The	problem	to	be	solved:	the	user	enters	the	number	of	the	month	and	year.	The	output	is	the
number	of	days	in	that	month.	The	program	has	to	check	if	the	year	is	a	leap	year	for	February.

The	pseudocode	solution	is:
INPUT	MonthNumber

INPUT	Year

Days	←	0

CASE	OF	MonthNumber

		CASE	1,3,5,7,8,10,12	:	Days	←	31

		CASE	4,6,9,11	:	Days	←	30

		CASE	2	:	Days	←	28

				If	Year	MOD	400	=	0

						THEN	//	it	is	a	leap	year

								Days	←	29

				ENDIF

				IF	(Year	MOD	4	=	0)	AND	(Year	MOD	100	>	0)

						THEN	//	it	is	a	leap	year

								Days	←	29

				ENDIF

		OTHERWISE	OUTPUT	"Invalid	month	number"
ENDCASE

OUTPUT	Days

Write	program	code	to	implement	the	pseudocode	above.

14.06	Iteration
Count-controlled	(FOR)	loops
In	pseudocode,	a	count-controlled	loop	is	written	as:

FOR	<control	variable>	←	s	TO	e	STEP	i	//	STEP	is	optional
				<statement(s)>
NEXT	<control	variable>

The	control	variable	starts	with	value	s,	increments	by	value	i	each	time	round	the	loop	and	finishes
when	the	control	variable	reaches	the	value	e.

Syntax	definitions

Python for	<control	variable>	in
range(s,	e,	i):
				<statement(s)>

The	values	s,	e	and	i	must	be	of
type	integer.
The	loop	finishes	when	the
control	variable	is	just	below	e.
The	values	for	s	and	i	can	be
omitted	and	they	default	to	0
and	1,	respectively.

VB.NET For	<control	variable>	=	s
To	e	Step	i
				<statement(s)>
Next

The	values	s,	e	and	i	can	be	of
type	integer	or	float.

Java for	(int	i	=	s;	i	<	e;	i++)
				<statement>;

Where	i	is	the	control	variable.

In	pseudcode,	examples	are:
FOR	x	←	1	TO	5

				OUTPUT	x

NEXT	x

FOR	x	=	2	TO	14	STEP	3

				OUTPUT	x

NEXT	x

FOR	x	=	5	TO	1	STEP	-1

				OUTPUT	x

NEXT	x

Code	examples

Python for	x	in	range(5):
				print(x,	end='	')

The	start	value	of	x	is	0	and	it	increases	by	1	on	each	iteration.
Output:	0	1	2	3	4

for	x	in	range(2,	14,	3):
				print(x,	end='	')

Output:	2	5	8	11

for	x	in	range(5,	1,	-1):
				print(x,	end='	')

The	start	value	of	x	is	5	and	it	decreases	by	1	on	each	iteration.
Output:	5	4	3	2

for	x	in	["a",	"b",	"c"]:
				print(x,	end='')

The	control	variable	takes	the	value	of	each	of	the	group
elements	in	turn.
Output:	abc

VB.NET For	x	=	1	To	5
				Console.Write(x)
Next

Output:	1	2	3	4	5

For	x	=	2	To	14	Step	3 Output:	2	5	8	11	14

				Console.Write(x)
Next

For	x	=	5	To	1	Step	-1
				Console.Write(x)
Next

Output:	5	4	3	2	1

For	x	=	1	To	2.5	Step	0.5
				Console.WriteLine(x)
Next

Output:
1
1.5
2
2.5

For	Each	x	In	{"a",	"b",	"c"}
				Console.Write(x)
Next

The	control	variable	takes	the	value	of	each	of	the	group
elements	in	turn.
Output:	abc

Java for	(int	x	=	1;	x	<	6;	x++)
{
				System.out.print(x);
}

Output:	12345

for	(int	x	=	2;	x	<	15;	x	=	x
+	3)
{
				System.out.print(x	+
"		");
}

Output:	2		5		8		11		14

for	(int	x	=	5;	x	>	0;	x--)
{
				System.out.print(x	+
"		");
}

Output:	5		4		3		2		1

for	(double	x	=	1;	x	<	3;	x	=
x	+	0.5)
{
				System.out.print(x	+
"		");
}

Output:	1.0		1.5		2.0		2.5

char[]	letter	=	{'a',	'b',
'c'};
for	(char	x	:	letter)
{
			System.out.print(x);
}

The	control	variable	takes	the	value	of	each	of	the	group
elements	in	turn.
Output:	abc

TASK	14.06

Post-condition	loops
A	post-condition	loop,	as	the	name	suggests,	executes	the	statements	within	the	loop	at	least	once.
When	the	condition	is	encountered,	it	is	evaluated.	As	long	as	the	condition	evaluates	to	False,	the
statements	within	the	loop	are	executed	again.	When	the	condition	evaluates	to	True,	execution	will	go
to	the	next	statement	after	the	loop.

When	coding	a	post-condition	loop,	you	must	ensure	that	there	is	a	statement	within	the	loop	that	will
at	some	point	change	the	end	condition	to	True.	Otherwise	the	loop	will	execute	forever.

In	pseudocode,	the	post-condition	loop	is	written	as:

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.05	in	Chapter	12.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.08	in	Chapter	12.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.09	in	Chapter	12.

1

2

3

REPEAT
				<statement(s)>
UNTIL	<condition>

Syntax	definitions

Python Post-condition	loops	are	not	available	in	Python.	Use	a
pre-condition	loop	instead.

VB.NET Do
				<statement(s)>
Loop	Until	<condition>

Java do
{
				<statement(s)>
}	while	<condition>;

Pseudocode	example:
REPEAT
				INPUT	"Enter	Y	or	N:	"	Answer
UNTIL	Answer	=	"Y"

Code	examples

VB.NET Do
			Console.Write("Enter	Y	or	N:	")
			Answer	=	Console.ReadLine()
Loop	Until	Answer	=	"Y"

Java do
{
			System.out.print("Enter	Y	or	N:	");
			answer	=	console.next();
}	while		(!(answer.equals("Y")));

TASK	14.07

Pre-condition	loops
Pre-condition	loops,	as	the	name	suggests,	evaluate	the	condition	before	the	statements	within	the	loop
are	executed.	Pre-condition	loops	will	execute	the	statements	within	the	loop	as	long	as	the	condition
evaluates	to	True.	When	the	condition	evaluates	to	False,	execution	will	go	to	the	next	statement	after
the	loop.	Note	that	any	variable	used	in	the	condition	must	not	be	undefined	when	the	loop	structure	is
first	encountered.

When	coding	a	pre-condition	loop,	you	must	ensure	that	there	is	a	statement	within	the	loop	that	will	at
some	point	change	the	value	of	the	controlling	condition.	Otherwise	the	loop	will	execute	forever.

In	pseudocode	the	pre-condition	loop	is	written	as:
WHILE	<condition>	DO
				<statement(s)>
ENDWHILE

Syntax	definitions

Python while	<condition>:
				<statement(s)>

Note	that	statements	within	the	loop
must	be	indented	by	a	set	number	of
spaces.	The	first	statement	after	the

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.04	in	Chapter	12.

Write	program	code	to	implement	the	first	algorithm	from	Worked	Example	12.06	in	Chapter
12.

1

2

loop	must	be	indented	less.

VB.NET Do	While	<condition>
				<statement(s)>
Loop
Do	Until	<condition>
				<statement(s)>
Loop

Note	the	keyword	Loop	indicates	the	end
of	the	loop.
VB.NET	also	has	a	pre-condition	Until
loop.	This	will	execute	the	statements
within	the	loop	as	long	as	the	condition
evaluates	to	False.	If	the	condition
evaluates	to	True	when	the	loop	is	first
encountered,	the	statements	within	the
loop	are	not	executed	at	all.

Java while	(<condition>)
{
				<statement(s)>;
}

	

Pseudocode	example,
Answer	←	""
WHILE	Answer	<>	"Y"	DO
				INPUT	"Enter	Y	or	N:	"	Answer
ENDWHILE

Code	examples

Python Answer	=	''
while	Answer	!=	'Y':
			Answer	=	input("Enter	Y	or	N:	")

VB.NET Dim	Answer	As	String	=	""
Do	While	Answer	<>	"Y"
			Console.Write("Enter	Y	or	N:	")
			Answer	=	Console.ReadLine()
Loop
Answer	=	""
Do	Until	Answer	=	"Y"
			Console.Write("Enter	Y	or	N:	")
			Answer	=	Console.ReadLine()
Loop

Java String	answer	=	"";
while(answer.equals("Y")	==	false)
{
			System.out.print("Enter	Y	or	N:	");
			answer	=	console.next();
}

TASK	14.08
Write	program	code	to	implement	the	second	algorithm	from	Worked	Example	12.06	in	Chapter
12.

Which	loop	structure	to	use?
If	you	know	how	many	times	around	the	loop	you	need	to	go	when	the	program	execution	gets	to	the
loop	statements,	use	a	count-controlled	loop.	If	the	termination	of	the	loop	depends	on	some	condition
determined	by	what	happens	within	the	loop,	then	use	a	conditional	loop.	A	pre-condition	loop	has	the
added	benefit	that	the	loop	may	not	be	entered	at	all,	if	the	condition	does	not	require	it.

	TIP
Computer	Scientists	like	efficient	code.	Choosing	the	most	suitable	types	of	selection
statements	and	loop	structures	is	an	important	step	along	the	way	to	design	efficient

code.

14.07	Built-in	functions
Programming	environments	provide	many	built-in	functions.	Some	of	them	are	always	available	to	use;
some	need	to	be	imported	from	specialist	module	libraries.

Discussion	Point:
Investigate	your	own	programming	environment	and	research	other	library	routines.

String	manipulation	functions
Table	14.06	contains	some	useful	functions	for	manipulating	strings.

Description Pseudocode Python VB.NET Java

Access	a	single	character
using	its	position	P	in	a
string	ThisString

ThisString[P]

Counts	from	1
ThisString[P]

Counts	from	0
ThisString(P)

Counts	from	0
ThisString.charAt(P)

Counts	from	0

Returns	the	character
whose	ASCII	value	is	i

CHR(i	:	INTEGER)
RETURNS	CHAR

chr(i) Chr(i) (char)	i;

Returns	the	ASCII	value	of
character	ch

ASC(ch)	RETURNS
INTEGER

ord(ch) Asc(ch) (int)	ch;

Returns	the	integer	value
representing	the	length	of
string	S

LENGTH(S	:
STRING)
RETURNS	INTEGER

len(S) len(S) S.length();

Returns	leftmost	L
characters	from	S

LEFT(S	:	STRING,	
L	:	INTEGER)
RETURNS	STRING

S[0:L]

See	the	next
section,	on
slicing

Left(S,	L) S.subString	(0,	L)

Returns	rightmost	L
characters	from	S

RIGHT(S:	STRING,	
L	:	INTEGER)
RETURNS	STRING

S[-L:]

See	the	next
section,	on
slicing

Right(S,	L) S.subString	(S.length()	–
L)

Returns	a	string	of	length
L	starting	at	position	P
from	S

MID(S	:	STRING,	P
:	INTEGER,	L	:
INTEGER)	RETURNS
STRING

S[P	:	P	+	L]

See	the	next
section,	on
slicing

mid(S,	P,	L) S.subString(P,	P	+	L)

Returns	the	character
value	representing	the
lower	case	equivalent	of
Ch

LCASE(Ch	:	CHAR)
RETURNS	CHAR

Ch.lower() LCase(Ch) Character.toLowerCase(ch)

Returns	the	character
value	representing	the
upper	case	equivalent	of
Ch

UCASE(Ch	:	CHAR)
RETURNS	CHAR

Ch.upper() UCase(Ch) Character.toUpperCase(ch)

Returns	a	string	formed	by
converting	all	alphabetic
characters	of	S	to	upper
case

TO_UPPER(S	:
STRING)	RETURNS
STRING

S.upper() S.ToUpper S.toUpperCase()

Returns	a	string	formed	by
converting	all	alphabetic
characters	of	S	to	lower

TO_LOWER(S	:
STRING)	RETURNS
STRING

S.lower() S.ToLower S.toLowerCase()

case

Concatenate	(join)	two
strings

S1	&	S2 s	=	S1	+	S2 s	=	S1	+	S2
s	=	S1	&	S2

s	=	S1	+	S2;

Table	14.06	Some	useful	string	manipulation	functions

Slicing	in	Python
In	Python	a	subsequence	of	any	sequence	type	(e.g.	lists	and	strings)	can	be	created	using	‘slicing’.

For	example,	to	get	a	substring	of	length	L	from	position	P	in	string	S	we	write	S[P	:	P	+	L].

Figure	13.05	shows	a	representation	of	ThisString.	If	we	want	to	return	a	slice	of	length	3	starting	at
position	3,	we	use	ThisString[3	:	6]		to	give	‘DEF’.	Position	is	counted	from	0	and	the	position	at	the
upper	bound	of	the	slice	is	not	included	in	the	substring.

Figure	14.05	A	representation	of	ThisString

If	you	imagine	the	numbering	of	each	element	to	start	at	the	left-hand	end	(as	shown	in	Figure	14.05),
then	it	is	easier	to	see	how	the	left	element	(the	lower	bound)	is	included,	but	the	right	element	(the
upper	bound)	is	excluded.	Table	14.07	shows	some	other	useful	slices	in	Python.

Expression Result Explanation

ThisString[2:] CDEFG If	you	do	not	state	the	upper	bound,	the
slice	includes	all	characters	to	the	end
of	the	string.

ThisString[:2] AB If	you	do	not	state	the	lower	bound,	the
slice	includes	all	characters	from	the
beginning	of	the	string.

ThisString[-2:] FG A	negative	lower	bound	means	that	it
takes	the	slice	starting	from	the	end	of
the	string.

ThisString[:-2] ABCDE A	negative	upper	bound	means	that	it
terminates	the	string	at	that	position.

Table	14.07	Some	useful	slices	in	Python

Truncating	numbers
Instead	of	rounding,	sometimes	we	just	want	the	whole	number	part	of	a	real	number.

This	is	known	as	‘truncation’.

Pseudocode INT(x	:	REAL)	RETURNS
INTEGER

Returns	the	integer	part	of	x.

Python int(x) If	x	is	a	floating-point	number,	the	conversion	truncates
towards	zero.

VB.NET Math.Truncate(x) The	whole	number	part	of	the	real	number	x	is	returned.

Java (int)	x; Casts	the	number	as	an	integer.

Converting	a	string	to	a	number
Sometimes	a	whole	number	may	be	held	as	a	string.	To	use	such	a	number	in	a	calculation,	we	first

need	to	convert	it	to	an	integer.	For	example,	these	functions	return	the	integer	value	5	from	the	string
"5":

Python int(S)

VB.NET CInt(S)

Java Integer.valueOf(S)

Sometimes	a	number	with	a	decimal	point	may	be	held	as	a	string.	To	use	such	a	number	in	a
calculation,	we	first	need	to	convert	it	to	a	real	(float).	For	example,	these	functions	return	the	real
number	75.43	from	the	string	"75.43":

Pseudocode STRING_TO_NUM(x	:	STRING)	RETURNS	REAL Returns	a	numeric	representation	of	a	string.

Python float(x) The	returned	value	is	a	floating-point	number.

VB.NET CDbl(x) The	returned	value	is	of	type	double.

Java Float.valueOf(x) The	returned	value	is	a	floating-point	number.

Random	number	generator
Random	numbers	are	often	required	for	simulations.	Most	programming	languages	have	various
random	number	generators	available.	As	the	random	numbers	are	generated	through	a	program,	they
are	referred	to	as	‘pseudo-random’	numbers.	A	selection	of	the	most	useful	random	number	generators
are	shown	in	the	following	code	examples.

Code	examples

Python #	in	the	random	library:
randint(1,	6)

This	code	produces	a	random	number
between	1	and	6	inclusive.

VB.NET Dim	RandomNumber	As	New	Random
Dim	x	As	Integer
x	=	RandomNumber.Next(1,	6)

You	have	to	set	up	a	RandomNumber
object	(see	Chapter	27).	This	code
generates	an	integer	between	1
(inclusive)	and	6	(exclusive).

Java import	java.util.Random;
Random	randomNumber	=	new	Random();
int	x	=	randomNumber.nextInt(6)	+	1;

You	have	to	set	up	a	RandomNumber
object	(see	Chapter	27).	This	code
generates	an	integer	between	1
(inclusive)	and	6	(inclusive).

TASK	14.09

Discussion	Point:
What	other	useful	functions	can	you	find?	Which	module	libraries	have	you	searched?

Write	program	code	to	generate	20	random	numbers	in	the	range	1	to	10	inclusive.

Write	program	code	to	implement	the	pseudocode	using	a	pre-condition	loop	from	Worked
Example	12.07	in	Chapter	12.

1

2

14.08	Procedures
In	Chapter	12	(Section	12.09),	we	used	procedures	as	a	means	of	giving	a	group	of	statements	a	name.
When	we	want	to	program	a	procedure	we	need	to	define	it	before	the	main	program.	We	call	it	in	the
main	program	when	we	want	the	statements	in	the	procedure	body	to	be	executed.

In	pseudocode,	a	procedure	definition	is	written	as:
PROCEDURE	<procedureIdentifier>	//	this	is	the	procedure	header

				<statement(s)>			//	these	statements	are	the	procedure	body

ENDPROCEDURE

This	procedure	is	called	using	the	pseudocode	statement:
			CALL	<procedureIdentifier>

Syntax	definitions

Python def	<identifier>():
				<statement(s)>

VB.NET Sub	<identifier>()
				<statement(s)>
End	Sub

Java void	<identifier>()
{
				<statement(s)>;
}

When	programming	a	procedure,	note	where	the	definition	is	written	and	how	the	procedure	is	called
from	the	main	program.

Here	is	an	example	pseudocode	procedure	definition:
PROCEDURE	InputOddNumber
				REPEAT
								INPUT	"Enter	an	odd	number:	"	Number
				UNTIL	Number	MOD	2	=	1
				OUTPUT	"Valid	number	entered"
ENDPROCEDURE

This	procedure	is	called	using	the	CALL	statement:
CALL	InputOddNumber

Code	examples

Python

Figure	14.06	The	Python	editor	with	a	procedure

The	Python	editor	colour-codes	the	different	parts	of	a	statement.	This	helps
when	you	are	typing	your	own	code.	The	indentation	shows	which	statements	are
part	of	the	loop.
The	built-in	function	input	returns	a	string,	which	must	be	converted	to	an	integer

before	it	can	be	used	as	a	number.

VB.NET

Figure	14.07	The	Visual	Basic	Express	editor	with	a	procedure

The	Visual	Basic	Express	editor	colour-codes	different	parts	of	the	statement,	so
it	is	easy	to	see	if	syntax	errors	are	made.	The	editor	also	auto-indents	and
capitalises	keywords.
Variables	need	to	be	declared	before	they	are	used.	The	editor	will	follow	the
capitalisation	of	the	variable	declaration	when	you	type	an	identifier	without
following	your	original	capitalisation.
The	editor	is	predictive:	pop-up	lists	will	show	when	you	type	the	first	part	of	a
statement.
When	you	execute	the	Main	program,	Console.ReadLine()	keeps	the	run-time
window	open.

Java

Figure	14.08	The	NetBeans	editor	with	a	void	method

The	editor	automatically	colour	codes	keyword	and	strings.
The	procedure	body	is	enclosed	within	braces	{	and	}.
The	editor	is	predictive:	pop-up	lists	will	show	when	you	type	the	first	part	of	a
statement.

Variables	need	to	be	declared	before	they	are	used.

TASK	14.10
Write	program	code	to	implement	the	pseudocode	from	Worked	Example	12.11	in	Chapter	12.

14.09	Functions
In	Section	14.07	we	used	built-in	functions.	These	are	useful	subroutines	written	by	other	programmers
and	made	available	in	module	libraries.	The	most-used	ones	are	usually	in	the	system	library,	so	are
available	without	you	having	to	import	them.

You	can	write	your	own	functions.	Any	function	you	have	written	can	be	used	in	another	program	if	you
build	up	your	own	module	library.

A	function	is	used	as	part	of	an	expression.	When	program	execution	gets	to	the	statement	that	includes
a	function	call	as	part	of	the	expression,	the	function	is	executed.	The	return	value	from	this	function
call	is	then	used	in	the	expression.

When	writing	your	own	function,	ensure	you	always	return	a	value	as	part	of	the	statements	that	make
up	the	function	(the	function	body).	You	can	have	more	than	one	RETURN	statement	if	there	are
different	paths	through	the	function	body.

In	pseudocode,	a	function	definition	is	written	as:
FUNCTION	<functionIdentifier>	RETURNS	<dataType>	//	function	header
				<statement(s)>	//	function	body
				RETURN	<value>
ENDFUNCTION

Syntax	definitions

Python def	<functionIdentifier>():
				<statement(s)>
				return	<value>

VB.NET Function	<functionIdentifier>()	As	<dataType>
				<statement(s)>
				<functionIdentifier>	=	<value>	'Return	<value>
End	Function

Java <data	type>	<functionIdentifier>()
{
				<statement(s)>;
				return	<value>;
}

When	programming	a	function,	the	definition	is	written	in	the	same	place	as	a	procedure.	The	function
is	called	from	within	an	expression	in	the	main	program,	or	in	a	procedure.

Different	programming	languages	use	different	terminology	for	their	subroutines,	as	listed	in	Table
14.08.

Pseudocode PROCEDURE FUNCTION

Python void	function fruitful	function

VB Subroutine Function

Java void	method method

Table	14.08	Programming	language	terminology	for	subroutines

Void	means	‘nothing’.	Both	Python	and	Java	use	this	term	to	show	that	their	procedure-type	subroutine
does	not	return	a	value.	Python	refers	to	both	types	of	subroutines	as	functions.	The	fruitful	function
returns	one	or	more	values.

We	can	write	the	example	procedure	from	Section	14.09	as	a	function.	In	pseudocode,	this	is:
FUNCTION	InputOddNumber	RETURNS	INTEGER
				REPEAT
								INPUT	"Enter	an	odd	number:	"	Number
				UNTIL	Number	MOD	2	=	1
				OUTPUT	"Valid	number	entered"
				RETURN	Number

ENDFUNCTION

Code	examples

Python

Figure	14.09	The	Python	editor	with	a	function	and	local	variable

The	variable	Number	in	Figure	14.09	is	not	accessible	in	the	main	program.	Python’s	variables
are	local	unless	declared	to	be	global.

VB.NET
(a)	

(b)	

Figure	14.10	The	VB.NET	editor	with	(a)	global	variables	and	(b)	a	local	variable

The	variable	Number	in	Figure	14.10(a)	is	declared	as	a
global	variable	at	the	start	of	the	module.	This	is	not
good	programming	practice.

In	Figure	14.10(b),	the	variable
Number	is	declared	as	a	local	variable
within	the	function.

Java

Figure	14.11	The	NetBeans	editor	with	a	function	and	local	variable

The	variable	number	in	Figure	14.11	is	not	accessible	in	the	main	program.

A	global	variable	is	available	in	any	part	of	the	program	code.	It	is	good	programming	practice	to
declare	a	variable	that	is	only	used	within	a	subroutine	as	a	local	variable.

In	Python,	every	variable	is	local,	unless	it	is	overridden	with	a	global	declaration.	In	VB.NET	you	need

to	write	the	declaration	statement	for	a	local	variable	within	the	subroutine.	Java	does	not	support
global	variables.	However,	static	variables	declared	in	a	class	are	accessible	throughout	the	class.

TASK	14.11
Write	program	code	to	implement	the	pseudocode	from	Worked	Example	13.05	in	Chapter	13.
Which	variables	are	global	and	which	are	local?

14.10	Passing	parameters	to	subroutines
When	a	subroutine	requires	one	or	more	values	from	the	main	program,	we	supply	these	as	arguments
to	the	subroutine	at	call	time.	This	is	how	we	use	built-in	functions.	We	don’t	need	to	know	the
identifiers	used	within	the	function	when	we	call	a	built-in	function.

When	we	define	a	subroutine	that	requires	values	to	be	passed	to	the	subroutine	body,	we	use	a
parameter	list	in	the	subroutine	header.	When	the	subroutine	is	called,	we	supply	the	arguments	in
brackets.	The	arguments	supplied	are	assigned	to	the	corresponding	parameter	of	the	subroutine
(note	the	order	of	the	parameters	in	the	parameter	list	must	be	the	same	as	the	order	in	the	list	of
arguments).	This	is	known	as	the	subroutine	interface.

14.11	Passing	parameters	to	functions
The	function	header	is	written	in	pseudocode	as:

				FUNCTION	<functionIdentifier>	(<parameterList>)	RETURNS	<dataType>

where	<parameterList>	is	a	list	of	identifiers	and	their	data	types,	separated	by	commas.

Here	is	an	example	pseudocode	function	definition	that	uses	parameters:
FUNCTION	SumRange(FirstValue	:	INTEGER,	LastValue	:	INTEGER)	RETURNS	INTEGER
				DECLARE	Sum,	ThisValue	:	INTEGER
				Sum	←	0
				FOR	ThisValue	←	FirstValue	TO	LastValue
								Sum	←	Sum	+	ThisValue
				NEXT	ThisValue
				RETURN	Sum
ENDFUNCTION

Code	examples

Python

Figure	14.12	The	SumRange()	function	in	Python

VB.NET

Figure	14.13	The	SumRange()	function	in	VB.NET

Java

Figure	14.14	The	SumRange()	function	in	Java

TASK	14.12
Write	a	function	to	implement	the	following	pseudocode:
FUNCTION	Factorial	(Number	:	INTEGER)	RETURNS	INTEGER

				DECLARE	Product	:	INTEGER

				Product	←	1

				FOR	n	←	2	TO	Number

								Product	←	Product	*	n

				NEXT	n

				RETURN	Product

ENDFUNCTION

14.12	Passing	parameters	to	procedures
If	a	parameter	is	passed	by	value,	at	call	time	the	argument	can	be	an	actual	value	(as	we	showed	in
the	code	examples	in	Section	14.11).	If	the	argument	is	a	variable,	then	a	copy	of	the	current	value	of
the	variable	is	passed	into	the	subroutine.	The	value	of	the	variable	in	the	calling	program	is	not
affected	by	what	happens	in	the	subroutine.

For	procedures,	a	parameter	can	be	passed	by	reference.	At	call	time,	the	argument	must	be	a
variable.	A	pointer	to	the	memory	location	(the	address)	of	that	variable	is	passed	into	the	procedure.
Any	changes	that	are	applied	to	the	variable’s	contents	will	be	effective	outside	the	procedure	in	the
calling	program/module.

Note	that	neither	of	these	methods	of	parameter	passing	applies	to	Python.	In	Python	or	Java,	the
method	is	called	pass	by	object	reference.	This	is	basically	an	object-oriented	way	of	passing
parameters	and	is	beyond	the	scope	of	this	chapter	(objects	are	dealt	with	in	Chapter	27).	The
important	point	is	to	understand	how	to	program	in	Python	and	Java	to	get	the	desired	effect.

The	full	procedure	header	is	written	in	pseudocode,	in	a	very	similar	fashion	to	that	for	function
headers,	as:

PROCEDURE	<ProcedureIdentifier>	(<parameterList>)

The	parameter	list	needs	more	information	for	a	procedure	definition.	In	pseudocode,	a	parameter	in
the	list	is	represented	in	one	of	the	following	formats:

BYREF	<identifier1>	:	<dataType>
BYVALUE	<identifier2>	:	<dataType>

Passing	parameters	by	value
The	pseudocode	for	the	pyramid	example	in	Chapter	12	(Section	12.09)	includes	a	procedure	definition
that	uses	two	parameters	passed	by	value.	We	can	now	make	that	explicit:

PROCEDURE	OutputSymbols(BYVALUE	NumberOfSymbols	:	INTEGER,	Symbol	:	CHAR)
				DECLARE	Count	:	INTEGER
				FOR	Count	←	1	TO	NumberOfSymbols
								OUTPUT	Symbol	//	without	moving	to	next	line
				NEXT	Count
				OUTPUT	NewLine
ENDPROCEDURE

In	Python	(see	Figure	14.15),	all	parameters	behave	like	local	variables	and	their	effect	is	as	though
they	are	passed	by	value.

Figure	14.15	Parameters	passed	to	a	Python	subroutine

In	VB.NET	(see	Figure	14.16),	parameters	default	to	passing	by	value.	The	keyword	ByVal	is
automatically	inserted	by	the	editor.

Figure	14.16	Parameters	passed	by	value	to	a	VB.NET	procedure

Figure	14.17	Parameters	passed	by	value	to	a	Java	procedure

In	Java	(see	Figure	14.17),	all	parameters	behave	like	local	variables	and	their	effect	is	as	though	they
are	passed	by	value.

Passing	parameters	by	reference
When	parameters	are	passed	by	reference,	when	the	values	inside	the	subroutine	change,	this	affects
the	values	of	the	variables	in	the	calling	program.

Consider	the	pseudocode	procedure	AdjustValuesForNextRow	below.

The	pseudocode	for	the	pyramid	example	generated	in	Chapter	12	(Section	12.09)	includes	a	procedure
definition	that	uses	two	parameters	passed	by	reference.	We	can	now	make	that	explicit:

PROCEDURE	AdjustValuesForNextRow(BYREF	Spaces	:	INTEGER,	Symbols	:	INTEGER)
				Spaces	←	Spaces	-	1
				Symbols	←	Symbols	+	2
ENDPROCEDURE

The	pseudocode	statement	to	call	the	procedure	is:
CALL	AdjustValuesForNextRow(NumberOfSpaces,	NumberOfSymbols)

The	values	of	the	parameters	Spaces	and	Symbols	are	changed	within	the	procedure	when	this	is	called.
The	variables	NumberOfSpaces	and	NumberOfSymbols	in	the	program	code	after	the	call	will	store	the
updated	values	that	were	passed	back	from	the	procedure.

Python	does	not	have	a	facility	to	pass	parameters	by	reference.	Instead	the	subroutine	behaves	as	a

function	and	returns	multiple	values	(see	Figure	14.18).	Note	the	order	of	the	variables	as	they	receive
these	values	in	the	main	part	of	the	program.

Figure	14.18	Multiple	values	returned	from	a	Python	subroutine

This	way	of	treating	a	multiple	of	values	as	a	unit	is	called	a	‘tuple’	(see	Chapter	11,	Section	11.02).	You
can	find	out	more	by	reading	the	Python	help	files.

In	VB.NET	(see	Figure	14.19),	the	ByRef	keyword	is	placed	in	front	of	each	parameter	to	be	passed	by
reference.

Figure	14.19	Parameters	passed	by	reference	to	a	VB.NET	procedure

Java	does	not	have	a	facility	to	pass	simple	variable	parameters	by	reference.	Only	objects	can	be
passed	by	reference.	Arrays	are	objects	in	Java,	so	these	are	passed	by	reference.

	TIP
If	only	one	value	needs	to	be	returned,	the	subroutine	can	be	written	as	a	function.	If
more	than	one	value	needs	to	be	returned,	a	work-around	is	to	declare	a	class	and	return
it	as	an	object	(Figure	14.20).	If	the	values	to	be	returned	are	of	the	same	type,	they	can
be	grouped	into	an	array	and	the	array	is	passed	as	a	reference	parameter.

	TIP
A	preferable	solution	is	to	amend	the	algorithm	and	write	several	functions	(Figure
14.21).

Figure	14.20	Multiple	values	returned	as	an	object	from	a	Java	subroutine

Figure	14.21	The	algorithm	changed	into	two	subroutines	for	Java

14.13	Putting	it	all	together
The	programs	in	this	section	are	full	solutions	to	the	pyramid-drawing	program	developed	in	Section
14.12.

The	parameters	of	the	subroutines	have	different	identifiers	from	the	variables	in	the	main	program.
This	is	done	deliberately,	so	that	it	is	quite	clear	that	the	parameters	and	local	variables	within	a
subroutine	are	separate	from	those	in	the	calling	program	or	module.	If	a	parameter	is	passed	by
reference	to	a	procedure,	the	parameter	identifier	within	the	procedure	references	the	same	memory
location	as	the	variable	identifier	passed	to	the	procedure	as	argument.

The	pyramid-drawing	program	in	Python,	VB.NET	and	Java

Python SPACE	=	'	'	#	constant	to	give	a	space	a	name
def	InputMaxNumberOfSymbols():
			Number	=	0
			while	Number	%	2	==	0:
						print("How	many	symbols	make	the	base?	")
						Number	=	int(input("Input	an	odd	number:	"))
			return	Number

def	SetValues():
			Symbol	=	input("What	symbol	do	you	want	to	use?	")
			MaxSymbols	=	InputMaxNumberOfSymbols()
			Spaces	=	(MaxSymbols	+	1)	//	2
			Symbols	=	1
			return	Symbol,	MaxSymbols,	Spaces,	Symbols

def	OutputChars(Number,	Symbol):
			for	Count	in	range	(Number):
						print(Symbol,	end='')

def	AdjustValuesForNextRow(Spaces,	Symbols):
			Spaces	=	Spaces	–	1
			Symbols	=	Symbols	+	2
			return	Spaces,	Symbols

def	main():
			ThisSymbol,	MaxNumberOfSymbols,	NumberOfSpaces,	NumberOfSymbols	=	SetValues()
			while	NumberOfSymbols	<=	MaxNumberOfSymbols:
						OutputChars(NumberOfSpaces,	SPACE)
						OutputChars(NumberOfSymbols,	ThisSymbol)
						print()		#	move	to	new	line
						NumberOfSpaces,	NumberOfSymbols	=	AdjustValuesForNextRow(NumberOfSpaces,	NumberOfSymbols)
main()

VB.NET Module	Module1
			Const	Space	=	"	"	'constant	to	give	a	space	a	name
			Dim	NumberOfSpaces,	NumberOfSymbols	As	Integer
			Dim	MaxNumberOfSymbols	As	Integer
			Dim	ThisSymbol	As	Char

Sub	InputMaxNumberOfSymbols(ByRef	Number	As	Integer)
			Do
						Console.WriteLine("How	many	symbols	make	the	base?	")
						Console.Write("Input	an	odd	number:	")
						Number	=	Console.ReadLine()
			Loop	Until	(Number	Mod	2	=	1)
End	Sub

Sub	SetValues(ByRef	Symbol,	ByRef	MaxSymbols,	ByRef	Spaces,	ByRef	Symbols)
			Console.Write("What	symbol	do	you	want	to	use?	")
			Symbol	=	Console.ReadLine()
			InputMaxNumberOfSymbols(MaxSymbols)
			Spaces	=	(MaxSymbols	+	1)	\	2
			Symbols	=	1
End	Sub

Sub	OutputChars(ByVal	Number,	ByVal	Symbol)
			Dim	Count	As	Integer
			For	Count	=	1	To	Number
						Console.Write(Symbol)
			Next
End	Sub

Sub	AdjustValuesForNextRow(ByRef	Spaces,	ByRef	Symbols)
			Spaces	=	Spaces	-	1
			Symbols	=	Symbols	+	2
End	Sub

Sub	Main()
			SetValues(ThisSymbol,	MaxNumberOfSymbols,	NumberOfSpaces,	NumberOfSymbols)
			Do
						OutputChars(NumberOfSpaces,	Space)
						OutputChars(NumberOfSymbols,	ThisSymbol)
						Console.WriteLine()'move	to	new	line
						AdjustValuesForNextRow(NumberOfSpaces,	NumberOfSymbols)
			Loop	Until	NumberOfSymbols	>	MaxNumberOfSymbols
			Console.ReadLine()
End	Sub

End	Module

Java package	ex1;
import	java.util.Scanner;

public	class	Ex1
{		
			static	final	char	SPACE	=	'	';

			public	static	char	getSymbol()
			{
						Scanner	console	=	new	Scanner(System.in);
						System.out.print("What	symbol	do	you	want	to	use?	");
						String	response	=	console.next();
						return	response.charAt(0);
			}
			public	static	int	inputMaxNumberOfSymbols()
			{
						Scanner	console	=	new	Scanner(System.in);
						int	number	=	0;
						while	((number	%	2)	==	0)
						{
									System.out.print("How	many	symbols	make	the	base?	");
									number	=	console.nextInt();
						}
						return	number;
			}

			public	static	void	outputChars(int	number,	char	symbol)
			{
						for	(int	count	=	0;	count	<	number;	count++)
						{
									System.out.print(symbol);
						}
			}
			public	static	int	adjustSpacesForNextRow(int	spaces)
			{
						spaces--;
						return	spaces;
			}
			public	static	int	adjustSymbolsForNextRow(int	symbols)
			{
						symbols	=	symbols	+	2;
						return	symbols;
			}
			public	static	void	main(String[]	args)
			{
						char	thisSymbol	=	getSymbol();

						int	maxNumberOfSymbols	=	inputMaxNumberOfSymbols();
						int	numberOfSpaces	=	(maxNumberOfSymbols	+	1)/	2;
						int	numberOfSymbols	=	1;

						while	(numberOfSymbols	<=	maxNumberOfSymbols)
						{
									outputChars(numberOfSpaces,	SPACE);
									outputChars(numberOfSymbols,	thisSymbol);
									System.out.println();
									numberOfSpaces	=	adjustSpacesForNextRow(numberOfSpaces);
									numberOfSymbols	=	adjustSymbolsForNextRow(numberOfSymbols);
						}
			}
}

Discussion	Point:
Can	you	see	how	the	two	procedures	OutputSpaces	and	OutputSymbols	have	been	replaced	by	a	single
procedure	OutputChars	without	changing	the	effect	of	the	program?

14.14	Arrays
Creating	1D	arrays
VB.NET,	Python	and	Java	number	array	elements	from	0	(the	lower	bound).

In	pseudocode,	a	1D	array	declaration	is	written	as:
DECLARE	<arrayIdentifier>	:	ARRAY[<lowerBound>:<upperBound>]	OF	<dataType>

Syntax	definitions

Python In	Python,	there	are	no	arrays.	The	equivalent	data	structure	is	called	a	list.	A	list	is	an
ordered	sequence	of	items	that	do	not	have	to	be	of	the	same	data	type.

VB.NET Dim	<arrayIdentifier>(<upperBound>)	As	<dataType>

Java <datatype>[]	<arrayIdentifier>;
<arrayIdentifier>	=	new	int[<upperbound>+1];

Pseudocode	example:
DECLARE	List1	:	ARRAY[1:3]			OF	STRING		//	3	elements	in	this	list
DECLARE	List2	:	ARRAY[0:5]			OF	INTEGER	//	6	elements	in	this	list
DECLARE	List3	:	ARRAY[1:100]	OF	INTEGER	//	100	elements	in	this	list
DECLARE	List4	:	ARRAY[0:25]	OF	STRING		//	26	elements	in	this	list

Code	examples

Python List1	=	[]
List1.append("Fred")
List1.append("Jack")
List1.append("Ali")

As	there	are	no	declarations,	the	only
way	to	generate	a	list	is	to	initialise	one.
You	can	append	elements	to	an	existing
list.

List2	=	[0,	0,	0,	0,	0,	0] You	can	enclose	the	elements	in	[].

List3	=	[0	for	i	in	range(100)] You	can	use	a	loop.

AList	=	[""]	*	26 You	can	provide	an	initial	value,
multiplied	by	number	of	elements
required.

VB.NET Dim	List1	As	String	()	=	{"","",""}
Dim	List2(5)	As	Integer
Dim	List3(100)	As	Integer
Dim	AList(0	To	25)	As	String

You	can	initialise	an	array	at	declaration
time	(as	with	List1).	Note	that	List3	has
101	elements.	You	can	use	a	range	as	an
array	dimension	(as	with	AList)	however
the	lower	bound	must	be	0.

Java String[]	list1	=	{"","",""};
int[]	list2;
list2	=	new	int[5];
int[]	list3;
list3	=	new	int[100];
String[]	aList;
aList	=	new	String[25];

You	can	initialise	an	array	at	declaration
time	(as	with	list1).

Accessing	1D	arrays
A	specific	element	in	an	array	is	accessed	using	an	index	value.	In	pseudocode,	this	is	written	as:

<arrayIdentifier>[x]

Pseudocode	example:
NList[25]	=	0		//	set	25th	element	to	zero
AList[3]	=	"D"	//	set	3rd	element	to	letter	D

Code	examples

Python NList[24]	=	0
AList[3]	=	"D"

VB.NET NList(25)	=	0
AList(3)	=	"D"

Java nList[25]	=	0;
aList[3]	=	"D";

In	Python,	you	can	print	the	whole	contents	of	a	list	using	print(List).	In	VB.NET	and	Java,	you	need	to
use	a	loop	to	print	one	element	of	an	array	at	a	time.

	TIP
When	writing	a	solution	using	pseudocode,	always	use	a	loop	to	print	the	contents	of	an
array.

TASK	14.13

Creating	2D	arrays
In	pseudocode,	a	2D	array	declaration	is	written	as:

DECLARE	<identifier>	:	ARRAY[<lBound1>:<uBound1>,
<lBound2>:<uBound2>]	OF	<dataType>

Syntax	definitions

Python In	Python,	there	are	no	arrays.	The	equivalent	data	structure	is	a	list	of	lists.

VB.NET Dim	<arrayIdentifier>(<uBound1,	uBound2>)	As	<dataType>

Java <dataType>	<arrayIdentifier>;
<arrayIdentifier>	=	new	<datatype>[<uBound1>][<uBound2>];

To	declare	a	2D	array	to	represent	a	game	board	of	six	rows	and	seven	columns,	the	pseudocode
statement	is:

DECLARE	Board	:	ARRAY[1:6,	1:7]	OF	INTEGER

Code	examples

Python Board	=	[[0,	0,	0,	0,	0,	0,	0],
									[0,	0,	0,	0,	0,	0,	0],
									[0,	0,	0,	0,	0,	0,	0],
									[0,	0,	0,	0,	0,	0,	0],
									[0,	0,	0,	0,	0,	0,	0],
									[0,	0,	0,	0,	0,	0,	0]]
Board	=	[[0	for	i	in	range(7)]
		for	j	in	range(6)]
Board	=	[[0]	*	7]	*	6

2D	lists	can	be	initialised	in	a	similar	way	to	1D	lists.
Remember	that	elements	are	numbered	from	0.
These	are	alternative	ways	of	initialising	a	6	×	7	list.	The
rows	are	numbered	0	to	5	and	the	columns	0	to	6.
The	upper	value	of	the	range	is	not	included.

VB.NET Dim	Board(6,	7)	As	Integer Elements	are	numbered	from	0	to	the	given	number.	This
declaration	has	one	row	and	one	column	too	many.	However,
the	algorithm	may	be	such	that	it	is	easier	to	convert	to
program	code	if	row	0	and	column	0	are	ignored.

Java int[][]	board	=	{
									{0,	0,	0,	0,	0,	0,	0},

2D	arrays	can	be	initialised	in	a	similar	way	to	1D	arrays.
Remember	that	elements	are	numbered	from	0.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	13.01	in	Chapter	13.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	13.02	in	Chapter	13.

Write	program	code	to	implement	the	improved	algorithm	from	Worked	Example	13.03	in
Chapter	13.

1

2

3

									{0,	0,	0,	0,	0,	0,	0},
									{0,	0,	0,	0,	0,	0,	0},
									{0,	0,	0,	0,	0,	0,	0},
									{0,	0,	0,	0,	0,	0,	0},
									{0,	0,	0,	0,	0,	0,	0}
						}
int[][]	board;
board	=	new	int[6][7];

Accessing	2D	arrays
A	specific	element	in	a	table	is	accessed	using	an	index	pair.	In	pseudocode	this	is	written	as:
<arrayIdentifier>[x,	y]

Pseudocode	example:
Board[3,4]	←	0	//	sets	the	element	in	row	3	and	column	4	to	zero

The	following	code	examples	demonstrate	how	to	access	elements	in	each	of	the	three	languages.

Code	examples

Python Board[2][3]	=
0			

Elements	are	numbered	from	0	in	Python,	so	[3]	gives	access	to	the	fourth
element.

VB.NET Board(3,	4)	=
0			

We	are	ignoring	row	0	and	column	0.

Java board[2][3]	=	0; Elements	are	numbered	from	0	in	Java,	so	[3]	gives	access	to	the	fourth
element.

TASK	14.14

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	13.04	in	Chapter	13;
first	initialise	the	table	and	then	output	its	contents.

Write	program	code	to	implement	the	pseudocode	from	Worked	Example	13.05	in	Chapter	13.

1

2

14.15	Text	files
Writing	to	a	text	file
The	following	pseudocode	statements	provide	facilities	for	writing	to	a	file:

OPENFILE	<filename>	FOR	WRITE							//	open	the	file	for	writing
WRITEFILE	<filename>,	<stringValue>	//	write	a	line	of	text	to	the	file
CLOSEFILE	<filename>																//	close	file

The	following	code	examples	demonstrate	how	to	open,	write	to	and	close	a	file	called	SampleFile.TXT	in
each	of	the	three	languages.	If	the	file	already	exists,	it	is	overwritten	as	soon	as	the	file	handle	is
assigned	by	the	‘open	file’	command.

Code	examples

Python FileHandle	=	open("SampleFile.TXT",	"w")
FileHandle.write(LineOfText)
FileHandle.close()

You	specify	the	filename	and	mode	(‘w’
for	write)	when	you	call	the	open
function.	The	line	of	text	to	be	written	to
the	file	must	contain	the	newline
character	"\n"	to	move	to	the	next	line	of
the	text	file.

VB.NET Dim	FileHandle	As	IO.StreamWriter
Dim	LineOfText	As	String
FileHandle	=	New
IO.StreamWriter("SampleFile.TXT")
FileHandle.WriteLine(LineOfText)
FileHandle.Close()

The	file	is	accessed	through	an	object
(see	Chapter	27)	called	a	StreamWriter.

Alternative	method:
Dim	LineOfText	As	String
Dim	Channel	As	Integer	=	1
FileSystem.FileOpen(Channel,	"SampleFile.TXT",	OpenMode.Output,	OpenAccess.Write)
FileSystem.PrintLine(Channel,	LineOfText)
FileSystem.FileClose(Channel)

Java import	java.io.FileWriter;
import	java.io.PrintWriter;
import	java.io.IOException;
FileWriter	fileHandle	=	new
FileWriter("SampleFile.TXT",	false);
PrintWriter	printLine	=	new	PrintWriter(fileHandle);
String	lineOfText;
printLine.printf("%s"+"%n",	lineOfText);
printLine.close();

Input	output	operations	throw
exceptions.	The	easiest	way	to	manage
these	is	to	change	your	main	heading	to:
public	static	void	main(String[]	args)
throws	IOException

Reading	from	a	text	file
An	existing	file	can	be	read	by	a	program.	The	following	pseudocode	statements	provide	facilities	for
reading	from	a	file:

OPENFILE	<filename>	FOR	READ											//	open	file	for	reading
READFILE	<filename>,	<stringVariable>		//	read	a	line	of	text	from	the	file
CLOSEFILE	<filename>																			//	close	file

The	following	code	examples	demonstrate	how	to	open,	read	from	and	close	a	file	called	SampleFile.TXT
in	each	of	the	three	languages.

Code	examples

Python FileHandle	=	open("SampleFile.TXT",	"r")
LineOfText	=	FileHandle.readline()
FileHandle.close	()

You	specify	the	filename	and	mode		(‘r’
for	read)	when	you	call	the	open	function.

VB.NET Dim	LineOfText	As	String
Dim	FileHandle	As	IO.StreamReader
FileHandle	=	New	IO.StreamReader("SampleFile.TXT")

The	file	is	accessed	through	an	object
(see	Chapter	27)	called	a	StreamReader.

LineOfText	=	FileHandle.ReadLine()
FileHandle.Close()

Alternative	method:
Dim	LineOfText	As	String
Dim	Channel	As	Integer	=	1
FileSystem.FileOpen(Channel,	"SampleFile.TXT",	OpenMode.Input,	OpenAccess.Read)
FileSystem.Input(Channel,	LineOfText)
FileSystem.FileClose(Channel)

Java import	java.io.IOException;
import	java.io.FileReader;
import	java.io.BufferedReader;
FileReader	fileHandle	=	new
FileReader("SampleFile.TXT");
BufferedReader	textReader	=	new
BufferedReader(fileHandle);
String	lineOfText	=	textReader.readLine();
textReader.close();

There	are	other	library	classes	that	can
be	used	for	input/output,	such	as
Scanner.

Appending	to	a	text	file
The	following	pseudocode	statements	provide	facilities	for	appending	to	a	file:

OPENFILE	<filename>	FOR	APPEND						//	open	file	for	append
WRITEFILE	<filename>,	<stringValue>	//	write	a	line	of	text	to	the	file
CLOSEFILE	<filename>																//	close	file

The	following	code	examples	demonstrate	how	to	open,	append	to	and	close	a	file	called	SampleFile.TXT
in	each	of	the	three	languages.

Code	examples

Python FileHandle	=	open("SampleFile.TXT",	"a")
FileHandle.write(LineOfText)
FileHandle.close()

You	specify	the	filename	and	mode	(‘a’
for	append)	when	you	call	the	open
function.

VB.NET Dim	FileHandle	As	IO.StreamWriter
FileHandle	=	New
IO.StreamWriter("SampleFile.TXT",	True)
FileHandle.WriteLine(LineOfText)
FileHandle.Close()

The	file	is	accessed	through	a
StreamWriter.	The	extra	parameter,	True,
tells	the	system	to	append	to	the	object.

	 Alternative	method:
Dim	LineOfText	As	String
Dim	Channel	As	Integer	=	1
FileSystem.FileOpen(Channel,	"SampleFile.TXT",	OpenMode.Append,	OpenAccess.ReadWrite)
FileSystem.Print(Channel,	LineOfText)
FileSystem.FileClose(Channel)

Java import	java.io.FileWriter;
import	java.io.PrintWriter;
import	java.io.IOException;
FileWriter	fileHandle	=	new
FileWriter("SampleFile.TXT"),	true);
PrintWriter	printLine	=	new	PrintWriter(fileHandle);
String	lineOfText;
printLine.printf("%s"+"%n",	lineOfText);
printLine.close();

Input	output	throws	exceptions.	The
easiest	way	is	to	change	your	main
heading	to:
public	static	void	main(String[]	args)
throws	IOException

The	end-of-file	(EOF)	marker
The	following	pseudocode	statements	read	a	text	file	and	output	its	contents:
OPENFILE	"Test.txt"	FOR	READ
WHILE	NOT	EOF("Test.txt")	DO
				READFILE	"Test.txt",	TextString
				OUTPUT	TextString
ENDWHILE
CLOSEFILE	"Test.txt"

The	following	code	examples	demonstrate	how	to	read	and	then	output	the	contents	of	a	file	in	each	of
the	three	languages.

Code	examples

Python FileHandle	=	open("Test.txt",	"r")
LineOfText	=	FileHandle.readline()
while	len(LineOfText)	>	0:
			LineOfText	=	FileHandle.readline()
			print(LineOfText)
FileHandle.close()

There	is	no	explicit	EOF	function.
However,	when	a	line	of	text	has	been
read	that	only	consists	of	the	end-of-file
marker,	the	line	of	text	is	of	length	0.

VB.NET Dim	LineOfText	As	String
Dim	FileHandle	As	System.IO.StreamReader
FileHandle	=	New
System.IO.StreamReader("Test.txt")
Do	Until	FileHandle.EndOfStream
			LineOfText	=	FileHandle.ReadLine()
			Console.WriteLine(LineOfText)
Loop
FileHandle.Close()

When	the	end-of-file	marker	is	detected,
the	EndOfStream	method	returns	the	value
True	and	so	the	loop	will	end.

VB.NET Alternative	method:
Dim	LineOfText	As	String
Dim	Channel	As	Integer	=	1
FileSystem.FileOpen(Channel,	"Test.txt",
OpenMode.Input,	OpenAccess.Read)
Do	While	Not	FileSystem.EOF(Channel)
			FileSystem.Input(Channel,	LineOfText)
			Console.WriteLine(LineOfText)
Loop
FileSystem.FileClose(Channel)

	

Java import	java.io.IOException;
import	java.io.FileReader;
import	java.io.BufferedReader;
FileReader	fileHandle	=	new	FileReader("Test.txt");
BufferedReader	textReader	=	new
BufferedReader(fileHandle);
String	lineOfText	=	textReader.readLine();
while	(lineOfText	!=	null)
{
			System.out.println(lineOfText);
			lineOfText	=	textReader.readLine();
}
textReader.close();

There	is	no	explicit	EOF	function.
However,	when	a	line	of	text	has	been
read	that	only	consists	of	the	end-of-file
marker,	the	line	of	text	is	effectively	null.

TASK	14.15
Fred	surveys	the	students	at	his	college	to	find	out	their	favourite	hobby.	He	wants	to	present	the
data	as	a	tally	chart.

Fred	plans	to	enter	the	data	into	the	computer	as	he	surveys	the	students.	After	data	entry	is
complete,	he	wants	to	output	the	total	for	each	hobby.

1 Reading	books \\\

2 Play	computer	games \\\\\\\\

3 Sport \\\\\

4 Programming \\

5 Watching	TV \\\\\\\\\\\

He	starts	by	writing	an	algorithm:
Initialise	Tally	array

REPEAT

				INPUT	Choice	//	1	for	Reading,	2	for	computer	games,

																	//	3	for	Sport,	4	for	Programming,	5	for	TV

																	//	0	to	end	input

				Increment	Tally[Choice]

UNTIL	Choice	=	0

FOR	Index	=	1	TO	5

				OUTPUT	Tally[Index]

NEXT	Index

Reflection	Point:
How	much	practice	have	you	had	writing	programs?	Did	you	get	them	to	work?

How	difficult	did	you	find	the	different	constructs?

Put	the	following	in	order	of	difficulty:

Using	a	FOR	loop

Using	a	WHILE	loop

Using	an	IF	ELSE	statement

Declaring	a	variable	of	a	standard	data	type

Declaring	and	using	a	constant

Using	a	1D	array

Using	a	nested	loop	to	access	each	element	in	a	2D	array

Reading	from	and	writing	to	a	text	file

Using	a	built-in	function

Writing	a	procedure	and	calling	it	from	the	main	program

Writing	a	function	and	using	its	return	value	in	an	expression	in	the	main	program

Using	parameters	with	procedures	and	functions

Summary
Programming	constructs	in	Python,	VB.NET	and	Java	include:

declaration	and	assignment	of	constants	and	variables

the	basic	constructs	of	assignment,	selection,	repetition,	input	and	output

built-in	data	types	and	functions.

Code	should	be	commented	where	it	helps	understanding.
Boolean	expressions	are	needed	for	conditions.
Declaration	of	subroutines	(functions	and	procedures)	is	done	before	the	main	program	body.
Calling	a	procedure	is	a	program	statement.

Write	program	code	to	declare	and	initialise	the	array		Tally	:	ARRAY[1:5]	OF	INTEGER.

Write	program	code	to	implement	the	algorithm	above.

Write	program	code	to	declare	an	array	to	store	the	hobby	titles	and	rewrite	the	FOR	loop	of
your	program	in	part	2	so	that	the	hobby	title	is	output	before	each	tally.

Write	program	code	to	save	the	array	data	in	a	text	file.

Write	program	code	to	read	the	data	from	the	text	file	back	into	the	initialised	array.

1

2

3

4

5

■

■
■
■
■

Calling	a	function	is	done	within	an	expression,	for	example	an	assignment.
VB.NET	and	Java	functions	return	exactly	one	value.
Parameters	can	be	passed	to	a	subroutine.	This	is	known	as	the	interface.
VB.NET	passes	parameters	by	value,	as	a	default,	but	can	return	one	or	more	values	via
parameters	if	they	are	declared	as	reference	parameters.
In	Python,	parameters	can	only	pass	values	into	a	subroutine.	The	only	way	to	update	a	value	of	a
variable	in	the	calling	program	is	to	return	one	or	more	values	from	a	function.
In	Java,	parameters	can	only	pass	values	into	a	subroutine.	The	only	way	to	update	a	value	of	a
variable	in	the	calling	program	is	to	return	one	value	from	a	function.	Note	that	object	parameters
are	always	passed	by	reference.
When	a	subroutine	is	defined,	parameters	are	the	‘placeholders’	for	values	passed	into	a
subroutine.
Arguments	are	the	values	passed	to	the	subroutine	when	it	is	called.

■
■
■
■

■

■

■

■

Exam-style	Questions

[7]

[5]

[6]

[6]

[9]

[7]

Preeti	wants	a	program	to	output	a	conversion	table	for	ounces	to	grams	(1	ounce	is	28.35	grams).
She	writes	an	algorithm	using	Structured	English:
OUTPUT	"Ounces	Grams"

FOR	Ounces	FROM	1	TO	30

				SET	Grams	TO	Rounded(Ounces	*	28.35)	//	whole	number	of	grams	only

				OUTPUT	Ounces	and	Grams

Write	pseudocode	to	implement	the	algorithm.	Include	formatting,	so	that	the	output	is	tabulated.

Write	pseudocode	to	accept	an	input	string	UserID.	The	pseudocode	is	to	test	the	UserID	format.	A
valid	format	UserID	consists	of	three	upper	case	letters	and	four	digits.	The	program	is	to	output	a
message	whether	UserID	is	valid	or	not.

Write	pseudocode	for	a	procedure	OutputTimesTable	that	takes	one	integer	parameter,	n,	and	outputs
the	times	table	for	n.	For	example	the	procedure	call	OutputTimesTable(5)	should	produce:

1	×	5	=	5
2	×	5	=	10
3	×	5	=	15
4	×	5	=	20
5	×	5	=	25
6	×	5	=	30
7	×	5	=	35
8	×	5	=	40
9	×	5	=	45
10	×	5	=	50

Write	pseudocode	for	a	function	isDivisible()	that	takes	two	integer	parameters,	x	and	y.	The
function	is	to	return	the	value	True	or	False	to	indicate	whether	x	is	exactly	divisible	by	y.	For
example,	isDivisible(24,	6)	should	return	True	and	isDivisible(24,	7)	should	return	False.

A	poultry	farm	packs	eggs	into	egg	boxes.	Each	box	takes	six	eggs.	Boxes	must	not	contain	fewer
than	six	eggs.

Write	pseudocode	for	a	procedure	EggsIntoBoxes	that	takes	an	integer	parameter,	NumberOfEggs.	The
procedure	is	to	calculate	how	many	egg	boxes	can	be	filled	with	the	given	number	of	eggs	and	how
many	eggs	will	be	left	over.	The	procedure	is	to	return	two	values	as	parameters,	NumberOfBoxes	and
EggsLeftOver.

In	a	certain	country,	car	registrations	consist	7	alphanumerical	characters.	The	format	of	a	car
registration	is	either

        LLNNLLL

        or

        LLLNNLL

where	L	is	any	capital	letter	and	N	is	any	numeral	0	to	9.

Use	pseudocode	to	write	a	function	that	takes	a	string	as	parameter	and	returns	TRUE	if	the	format
is	valid	and	FALSE	otherwise.

The	string-handling	functions	available	are	those	listed	in	Table	14.06.

1

2

3

4

5

6

Chapter	15:
Software	development

15.01	Stages	in	the	program	development	life	cycle
Developing	a	program	involves	different	stages.	You	solve	a	problem	by	designing	the	solution	using
Structured	English,	a	flowchart	and	/	or	pseudocode	(see	Chapters	12	and	13).	You	write	the	program
code	and	test	it.

When	large	software	systems	are	required	to	solve	big	problems,	these	stages	are	more	formal,
especially	when	more	people	are	involved	in	the	development.	Before	a	solution	can	be	designed,	the
problem	needs	to	be	analysed.	When	the	program	works	and	is	being	used,	issues	might	arise	that
require	changes.	This	is	known	as	maintenance.

Analysis
The	first	step	in	solving	a	problem	is	to	investigate	the	issues	and	the	current	system	if	there	is	one.	The
problem	needs	to	be	defined	clearly	and	precisely.		A	‘requirements	specification’	is	drawn	up.

The	next	step	is	planning	a	solution.	Sometimes	there	is	more	than	one	solution.	You	need	to	decide
which	is	the	most	appropriate.

The	third	step	is	to	decide	how	to	solve	the	problem:

bottom-up:	start	with	a	small	sub-problem	and	then	build	on	this

top-down:	stepwise	refinement	using	pseudocode,	flowcharts	or	structure	charts.

Design
You	have	a	solution	in	mind.	How	do	you	design	the	solution	in	detail?	Chapter	12	(Section	12.05)
showed	that	an	identifier	table	is	a	good	starting	point.	This	leads	you	to	thinking	about	data	structures:
do	you	need	a	1D	array	or	a	2D	array	to	store	data	while	it	is	processed?	Do	you	need	a	file	to	store
data	long-term?

Plan	your	algorithm	by	drawing	a	flowchart	or	writing	pseudocode.

Coding
When	you	have	designed	your	solution,	you	might	need	to	choose	a	suitable	high-level	programming
language.	If	you	know	more	than	one	programming	language,	you	have	to	weigh	up	the	pros	and	cons
of	each	one.	Looking	at	Chapter	14,	you	need	to	decide	which	programming	language	would	best	suit
the	problem	you	are	trying	to	solve	and	which	language	you	are	most	familiar	with.

	TIP
This	stage	is	often	referred	to	as	implementation.

You	implement	your	algorithm	by	converting	your	pseudocode	into	program	code.	When	you	start
writing	programs	you	might	find	it	takes	several	attempts	before	the	program	compiles.	When	it	finally
does,	you	can	execute	it.	It	might	‘crash’,	meaning	that	it	stops	working.	In	this	case,	you	need	to	debug
the	code.	The	program	might	run	and	give	you	some	output.	This	is	the	Eureka	moment:	‘It	works!!!!’.
But	does	the	program	do	what	it	was	meant	to	do?

Testing
Only	thorough	testing	can	ensure	the	program	really	works	under	all	circumstances	(see	Sections	15.06
and	15.07).

There	are	several	different	development	methodologies.	These	include	the	waterfall,	the	iterative	and
the	rapid	application	development	model.

Discussion	Point:
Do	you	think	that	all	programs	can	be	totally	error-free?

The	program	development	life	cycle
The	program	development	life	cycle	follows	the	defined	stages	of	analysis,	design,	coding
(implementation),	testing	and	maintenance.	When	maintenance	no	longer	results	in	a	program	fit	for
purpose,	the	development	starts	again,	therefore	creating	a	cycle	(see	Figure	15.01).

Figure	15.01	The	program	development	life	cycle

The	waterfall	model
Figure	15.02	shows	the	waterfall	model.

Figure	15.02	The	waterfall	model

The	arrows	going	down	represent	the	fact	that	the	results	from	one	stage	are	input	into	the	next	stage.
The	arrows	leading	back	up	to	an	earlier	stage	reflect	the	fact	that	often	more	work	is	required	at	an
earlier	stage	to	complete	the	current	stage.

Benefits	include	the	following.

Simple	to	understand	as	the	stages	are	clearly	defined.

Easy	to	manage	due	to	the	fixed	stages	in	the	model.	Each	stage	has	specific	outcomes.

Stages	are	processed	and	completed	one	at	a	time.

Works	well	for	smaller	projects	where	requirements	are	very	well	understood.

Drawbacks	include	the	following.

No	working	software	is	produced	until	late	during	the	life	cycle.

Not	a	good	model	for	complex	and	object-oriented	projects.

Poor	model	for	long	and	ongoing	projects.

Cannot	accommodate	changing	requirements.

It	is	difficult	to	measure	progress	within	stages.

Integration	is	done	at	the	very	end,	which	doesn’t	allow	identifying	potential	technical	or	business
issues	early.

The	iterative	model
An	iterative	life	cycle	model	does	not	attempt	to	start	with	a	full	specification	of	requirements.	Instead,
development	starts	with	the	implementation	of	a	small	subset	of	the	program	requirements.	Repeated
(iterative)	reviews	to	identify	further	requirements	eventually	result	in	the	complete	system.

Benefits	include	the	following.

There	is	a	working	model	of	the	system	at	a	very	early	stage	of	development,	which	makes	it	easier
to	find	functional	or	design	flaws.	Finding	issues	at	an	early	stage	of	development	means	corrective
measures	can	be	taken	more	quickly.

Some	working	functionality	can	be	developed	quickly	and	early	in	the	life	cycle.

Results	are	obtained	early	and	periodically.

Parallel	development	can	be	planned.

Progress	can	be	measured.

Less	costly	to	change	the	scope/requirements.

Testing	and	debugging	of	a	smaller	subset	of	program	is	easy.

Risks	are	identified	and	resolved	during	iteration.

Easier	to	manage	risk	–	high-risk	part	is	done	first.

With	every	increment,	operational	product	is	delivered.

Issues,	challenges	and	risks	identified	from	each	increment	can	be	utilised/applied	to	the	next
increment.

Better	suited	for	large	and	mission-critical	projects.

During	the	life	cycle,	software	is	produced	early,	which	facilitates	customer	evaluation	and
feedback.

Drawbacks	include	the	following.

Only	large	software	development	projects	can	benefit	because	it	is	hard	to	break	a	small	software
system	into	further	small	serviceable	modules.

More	resources	may	be	required.

Design	issues	might	arise	because	not	all	requirements	are	gathered	at	the	beginning	of	the	entire
life	cycle.

Defining	increments	may	require	definition	of	the	complete	system.

The	Rapid	Application	Development	(RAD)	model
RAD	is	a	software	development	methodology	that	uses	minimal	planning.	Instead	it	uses	prototyping.	A
prototype	is	a	working	model	of	part	of	the	solution.

In	the	RAD	model,	the	modules	are	developed	in	parallel	as	prototypes	and	are	integrated	to	make	the
complete	product	for	faster	product	delivery.	There	is	no	detailed	preplanning.	Changes	are	made
during	the	development	process.

The	analysis,	design,	code	and	test	phases	are	incorporated	into	a	series	of	short,	iterative	development
cycles.

Benefits	include	the	following.

Changing	requirements	can	be	accommodated.

Progress	can	be	measured.

Productivity	increases	with	fewer	people	in	a	short	time.

Reduces	development	time.

Increases	reusability	of	components.

Quick	initial	reviews	occur.

Encourages	customer	feedback.

Integration	from	very	beginning	solves	a	lot	of	integration	issues.

Drawbacks	include	the	following.

Only	systems	that	can	be	modularised	can	be	built	using	RAD.

Requires	highly	skilled	developers/designers.

Suitable	for	systems	that	are	component	based	and	scalable.

Requires	user	involvement	throughout	the	life	cycle.

Suitable	for	projects	requiring	shorter	development	times.

15.02	Program	design	using	structure	charts
An	alternative	approach	to	modular	design	is	to	choose	the	sub-tasks	and	then	construct	a	structure
chart	to	show	the	interrelations	between	the	modules.	Each	box	of	the	structure	chart	represents	a
module.	Each	level	is	a	refinement	of	the	level	above.

A	structure	chart	also	shows	the	interface	between	modules,	the	variables.	These	variables	are	referred
to	as	‘parameters’	(see	Section	14.10).	A	parameter	supplying	a	value	to	a	lower-level	module	is	shown
as	a	downwards	pointing	arrow.	A	parameter	supplying	a	new	value	to	the	module	at	the	next	higher
level	is	shown	as	an	upward	pointing	arrow.

Figure	15.03	shows	a	structure	chart	for	a	module	that	calculates	the	average	of	two	numbers.	The	top-
level	box	is	the	name	of	the	module,	which	is	refined	into	the	three	sub-tasks	of	Level	1.	The	input
numbers	(parameters	Number1	and	Number2)	are	passed	into	the	‘Calculate	Average’	sub-task	and
then	the	Average	parameter	is	passed	into	the	‘OUTPUT	Average’	sub-task.	The	arrows	show	how	the
parameters	are	passed	between	the	modules.	This	parameter	passing	is	known	as	the	‘interface’.

Figure	15.03	Structure	chart	for	a	module	that	calculates	the	average	of	two	numbers

TASK	15.01
Draw	a	structure	chart	for	the	following	module:	Input	a	number	of	km,	output	the	equivalent
number	of	miles.

Structure	charts	can	also	show	control	information:	selection	and	repetition.

The	simple	number-guessing	game	that	was	introduced	in	Chapter	12	(Section	12.06)	could	be
modularised	and	presented	as	a	structure	chart,	as	shown	in	Figure	15.04.

Figure	15.04	Structure	chart	for	number-guessing	game	with	only	one	guess	allowed

The	diamond	shape	shows	a	condition	that	is	either	True	or	False.	So	either	one	branch	or	the	other	will
be	followed.

Figure	15.05	shows	the	structure	chart	for	the	pyramid-drawing	program	from	Worked	Example	12.10.
The	semi-circular	arrow	represents	repetition	of	the	modules	below	the	arrow.	The	label	shows	the
condition	when	repetition	occurs.

Figure	15.05	Structure	chart	for	pyramid-drawing	program

TASK	15.02
Amend	the	structure	chart	for	the	number-guessing	game	(Figure	15.04)	to	include	repeated
guesses	until	the	player	guesses	the	secret	number.	The	output	should	include	the	number	of

guesses	made.

TASK	15.03
Draw	a	structure	chart	for	the	following	problem:	A	user	attempts	to	log	on	with	a	user	ID.	User
IDs	and	passwords	are	stored	in	two	1D	arrays	(lists).	The	algorithm	searches	the	list	of	user	IDs
and	looks	up	the	password	in	the	password	list.	The	user	is	given	three	chances	to	input	the
correct	password.	If	the	correct	password	is	entered,	a	suitable	message	is	output.	If	the	third
attempt	is	incorrect,	a	warning	message	is	output.

Structure	charts	help	programmers	to	visualise	how	modules	are	interrelated	and	how	they	interface
with	each	other.	When	looking	at	a	larger	problem	this	becomes	even	more	important.	Figure	15.06
shows	a	structure	chart	for	the	Connect	4	program	(Task	13.06).	It	uses	the	following	symbols:

An	arrow	with	a	solid	round	end	 	shows	that	the	value	transferred	is	a	flag	(a	Boolean
value)

A	double-headed	arrow	 	shows	that	the	variable	value	is	updated	within	the	module.

Figure	15.06	Structure	chart	for	the	Connect	4	game

15.03	Deriving	pseudocode	from	a	structure	chart
Let’s	look	at	the	pyramid	problem	again	(Figure	15.05).	In	Worked	Example	12.10,	a	modular	solution
was	created	without	using	a	structure	chart	and	all	variables	were	global.	Now	we	are	going	to	use
local	variables	and	parameters.	The	reason	for	using	local	variables	and	parameters	is	that	modules	are
then	self-contained	and	any	changes	to	variables	do	not	have	accidental	effects	on	a	variable	value
elsewhere.

The	top-level	module,	Pyramid,	calls	four	modules.	When	a	module	is	called,	we	supply	the	parameters
in	parentheses	after	the	module	identifier.	This	gives	the	following	pseudocode:

MODULE	Pyramid
				CALL	SetValues(NumberOfSymbols,	NumberOfSpaces,	Symbol,	MaxNumberOfSymbols)
				REPEAT
								CALL	OutputSpaces(NumberOfSpaces)
								CALL	OutputSymbols(NumberOfSymbols,	Symbol)
								CALL	AdjustValuesForNextRow(NumberOfSpaces,	NumberOfSymbols)
				UNTIL	NumberOfSymbols	>	MaxNumberOfSymbols
ENDMODULE

PROCEDURE	SetValues(NumberOfSymbols,	NumberOfSpaces,	Symbol,	MaxNumberOfSymbols)
				INPUT	Symbol
				CALL	InputMaxNumberOfSymbols
				NumberOfSpaces	←	(MaxNumberOfSymbols	–	1)	/	2
				NumberOfSymbols	←	1
ENDPROCEDURE

PROCEDURE	InputMaxNumberOfSymbols(MaxNumberOfSymbols)
				REPEAT
								INPUT	MaxNumberOfSymbols
				UNTIL	MaxNumberOfSymbols	MOD	2	=	1
ENDPROCEDURE

PROCEDURE	OutputSpaces(NumberOfSpaces)
				FOR	Count	←	1	TO	NumberOfSpaces
								OUTPUT	Space	//	without	moving	to	next	line
				NEXT	Count
ENDPROCEDURE

PROCEDURE	OutputSymbols(NumberOfSymbols,	Symbol)
				FOR	Count←	1	TO	NumberOfSymbols
								OUTPUT	Symbol	//	without	moving	to	next	line
				NEXT	Count
				OUTPUT	Newline	//	move	to	the	next	line
ENDPROCEDURE

PROCEDURE	AdjustValuesForNextRow(NumberOfSpaces,	NumberOfSymbols)
				NumberOfSpaces	←	NumberOfSpaces	–	1
				NumberOfSymbols	←	NumberOfSymbols	+	2
ENDPROCEDURE

Note	that	a	structure	chart	does	not	give	details	about	how	parameters	are	passed:	by	reference	or	by
value.

TASK	15.04

Discussion	Point:
The	full	rules	of	Connect	4	are	that	a	diagonal	of	four	tokens	also	is	a	winning	line.	Where	in	Figure

Write	pseudocode	to	implement	the	structure	chart	from	Figure	12.03	(for	the	average	of	two
numbers).

Write	pseudocode	to	implement	the	structure	chart	from	Figure	12.04	(for	the	number-
guessing	game).

Amend	the	pseudocode	from	Worked	Example	13.05	to	implement	the	interface	shown	in	the
structure	chart	from	Figure	15.06.

1

2

3

15.06	should	the	module	to	check	for	a	diagonal	be	added?	What	parameters	are	required	for	this
module?	Does	this	additional	module	require	further	stepwise	refinement?

15.04	Program	design	using	state-transition	diagrams
A	computer	system	can	be	seen	as	a	finite	state	machine	(FSM).	An	FSM	has	a	start	state.	An	input
to	the	FSM	produces	a	transformation	from	one	state	to	another	state.

The	information	about	the	states	of	an	FSM	can	be	presented	in	a	state-transition	table.

Table	15.01	shows	an	example	FSM	represented	as	a	state-transition	table.

If	the	FSM	is	in	state	S1,	an	input	of	a	causes	no	change	of	state.

If	the	FSM	is	in	state	S1,	an	input	of	b	transforms	S1	to	S2.

If	the	FSM	is	in	state	S2,	an	input	of	b	causes	no	change	of	state.

If	the	FSM	is	in	state	S2,	an	input	of	a	transforms	S2	to	S1.

A	state-transition	diagram	can	be	used	to	describe	the	behaviour	of	an	FSM.	Figure	15.07	shows	the
start	state	as	S1	(denoted	by).	If	the	FSM	has	a	final	state	(also	known	as	the	halting	state),
this	is	shown	by	a	double-circled	state	(S1	in	the	example).

current	state

S1 S2

input
a S1 S1

b S2 S2

Table	15.01	State-transition	table

Figure	15.07	State-transition	diagram

If	an	input	causes	an	output	this	is	shown	by	a	vertical	bar	(as	in	Figure	15.08).	For	example,	if	the
current	state	is	S1,	an	input	of	b	produces	output	c	and	transforms	the	FSM	to	state	S2.

Figure	15.08	State-transition	diagram	with	outputs

A	Finite	State	Machine	with	outputs	is	also	known	as	a	Mealy	Machine.

WORKED	EXAMPLE	15.01

Creating	a	state-transition	diagram	for	an	intruder	detection	system

A	program	is	required	that	simulates	the	behaviour	of	an	intruder	detection	system.

Description	of	the	system:	The	system	has	a	battery	power	supply.	The	system	is	activated	when
the	start	button	is	pressed.	Pressing	the	start	button	when	the	system	is	active	has	no	effect.	To	de-
activate	the	system,	the	operator	must	enter	a	PIN.	The	system	goes	into	alert	mode	when	a	sensor
is	activated.	The	system	will	stay	in	alert	mode	for	two	minutes.	If	the	system	has	not	been	de-
activated	within	two	minutes	an	alarm	bell	will	ring.

We	can	complete	a	state-transition	table	(Table	15.02)	using	the	information	from	the	system
description.

Current	state Event Next	state

System	inactive Press	start	button System	active

System	active Enter	PIN System	inactive

System	active Activate	sensor Alert	mode

System	active Press	start	button System	active

Alert	mode Enter	PIN System	inactive

Alert	mode 2	minutes	pass Alarm	bell	ringing

Alert	mode Press	start	button Alert	mode

Alarm	bell	ringing Enter	PIN System	inactive

Alarm	bell	ringing Press	start	button Alarm	bell	ringing

Table	15.02	State-transition	table	for	intruder	detection	simulation

The	start	state	is	‘System	inactive’.	We	can	draw	a	state-transition	diagram	(Figure	15.09)	from
the	information	in	Table	15.02.

Figure	15.09	State-transition	diagram	for	intruder	detection	system

WORKED	EXAMPLE	15.02

Creating	a	state-transition	diagram	for	a	two’s	complement	FSM

A	finite	state	machine	has	been	designed	that	will	take	as	input	a	positive	binary	integer,	one	bit	at

a	time,	starting	with	the	least	significant	bit.	The	FSM	converts	the	binary	integer	into	the	two’s
complement	negative	equivalent.	The	method	to	be	used	is	as	follows.

This	information	is	represented	in	the	state-transition	table	shown	in	Table	15.03.

Current	state S1 S1 S2 S2

Input	bit 0 1 0 1

Next	state S1 S2 S2 S2

Output	bit 0 1 1 0

Table	15.03	State-transition	table	with	outputs

This	method	can	be	represented	as	the	state-transition	diagram	in	Figure	15.10.

Figure	15.10	State-transition	diagram	for	a	two’s	complement	FSM

TASK	15.05
Write	a	program	that	simulates	the	intruder	detection	system	in	Worked	Example	15.01.

Question	15.01
What	is	the	output	from	the	FSM	represented	by	the	state-transition	diagram	in	Figure	15.10,	when	the
input	is	0101?

Extension	Question	15.01
Does	the	FSM	in	Figure	15.10	work	for	converting	a	negative	binary	number	into	its	positive
equivalent?

 	 	Output	the	bits	input	up	to	and	including	the	first	1.

 	 	Output	the	other	bits	following	this	scheme:

2.1  For	each	1,	output	a	0.

2.2  For	each	0,	output	a	1.

1

2

15.05	Types	of	error
Why	errors	occur	and	how	to	find	them
Software	may	not	perform	as	expected	for	a	number	of	reasons,	such	as:

the	programmer	has	made	a	coding	mistake

the	requirement	specification	was	not	drawn	up	correctly

the	software	designer	has	made	a	design	error

the	user	interface	is	poorly	designed,	and	the	user	makes	mistakes

computer	hardware	experiences	failure.

How	are	errors	found?	The	end	user	might	report	an	error.	This	is	not	good	for	the	reputation	of	the
software	developer.	Testing	software	before	it	is	released	for	general	use	is	essential.	Research	has
shown	that	the	earlier	an	error	can	be	found,	the	cheaper	it	is	to	fix	it.	It	is	very	important	that	software
is	tested	throughout	its	development.

The	purpose	of	testing	is	to	discover	errors.	Edsger	Dijkstra,	a	famous	Dutch	computer	scientist,	said
‘Program	testing	can	be	used	to	show	the	presence	of	bugs,	but	never	to	show	their	absence!’.

Finding	syntax	errors	is	easy.	The	compiler/interpreter	will	find	them	for	you	and	usually	gives	you	a
hint	as	to	what	is	wrong.

Depending	on	your	development	environment	editor,	some	syntax	errors	may	be	flagged	up	by	your
editor,	so	you	can	correct	these	as	you	go	along.	A	syntax	error	is	a	‘grammatical’	error,	in	which	a
program	statement	does	not	follow	the	rules	of	the	high-level	language	constructs.

Some	syntax	errors	might	only	become	apparent	when	you	are	using	an	interpreter	or	compiler	to
translate	your	program.	Interpreters	and	compilers	work	differently	(see	Chapter	8,	Section	8.05,	and
Chapter	20,	Section	20.06).	When	a	program	compiles	successfully,	you	know	there	will	be	no	syntax
errors	remaining.

This	is	not	the	case	with	interpreted	programs.	Only	statements	that	are	about	to	be	executed	will	be
syntax	checked.	So,	if	your	program	has	not	been	thoroughly	tested,	it	might	even	have	syntax	errors
remaining.

Figure	15.11	Syntax	error	in	a	Visual	Basic	program

Figure	15.11	gives	an	example	of	how	a	compiler	flags	a	syntax	error.	The	compiler	stops	when	it	first
notices	a	syntax	error.	The	error	is	often	on	the	previous	line.	The	compiler	can’t	tell	until	it	gets	to	the
next	line	of	code	and	finds	an	unexpected	keyword.

Much	more	difficult	to	find	are	logic	errors	and	run-time	errors.	A	run-time	error	occurs	when
program	execution	comes	to	an	unexpected	halt	or	‘crash’	or	it	goes	into	an	infinite	loop	and	‘freezes’.

Both	of	these	types	of	error	can	only	be	found	by	careful	testing.	The	danger	of	such	errors	is	that	they
may	only	show	up	under	certain	circumstances.	If	a	program	crashes	every	time	it	is	executed,	it	is
obvious	there	is	an	error.	If	the	program	is	used	frequently	and	appears	to	work	until	a	certain	set	of
data	causes	a	malfunction,	that	is	much	more	difficult	to	discover	without	perhaps	serious
consequences.

15.06	Testing	methods
Stub	testing
When	you	develop	a	user	interface,	you	might	wish	to	test	it	before	you	have	implemented	all	the
facilities.	You	can	write	a	‘stub’	for	each	procedure	(see	Figure	15.12).	The	procedure	body	only
contains	an	output	statement	to	acknowledge	that	the	call	was	made.	Each	option	the	user	chooses	in
the	main	program	will	call	the	relevant	procedure.

Figure	15.12	VB.NET	stub	testing

Black-box	testing
As	the	programmer,	you	can	see	your	program	code	and	your	testing	will	involve	knowledge	of	the	code
(see	white-box	testing).

As	part	of	thorough	testing,	a	program	should	also	be	tested	by	other	people,	who	do	not	see	the
program	code	and	don’t	know	how	the	solution	was	coded.

Such	program	testers	will	look	at	the	program	specification	to	see	what	the	program	is	meant	to	do,
devise	test	data	and	work	out	expected	results.	Test	data	usually	consists	of	normal	data	values,
extreme/boundary	data	values	and	erroneous/abnormal	data	values.

The	tester	then	runs	the	program	with	the	test	data	and	records	their	results.	This	method	of	testing	is
called	black-box	testing	because	the	tester	can’t	see	inside	the	program	code:	the	program	is	a	‘black
box’.

Where	the	actual	results	don’t	match	the	expected	results,	a	problem	exists.	The	programmer	needs	to
find	the	reason	for	this	discrepancy	before	correcting	the	program	(see	Section	15.08).	Once	black-box
testing	has	established	that	there	is	an	error,	debugging	software	or	dry-running	have	to	be	used	to	find

the	lines	of	code	that	need	correcting.

White-box	testing
How	can	we	check	that	code	works	correctly?	We	choose	suitable	test	data	that	checks	every	path
through	the	code.	This	is	called	white-box	testing.

WORKED	EXAMPLE	15.03

White-box	testing	of	pseudocode

This	is	the	pseudocode	from	Worked	Example	12.02	in	Chapter	12:
INPUT	Number1

INPUT	Number2

INPUT	Number3

IF	Number1	>	Number2

		THEN												//	Number1	is	bigger

				IF	Number1	>	Number3

						THEN

								OUTPUT	Number1

						ELSE

								OUTPUT	Number3

				ENDIF

		ELSE												//	Number2	is	bigger

				IF	Number2	>	Number3

						THEN

								OUTPUT	Number2

						ELSE

								OUTPUT	Number3

				ENDIF

ENDIF

To	test	it,	we	need	four	sets	of	numbers	with	the	following	characteristics.

The	first	number	is	the	largest.

The	first	number	is	larger	than	the	second	number;	the	third	number	is	the	largest.

The	second	number	is	the	largest.

The	second	number	is	larger	than	the	first	number;	the	third	number	is	the	largest.

Note	that	it	does	not	matter	what	exact	values	are	chosen	as	test	data.	The	important	point	is	that
the	values	differ	in	such	a	way	that	each	part	of	the	nested	IF	statement	is	checked.	Table	15.04
lists	four	sets	of	test	data	and	the	results	from	them.	The	parts	of	the	algorithm	not	entered	for	a
particular	set	of	data	are	greyed	out.	This	makes	it	easier	to	see	that	each	part	has	been	checked
after	all	four	tests	have	been	done.

Line	of	algorithm Test	1 Test	2 Test	3 Test	4
INPUT	Number1 15 12 12 8

INPUT	Number2 12 8 15 12

INPUT	Number3 8 15 8 15

IF	Number1	>	Number2 TRUE TRUE FALSE FALSE

THEN
					IF	Number1	>	Number3

TRUE FALSE 	 	

						THEN Output	15

									OUTPUT	Number1 	 	 	

						ELSE
									OUTPUT	Number3
					ENDIF

	
Output	15

	 	

		ELSE
					IF	Number2	>	Number3 	 	 TRUE FALSE

						THEN
									OUTPUT	Number2 	 	 Output	15 	

						ELSE
									OUTPUT	Number3
					ENDIF
ENDIF

	 	 	
Output	15

Table	15.04	Testing	the	validity	of	the	nested	IF	statement

Dry-running	an	algorithm
A	good	way	of	checking	that	an	algorithm	works	as	intended	is	to	dry-run	the	algorithm	using	a	trace
table	and	different	test	data.	This	is	also	known	as	a	walk	through.

The	idea	is	to	write	down	the	current	contents	of	all	variables	and	conditional	values	at	each	step	of	the
algorithm.

WORKED	EXAMPLE	15.04

Tracing	an	algorithm

Here	is	the	algorithm	of	the	number-guessing	game:
SecretNumber	←	34

INPUT	"Guess	a	number:	"	Guess

NumberOfGuesses	←	1

REPEAT

				IF	Guess	=	SecretNumber

						THEN

								OUTPUT	"You	took	",	NumberOfGuesses,	"	guesses”

						ELSE

								IF	Guess	>	SecretNumber

										THEN

												INPUT	"Guess	a	smaller	number:	"	Guess

										ELSE

												INPUT	"Guess	a	larger	number:	"	Guess

								ENDIF

									NumberOfGuesses	←	NumberOfGuesses	+	1

				ENDIF

UNTIL	Guess	=	SecretNumber

To	test	the	algorithm,	construct	a	trace	table	(Table	15.05)	with	one	column	for	each	variable	used
in	the	algorithm	and	also	for	the	condition	Guess	>	SecretNumber

Now	carefully	look	at	each	step	of	the	algorithm	and	record	what	happens.	Note	that	we	do	not
tend	to	write	down	values	that	don’t	change.	Here	SecretNumber	does	not	change	after	the	initial
assignment,	so	the	column	is	left	blank	in	subsequent	rows.

SecretNumber Guess NumberOfGuesses Guess	>	SecretNumber Message

34 5 1 FALSE ...larger...

55 2 TRUE ...smaller...

30 3 FALSE ...larger...

42 4 TRUE ...smaller...

36 5 TRUE ...smaller...

33 6 FALSE ...larger...

34 7 ...	7	guesses

Table	15.05	Trace	table	for	number-guessing	game

We	only	make	an	entry	in	a	cell	when	an	assignment	occurs.	Values	remain	in	variables	until	they	are
overwritten.	So	a	blank	cell	means	that	the	value	from	the	previous	entry	remains.

It	is	important	to	start	filling	in	a	new	row	in	the	trace	table	for	each	iteration	(each	time	round	the
loop).

	TIP
When	learning	to	complete	trace	tables	and	to	ensure	you	follow	every	line	of	code	in	the
correct	sequence,	you	can	number	the	lines	of	the	algorithm	and	add	a	column	for	the	line
numbers	in	your	trace	table	(see	Worked	Example	15.05	Trace	Table	15.06).

WORKED	EXAMPLE	15.05

Tracing	an	algorithm

To	test	the	improved	algorithm	of	Worked	Example	13.03	(bubble	sort),	dry-run	the	algorithm	by
completing	the	trace	table	(Table	15.06).
01	MaxIndex	←	7

02	n	←	MaxIndex	-	1

03	REPEAT

04					NoMoreSwaps	←	TRUE

05					FOR	j	←	1	TO	n

06									IF	MyList[j]	>	MyList[j	+	1]

07											THEN

08													Temp	←	MyList[j]

09													MyList[j]	←	MyList[j	+	1]

10													MyList[j	+	1]	←	Temp

11													NoMoreSwaps	←	FALSE

12									ENDIF

13					NEXT	j

14					n	←	n	–	1

15	UNTIL	NoMoreSwaps	=	TRUE

Table	15.06	Trace	table	for	improved	bubble	sort	algorithm

TASK	15.06
Design	a	trace	table	for	the	following	algorithm:
FUNCTION	ConvertFromHex(HexString	:	STRING)	RETURNS	INTEGER

				DECLARE	ValueSoFar,	HexValue,	HexLength,	i	:	INTEGER

				DECLARE	HexDigit	:	CHAR

				ValueSoFar	←	0

				HexLength	←	Length(HexString)

				FOR	i	←	1	TO	HexLength

								HexDigit	←	HexString[i]

								CASE	OF	HexDigit

										'A':	HexValue	←	10

										'B':	HexValue	←	11

										'C':	HexValue	←	12

										'D':	HexValue	←	13

										'E':	HexValue	←	14

										'F':	HexValue	←	15

										OTHERWISE	HexValue	←	StringToInt(HexDigit)

								ENDCASE

								ValueSoFar	←	ValueSoFar	*	16	+	HexValue

				NEXT	i

				RETURN	ValueSoFar

ENDFUNCTION

Dry-run	the	function	call	ConvertFromHex('A5')	by	completing	the	trace	table.

These	testing	methods	are	used	early	on	in	software	development,	for	example	when	individual	modules
are	written.	Sometimes	programmers	themselves	use	these	testing	methods.	In	larger	software
development	organisations,	separate	software	testers	will	be	employed.

Discussion	Point:
Do	you	think	that	a	program	tester	will	find	errors	the	programmer	did	not	know	about?	You	can	try	out
the	idea	by	letting	your	friends	test	a	program	that	you	think	works	perfectly.

Software	often	consists	of	many	modules,	sometimes	written	by	different	programmers.	Each	individual
module	might	have	passed	all	the	tests,	but	when	modules	are	joined	together	into	one	program,	it	is
vital	that	the	whole	program	is	tested.	This	is	known	as	integration	testing.	Integration	testing	is
usually	done	incrementally.	This	means	that	a	module	at	a	time	is	added	and	further	testing	is	carried
out	before	the	next	module	is	added.

Software	will	be	tested	in-house	by	software	testers	before	being	released	to	customers.	This	type	of
testing	is	called	alpha	testing.

Bespoke	software	(written	for	a	specific	customer)	will	then	be	released	to	the	customer.	The	customer
will	check	that	it	meets	their	requirements	and	works	as	expected.	This	stage	is	referred	to	as
acceptance	testing.	It	is	generally	part	of	the	hand-over	process.	On	successful	acceptance	testing,
the	customer	will	sign	off	the	software.

When	software	is	not	bespoke	but	produced	for	general	sale,	there	is	no	specific	customer	to	perform
acceptance	testing	and	sign	off	the	software.	So,	after	alpha	testing,	a	version	is	released	to	a	limited
audience	of	potential	users,	known	as	‘beta	testers’.	These	beta	testers	will	use	the	software	and	test	it
in	their	own	environments.	This	early	release	version	is	called	a	beta	version	and	the	chosen	users
perform	beta	testing.	During	beta	testing,	the	users	will	feed	back	to	the	software	house	any	problems
they	have	found,	so	that	the	software	house	can	correct	any	reported	faults.

15.07	Test	strategy,	test	plans	and	test	data
During	the	design	stage	of	a	software	project,	a	suitable	testing	strategy	must	be	worked	out	to	ensure
rigorous	testing	of	the	software	from	the	very	beginning.	Consideration	should	be	given	to	which
testing	methods	are	appropriate	for	the	project	in	question.	A	carefully	designed	test	plan	has	to	be
produced.

It	is	important	to	recognise	that	large	programs	cannot	be	exhaustively	tested	but	it	is	important	that
systematic	testing	finds	as	many	errors	as	possible.	We	therefore	need	a	test	plan.	In	the	first	instance,
an	outline	plan	is	designed,	for	example:

flow	of	control:	does	the	user	get	appropriate	choices	and	does	the	chosen	option	go	to	the	correct
module?

validation	of	input:	has	all	data	been	entered	into	the	system	correctly?

do	loops	and	decisions	perform	correctly?

is	data	saved	into	the	correct	files?

does	the	system	produce	the	correct	results?

This	outline	test	plan	needs	to	be	made	into	a	detailed	test	plan.

How	can	we	carry	out	these	tests?	We	need	to	select	data	that	will	allow	us	to	see	whether	it	is	handled
correctly.	This	type	of	data	is	called	‘test	data’.	It	differs	from	real,	live	data	because	it	is	specifically
chosen	with	a	view	of	testing	different	possibilities.	We	distinguish	between	different	types	of	test	data,
listed	in	Table	15.07.

Type	of	test	data Explanation

Normal	(valid) Typical	data	values	that	are	valid

Abnormal
(erroneous)

Data	values	that	the	system	should	not	accept

Boundary
(extreme)

Data	values	that	are	at	a	boundary	or	an	extreme	end	of	the	range	of	normal	data;
test	data	should	include	values	just	within	the	boundary	(that	is,	valid	data)	and
just	outside	the	boundary	(that	is,	invalid	data)

Table	15.07	Types	of	test	data

WORKED	EXAMPLE	15.06

Designing	test	data

Look	at	the	Pyramid	Problem	(code	shown	in	Section	14.13).	This	is	a	simple	program,	but	we	can
use	it	to	illustrate	how	to	choose	test	data.	There	are	just	two	user	inputs:	the	number	of	symbols
that	make	up	the	base	and	the	symbol	that	is	to	be	used	to	construct	the	pyramid.	Let’s	consider
just	the	test	data	for	the	number	of	symbols	(Table	15.08).

Type	of
test	data

Example
test
values

Explanation

Normal
(valid)

7 7	is	an	odd	integer,	so	should	be	accepted.
Any	odd	positive	integer	would	be	suitable	as	test	data.	However,	it	should
be	bigger	than	1	to	check	that	the	pyramid	is	correctly	formed.	More	than
one	different	value	to	test	would	be	a	good	idea.

Abnormal
(erroneous)

Any	number	that	is	not	a	positive	odd	integer.	This	will	require	several
tests	to	ensure	that	the	following	types	of	data	are	not	accepted:

–7 negative	integer

8 even	integer

7.5 real	number

'*' non-numeric	input.

You	should	not	take	shortcuts	and	choose	one	negative	even	integer	or
one	negative	real	number	and	think	you	can	test	two	things	at	the	same
time.	You	will	not	know	whether	the	test	fails	for	just	one	reason	or	both.

Boundary
(extreme)

1 What	is	a	boundary	value?	The	smallest	possible	pyramid	is	a	single
symbol.	So	the	value	1	is	just	within	the	boundary.
Sometimes	choosing	test	data	throws	up	some	interesting	questions	that
need	to	be	considered	when	designing	the	solution:

0 Should	0	be	accepted?	Is	0	an	even	number?
Is	it	outside	the	boundary	because	a	pyramid	of	0	symbols	is	not	really	a
pyramid?
Is	there	just	one	boundary?	Should	the	program	reject	numbers	that	are
too	large?

79
81

The	output	would	not	look	like	a	pyramid	if	there	were	a	wrap-around.	So
the	program	really	should	check	how	many	symbols	fit	onto	one	line	and
not	allow	the	user	to	input	a	number	greater	than	this.	If	the	number	of
characters	across	the	screen	is	80,	then	79	would	be	just	within	the
boundary	but	81	would	be	outside	the	boundary,	and	should	not	be
accepted.
Note	that	by	testing	with	values	within	the	boundary	you	are	also	testing
normal	data,	albeit	at	the	extreme	ends	of	the	normal	range.

Table	15.08	Test	data	for	the	pyramid	problem

TASK	15.07
Look	at	the	programs	you	wrote	in	Chapter	14.

How	to	prevent	errors
The	best	way	to	write	a	program	that	works	correctly	is	to	prevent	errors	in	the	first	place.	How	can	we
minimise	the	errors	in	a	program?	A	major	cause	of	errors	is	poor	requirements	analysis.	When
designing	a	solution	it	is	very	important	that	we	understand	the	problem	and	what	the	user	of	the
system	wants	or	needs.	We	should	use:

tried	and	tested	design	techniques	such	as	structured	programming	or	object-oriented	design

conventions	such	as	identifier	tables,	data	structures	and	standard	algorithms

tried	and	tested	modules	or	objects	from	program	libraries.

Design	test	data	for	the	number-guessing	game	(Task	14.09.2).

Design	test	data	for	the	Connect	4	game	(Task	14.11).

1

2

15.08	Corrective	maintenance
Maintaining	programs	is	not	like	maintaining	a	mechanical	device.	It	doesn’t	need	lubricating	and	parts
don’t	wear	out.	Corrective	maintenance	of	a	program	refers	to	the	work	required	when	a	program	is
not	working	correctly	due	to	a	logic	error	or	because	of	a	run-time	error.	Sometimes	program	errors
don’t	become	apparent	for	a	long	time	because	it	is	only	under	very	rare	circumstances	that	there	is	an
unexpected	result	or	the	program	crashes.	These	circumstances	might	arise	because	part	of	the
program	is	not	used	often	or	because	the	data	on	an	occasion	includes	extreme	values.	Earlier
corrective	maintenance	may	also	introduce	other	errors.

When	a	problem	is	reported,	the	programmer	needs	to	find	out	what	is	causing	the	bug.	To	find	a	bug,	a
programmer	either	uses	program	debugging	software	or	a	trace	table	(see	Section	15.06).

TASK	15.08

Design	a	trace	table	for	the	following	algorithm:
INPUT	BinaryString

StringLength	←	Length(BinaryString)

FOR	i	←	1	TO	StringLength

				Bit	←	BinaryString[i]

				BitValue	←	IntegerValue(Bit)	//	convert	string	to	integer

				DenaryValue	←	DenaryValue	+	2	+	BitValue

NEXT	i

Dry-run	the	algorithm	using	'101'	as	the	input.	Complete	the	trace	table.

The	result	should	be	5.	Can	you	find	the	error	in	the	code	and	correct	it?

1

2

3

15.09	Adaptive	maintenance
Programs	often	get	changed	to	make	them	perform	functions	they	were	not	originally	designed	to	do.

For	example,	the	Connect	4	game	introduced	in	Chapter	13	(Worked	Example	13.03)	allows	two
players,	O	and	X,	to	play	against	each	other.	An	amended	version	would	be	for	one	player	to	be	the
computer.	This	would	mean	a	single	player	could	try	and	win	against	the	computer.

Adaptive	maintenance	is	the	action	of	making	amendments	to	a	program	to	enhance	functionality	or
in	response	to	specification	changes.

TASK	15.09
Design	the	algorithm	to	simulate	the	computer	playing	the	part	of	Player	X	in	Connect	4.

15.10	Perfective	maintenance
The	program	runs	satisfactorily.	However,	there	is	still	room	for	improvement.	For	example,	the
program	may	run	faster	if	the	file	handling	is	changed	from	sequential	access	to	direct	access.

TASK	15.10
Analyse	the	pseudocode	below	and	make	amendments	to	enhance	maintainability.
FUNCTION	GetPositiveNumber

				DECLARE	n	:	INTEGER

				OUTPUT	"Enter	a	positive	number:	"

				INPUT	n

				RETURN	n

ENDFUNCTION		

//	main	program

REPEAT

				Number1	←	GetPositiveNumber

				IF	Number1	<=	0

						THEN

								OUTPUT	"Not	a	positive	number:	"

				ENDIF

UNTIL	Number1	>	0

REPEAT

				Number2	←	GetPositiveNumber

				IF	Number2	<=	0

						THEN

								OUTPUT	"Not	a	positive	number:	"

				ENDIF

UNTIL	Number2	>	0

Reflection	Point:
Have	you	used	dry-running	for	programs	you	have	written?	You	can	check	your	trace	table	if	you	add
output	statements	at	key	points	in	your	program.	You	can	then	compare	the	program	output	with	the
contents	of	your	trace	table.

Summary
The	stages	of	the	program	development	cycle	consist	of	analysis,	design,	coding,	testing	and
maintenance.
Structure	charts	are	graphical	representations	of	the	modular	structure	of	solutions.
A	structure	chart	shows	the	interface	between	modules:	parameters	passed	between	calling
module	and	the	module	being	called.
Structure	charts	show	selection,	where	a	module	is	called	only	under	certain	conditions.
Structure	charts	show	repetition,	where	modules	are	called	repeatedly.
A	state	transition	diagram	is	another	way	of	documenting	an	algorithm.
Testing	strategies	include	stub	testing,	black-box	testing,	white-box	testing,	integration	testing,
alpha	and	beta	testing,	and	acceptance	testing.
Locating	and	correcting	logic	errors	and	run-time	errors	can	be	done	by	dry-running	an	algorithm
or	using	a	trace	table.
Corrective	maintenance	means	fixing	bugs	that	have	come	to	light	during	use	of	the	program.
Adaptive	maintenance	involves	altering	an	algorithm	and	data	structure	in	response	to	required

■

■
■

■
■
■
■

■

■
■

changes.
Perfective	maintenance	means	enhancing	performance	or	maintainability.■

Exam-style	Questions

[5]

[3]

[3]

Consider	this	code	for	a	function:
FUNCTION	Binary(Number	:	INTEGER)	RETURNS	STRING

				DECLARE	BinaryString	:	STRING

				DECLARE	PlaceValue	:	INTEGER

				BinaryString	←	''		//	empty	string

				PlaceValue	←	8

				REPEAT

								IF	Number	>=	PlaceValue

										THEN

												BinaryString	←	BinaryString	&	'1'	//	concatenates	two	strings

												Number	←	Number	–	PlaceValue

										ELSE

												BinaryString	←	BinaryString	&	'0'

								ENDIF

								PlaceValue	←	PlaceValue	DIV	2

				UNTIL	Number	=	0

				RETURN	BinaryString

ENDFUNCTION

Dry-run	the	function	call	Binary(11)	by	completing	the	given	trace	table.

Number BinaryString PlaceValue Number	>=	PlaceValue

11 '' 8 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

What	is	the	return	value?

Now	dry-run	the	function	call	Binary(10)	by	completing	the	given	trace	table.

Number BinaryString PlaceValue Number	>=	PlaceValue

10 '' 8 	
	 	 	 	
	 	 	 	
	 	 	 	
	 	 	 	

What	is	the	return	value?

The	algorithm	is	supposed	to	convert	a	denary	integer	into	the	equivalent	binary	number,
stored	as	a	string	of	0s	and	1s.	Explain	the	result	of	each	dry-run	and	what	needs	changing	in
the	given	algorithm.

A	procedure	to	output	a	row	in	a	tally	chart	has	been	written	using	pseudocode:
PROCEDURE	OutputTallyRow(NumberToDraw	:	INTEGER)

				IF	Count	>	0

						THEN

								FOR	Count	←	1	TO	NumberToDraw

												IF	(Count	MOD	5)	=	0

														THEN

																OUTPUT('\')	//	every	5th	bar	slants	the	other	way

														ELSE

1

a

b i

ii

2

[5]

[12]

[9]

																OUTPUT('/')

												ENDIF

								NEXT	Count

				ENDIF

				OUTPUT	NewLine	//	move	to	next	row

ENDPROCEDURE

Suggest	suitable	test	data	that	will	test	the	procedure	adequately.	Justify	your	choices	in	each	case.

A	random	number	generator	is	to	be	tested	to	see	whether	all	numbers	within	the	range	1	to	20
are	generated	equally	frequently.	The	structured	English	version	of	the	algorithm	is
Initialise	a	tally	for	the	numbers	1	to	20

Repeatedly	generate	numbers	in	range	1	to	20

For	each	number	generated,	increment	the	relevant	count

Calculate	how	often	each	number	should	be	generated	(expected	frequency)

Output	expected	frequency

Output	the	list	of	numbers	as	a	table	with	actual	frequency

The	identifiers	required	are:

Identifier Data	Type Explanation
Tally Array[1	:

20]	OF
INTEGER

1D	array	to	store	the	count	of	how	many	times	each	number	has
been	generated

RandomNumber INTEGER The	random	number	generated
NumberOfTests INTEGER The	number	of	times	a	random	number	is	to	be	generated	(1000	in

this	example)
ExpectedFrequency INTEGER The	number	of	times	any	one	number	would	be	generated	if	all

numbers	are	generated	equally	frequently	(1000/20	in	this	example)

Complete	the	structure	chart	below	by	naming	the	labels	A	to	E.

Develop	pseudocode	from	the	structure	chart.

A	car	park	has	a	barrier	at	the	exit.	The	starting	position	of	the	barrier	is	lowered.	When	a	car	wants
to	exit	the	car	park,	the	driver	has	to	insert	a	coin	into	a	coin	slot	at	the	barrier.	The	barrier	raises
and	allows	the	car	to	drive	out	of	the	car	park.	After	the	car	has	passed	through	the	barrier,	the
barrier	lowers.	In	case	of	emergency,	a	member	of	staff	can	open	the	barrier	using	a	remote	control.
The	barrier	will	remain	open	until	the	remote	control	is	used	again	to	lower	the	barrier.

The	barrier	has	three	states:	lowered,	raised	and	open.	The	transition	from	one	state	to	another	is	as
shown	in	the	state-transition	table:

Current	state Event Next	state
Barrier	lowered Coin	inserted Barrier	raised
Barrier	lowered Open	remotely Barrier	open
Barrier	open Close	remotely Barrier	lowered

Barrier	raised Car	has	exited Barrier	lowered

Complete	the	state-transition	diagram	for	the	barrier:

3

a

b

4

[7]

Part	3
Advanced	theory

Chapter	16:
Data	representation

16.01	Data	types
Sections	13.01	to	13.05	of	Chapter	13	introduced	the	concept	of	a	variable	being	associated	with	a	data
type.	Before	a	variable	can	be	used	in	a	program,	the	variable’s	data	type	has	to	be	identified.	Chapter
13	introduced	the	most	frequently	used	data	types	that	are	available	for	association	with	a	variable	in	a
program.	This	chapter	introduces	some	additional	data	types	that	might	be	used.

Built-in	data	types
Remember,	for	each	built-in	data	type:

the	programming	language	defines	the	range	of	possible	values	that	can	be	assigned	to	a	variable
when	its	type	has	been	chosen.

the	programming	language	defines	the	operations	that	are	available	for	manipulating	values
assigned	to	the	variable.

User-defined	data	types
The	term	‘user’	is	regularly	applied	to	someone	who	is	provided	with	a	‘user	interface’	by	an	operating
system	–	the	‘user’	is	the	person	supplying	input	to	a	running	program	and	receiving	output	from	it.

However,	when	writing	a	program,	a	programmer	becomes	a	‘user’	of	a	programming	language.	The
term	user-defined	data	type	applies	to	this	latter	type	of	user.

A	user-defined	data	type	is	a	data	type	for	which	the	programmer	has	included	the	definition	in	the
program.	Once	the	data	type	has	been	defined,	variables	can	be	created	and	associated	with	the	user-
defined	data	type.	Note	that,	although	the	user-defined	data	type	is	not	a	built-in	data	type,	using	the
user-defined	data	type	is	only	possible	if	a	programming	language	offers	support	for	the	construct.

	TIP
Make	sure	that	you	do	not	confuse	user-defined	data	types	and	abstract	data	types
(defined	in	Section	13.07	of	Chapter	13).

Non-composite	data	types
A	non-composite	data	type	is	one	which	has	a	definition	which	does	not	involve	a	reference	to
another	data	type.	The	simple	built-in	data	types,	such	as	integer	or	real,	are	examples	of	built-in	non-
composite	data	types.	It	is	also	possible	for	a	user-defined	data	type	to	be	non-composite.

Enumerated	data	type
An	enumerated	data	type	is	an	example	of	a	user-defined	non-composite	data	type.	When	a	specific
enumerated	data	type	is	defined,	every	single	possible	value	for	it	is	identified.	The	following
pseudocode	shows	two	examples	of	enumerated	data	type	definitions:

TYPE
TDirections	=	(North,	East,	South,	West)
TDays	=	(Monday,	Tuesday,	Wednesday,	Thursday,	Friday,	Saturday,	Sunday)

Following	these	definitions,	variables	can	be	declared	and	assigned	values,	for	example:
DECLARE	Direction1	:	TDirections
DECLARE	StartDay	:	TDays
Direction1	←	North
StartDay	←	Wednesday

It	is	important	to	note	the	following	points.

The	values	of	the	enumerated	type	look	like	string	values	but	they	are	not.	The	values	must	not	be
enclosed	in	quotes.

The	values	defined	in	an	enumerated	data	type	are	ordinal.	This	means	that	enumerated	data	types

have	an	implied	order	of	values.

The	ordering	can	be	put	to	many	uses	in	a	program.	For	example,	a	comparison	statement	can	be	used
with	the	values	of	the	variables	of	an	enumerated	data	type:

DECLARE	Weekend	:	Boolean
DECLARE	Day	:	TDays
Weekend	=	TRUE	IF	Day	>	Friday

The	enumerated	data	type	is	one	reason	why	user-defined	data	types	are	sometimes	needed.	There
could	not	be	a	built-in	generic	definition	of	an	enumerated	data	type	because	the	possible	values	would
not	be	known.	The	values	can	only	be	known	when	the	programmer	has	identified	them	in	the	type
definition.

Composite	user-defined	data	types
A	composite	user-defined	data	type	has	a	definition	with	reference	to	at	least	one	other	type.	There	are
two	very	important	examples	of	composite	user-defined	data	type.

Pointer	data	type
A	pointer	variable	is	one	for	which	the	value	is	a	reference	to	a	memory	location.	The	following	is	a
commentary	on	some	examples	of	pseudocode	involving	the	use	of	the	pointer	data	type.

Not	all	programming	languages	offer	support	for	the	use	of	a	pointer	data	type.	Those	languages	that
do	so	will	have	their	own	version	of	the	symbolism	illustrated	above	with	^	and	@.

Because	arithmetic	can	be	performed	on	pointer	variables,	it	is	possible	to	use	pointer	variables	to
construct	dynamically	varying	data	structures.	For	some	programming	languages	it	is	necessary	to
declare	an	array	with	a	large	upper	bound	to	ensure	that	the	array	is	unlikely	to	be	fully	populated	with
values.	If	the	language	supports	the	use	of	a	pointer	variable,	the	size	of	an	array	can	expand	while	a

The	record	data	type	(introduced	in	Chapter	13).	Although	there	could	be	built-in	record	data	types
the	expectation	is	for	a	record	data	type	to	be	user-defined.	This	allows	the	programmer	to	create
record	data	types	with	components	that	precisely	match	the	data	requirements	of	the	particular
program.	Note	that	Python	is	a	language	that	does	not	support	the	use	of	a	record	data	type.

The	class.	A	class	is	a	data	type	which	is	used	for	an	object	in	object-oriented	programming.	For	a
given	object-oriented	programming	language	there	are	likely	to	be	a	number	of	built-in	classes.
However,	if	a	programmer	intends	to	utilise	the	benefits	of	the	object-oriented	approach,	then	the
programmer	will	have	to	create	a	number	of	user-defined	classes.

1

2

An	example	of	the	definition	of	a	pointer	type	which	requires	only	the	identification	of	a	data	type	for
which	the	pointer	is	to	be	used.
TYPE

TIntegerPointer	←	^Integer

An	example	of	the	declaration	of	a	variable	of	the	pointer	data	type	which	does	not	require	the	use	of
the	caret	(^)	symbol.
DECLARE	MyIntegerPointer	:	TIntegerPointer

An	example	of	the	declaration	of	two	ordinary	variables	of	type	integer	and	the	assignment	of	a
value	for	one	of	them.
DECLARE	Number1,	Number2	:	INTEGER

Number1	←	100

An	example	of	an	assignment	to	a	pointer	variable	of	a	value	which	is	the	address	of	a	different
variable.
MyIntegerPointer	←	@Number1

An	example	of	an	assignment	which	uses	the	‘dereferenced’	value	which	has	been	stored	at	the
address	defined	by	the	pointer	variable.	This	assigns	the	value	200	to	Number2.
Number2	←	MyIntegerPointer^	*	2

1

2

3

4

5

program	is	running.	The	details	of	how	this	can	be	done	are	beyond	the	scope	of	this	discussion.

Set	data	type
A	set	data	type	allows	a	program	to	create	sets	and	to	apply	the	mathematical	operations	defined	in	set
theory.	A	set	is	a	mathematical	concept	with	important	properties.

It	contains	a	collection	of	data	values.

There	is	no	organisation	of	the	data	values	within	the	set.

Duplicate	values	are	not	allowed.

Operations	that	can	be	performed	on	a	set	include:

checking	if	a	value	exists	in	a	set

adding	a	new	data	value

removing	an	existing	data	value

adding	one	set	to	another	set.

A	set	variable	can	be	created	if	a	programming	language	supports	the	set	data	type.	It	is	difficult	to
classify	the	set	data	type.	Because	the	set	contains	multiple	components	it	is	tempting	to	say	that	the
set	is	a	structured	data	type.	However,	this	contradicts	the	fact	that	the	set	has	no	structure	and
therefore	no	indexing	can	be	associated	with	the	members	of	the	set.

The	most	useful	property	of	a	set	is	the	fact	that	duplicate	values	are	not	allowed.	A	list	or	a	one-
dimensional	array	might	be	created	but	has	to	be	checked	to	remove	duplicate	values.	A	simple	way	of
removing	duplicate	values	would	be	to	convert	the	structure	to	a	set	and	then	convert	the	set	back	to
the	original	structure.

A	slightly	different	example	would	be	if	students	were	allocated	to	groups	for	studying	a	particular
subject.	For	each	subject,	the	students’	names	would	be	entered	into	a	data	structure	defined	for	that
subject.	Set	data	types	could	then,	for	example,	find	out	which	students	were	studying	both	computer
science	and	physics.	The	students	studying	both	subjects	would	be	found	by	applying	the	‘intersection’
operation	on	the	two	individual	sets.

16.02	File	organisation
In	everyday	computer	usage,	a	wide	variety	of	file	types	is	encountered.	Examples	are	graphic	files,
word-processing	files,	spreadsheet	files	and	so	on.	Whatever	the	file	type,	the	content	is	stored	using	a
specific	binary	code	that	allows	the	file	to	be	used	as	intended.

For	the	specific	task	of	storing	data	to	be	used	for	input	to	a	computer	program	or	for	output	from	a
computer	program,	there	are	only	two	defined	file	types.	A	file	is	either	a	text	file	or	a	binary	file.

A	text	file,	as	discussed	in	Chapter	13	(Section	13.06)	contains	data	stored	according	to	a	character
code	of	the	type	described	in	Chapter	1	(Section	1.04).	It	is	possible,	by	using	a	text	editor,	to	create	a
text	file	to	be	used	as	input	to	a	program.

A	program	may	create	a	binary	file	as	output	with	the	intention	of	subsequently	using	it	for	input.	A
binary	file	stores	data	in	its	internal	representation,	for	example	an	integer	value	might	be	stored	in	two
bytes	in	two’s	complement	representation.

The	organisation	of	a	binary	file	is	based	on	the	concept	of	a	record.	A	file	contains	records	and	each
record	contains	fields.	Each	field	consists	of	a	value.	For	a	text	file	the	number	of	data	items	per	line
must	be	known	and	the	number	of	characters	per	item	must	be	known.	If	these	are	not	known	then	item
separator	characters	must	be	used.	The	file	has	repeating	lines	which	are	defined	by	an	end-of-line
character	or	characters.

For	a	binary	file	the	number	of	fields	per	record	must	be	known.	If	any	of	the	fields	represent	a	string,
the	length	of	the	string	must	be	known.	For	any	other	field	the	internal	representation	will	define	the
number	of	bytes	required	to	store	the	field	value.	There	is	no	need	for	field	separator	characters	or	for
an	end-of-record	character.		

Discussion	Point:
A	record	is	a	user-defined	data	type.	It	is	also	a	component	of	a	file.	Can	there	be	or	should	there	be	any
relationship	between	these	two	concepts?

Serial	files
A	serial	file	contains	records	that	have	not	been	organised	in	any	defined	order.	A	typical	use	of	a	serial
file	would	be	for	a	bank	to	record	transactions	involving	customer	accounts.	A	program	would	be
running.	Each	time	there	was	a	withdrawal	or	a	deposit	the	program	would	receive	the	details	as	data
input	and	would	record	the	data	in	a	transaction	file.	In	a	serial	file	each	new	record	is	simply	appended
to	the	file	so	that	the	only	ordering	in	the	file	is	the	time	order	of	data	entry.

Sequential	files
A	sequential	file	has	records	that	are	ordered.	In	the	bank	example,	a	sequential	file	could	be	used	as	a
master	file	for	an	individual	customer	account.	At	regular	periods	of	time,	the	transaction	file	would	be
read,	and	all	affected	customer	account	master	files	would	be	updated.	In	order	to	allow	a	sequential
file	to	be	ordered,	there	has	to	be	a	key	field	for	which	the	values	are	unique	and	sequential	but	not
necessarily	consecutive.	When	a	new	record	is	to	be	added	to	a	sequential	file	it	would	be	possible	to
simply	append	the	record,	with	the	intention	of	sorting	the	file	later.	A	more	likely	approach	is	for	the
file	to	be	read	sequentially	and	each	record	written	to	a	new	file.	This	is	continued	until	the	appropriate
position	for	the	new	record	is	reached.	The	new	record	is	then	written	to	the	new	file	before	the
remaining	records	in	the	old	file	are	copied	in.

Extension	Question	16.01
Can	you	think	of	reasons	why	you	might	want	to	use	binary	files	with	variable-length	records?	How
would	you	make	sure	a	binary	file	with	variable-length	records	would	be	read	correctly?

Direct-access	files
Direct-access	files	are	sometimes	referred	to	as	‘random-access’	files	but,	as	with	random-access
memory,	the	randomness	is	only	that	the	access	can	be	to	any	record	in	the	file	without	sequential
reading	of	the	file.	Direct	access	can	be	achieved	with	a	sequential	file.	A	separate	index	file	is	created

which	has	two	fields	per	record.	The	first	field	has	the	key	field	value	and	the	second	field	has	a	value
for	the	position	of	this	key	field	value	in	the	main	file.

The	alternative	is	to	use	a	hashing	algorithm	when	a	record	is	entered	into	the	direct-access	file.

One	simple	hashing	algorithm	is	applicable	if	there	is	a	numeric	key	field	in	each	record.	The	algorithm
chooses	a	suitable	number	and	divides	this	number	by	the	value	in	the	key	field.	The	remainder	from
this	division	then	identifies	the	address	in	the	file	for	storage	of	that	record.	The	suitable	number	works
best	if	it	is	a	prime	number	of	a	similar	size	to	the	expected	size	of	the	file.

For	simplicity	this	can	be	illustrated	for	4-digit	values	in	the	key	field	where	1000	is	used	for	the
dividing	number.	The	following	represent	three	calculations:

0045/1000	gives	remainder	45	for	the	address	in	the	file

2005/1000	gives	remainder	5	for	the	address	in	the	file

3005/1000	gives	remainder	5	for	the	address	in	the	file

There	are	two	facts	apparent	from	these	calculations.	The	first	fact	is	that	the	addresses	calculated	do
not	have	any	order	depending	on	the	value	in	the	key	field.	The	second	fact	is	that	different	key	field
values	can	produce	the	same	remainder	and	therefore	the	same	address	in	the	file.

If	the	records	do	not	have	a	suitable	field	with	numeric	digits,	an	alternative	is	to	choose	a	field	with
some	alphabetic	characters.	The	ASCII	code	for	each	character	can	be	looked	up	and	the	values	then
added.	The	sum	is	then	used	in	the	same	way	as	described	above,	to	calculate	an	address	as	the
remainder	from	an	integer	division.

When	the	same	address	is	calculated	for	different	field	values,	it	is	usually	referred	to	as	a	collision	(the
addresses	are	sometimes	called	synonyms).	The	best	choice	for	a	hashing	algorithm	is	one	that	spreads
the	addresses	most	evenly	and	minimises	the	number	of	collisions.	However,	collisions	cannot	be
avoided	altogether	so	there	has	to	be	a	defined	method	for	dealing	with	collisons.	There	are	a	number
of	options,	including	the	following:

use	a	sequential	search	to	look	for	a	vacant	address	following	the	calculated	one

keep	a	number	of	overflow	addresses	at	the	end	of	the	file

have	a	linked	list	accessible	from	each	address.

Question	16.01
Imagine	the	possible	numeric	values	for	a	key	field	in	a	direct-access	file	are	in	the	range	of	1	to	30	but
you	want	the	file	to	have	fewer	than	30	file	addresses.
You	decide	to	test	two	examples	of	a	modular	division	hashing	algorithm.	The	first	test	uses	10	as	the
number	for	division,	the	second	test	uses	11.

What	are	the	two	sets	of	addresses	generated	as	remainders	from	the	division	for	the	key	values	0	to
39	using	10	and	11?

State	one	difference	between	the	two	sets	of	addresses.

Is	there	any	significant	difference	between	the	two	sets	of	addresses?

11	is	a	prime	number.	Prime	numbers	are	stated	to	give	a	better	spread	of	use	of	the	addresses	in	a
file.	Do	you	know	when	this	is	more	likely	to	be	true?

File	access
Once	a	file	organisation	has	been	chosen	and	the	data	has	been	entered	into	a	file,	you	need	to	consider
how	this	data	is	to	be	accessed.	For	a	serial	file,	the	normal	usage	is	to	read	the	whole	file	record	by
record.	If	there	was	a	need	to	search	for	a	particular	value	in	one	of	the	fields,	the	only	option	would	be
to	read	the	records	from	the	beginning	until	the	target	record	was	found.	If	the	data	is	stored	in	a
sequential	file	and	a	particular	value	is	needed,	searching	may	have	to	be	done	in	the	same	way.
However,	if	the	key	field	value	is	known	for	the	record	containing	the	wanted	data,	the	process	is	faster
because	only	key	field	values	need	to	be	read.	For	a	direct-access	file,	the	value	in	the	key	field	is

a

b

c

d

submitted	to	the	hashing	algorithm.	The	value	is	the	same	value	that	was	used	when	entering	the	data
originally	and	will	provide	the	same	value	for	the	position	in	the	file	that	was	provided	when	the
algorithm	was	used	at	the	time	of	data	input.	This	eliminates	the	need	to	read	records	from	the
beginning	of	the	file.	However,	because	of	the	collision	problem	some	serial	searching	might	be	needed
after	the	initial	jump	to	the	hashed	position.

File	access	might	also	be	needed	to	delete	or	edit	data.	For	a	sequential	file	the	same	method	is	used	as
when	a	new	record	was	added.	Records	are	copied	from	the	old	file	to	a	new	file	until	the	record	that
needs	to	be	deleted	or	edited	is	reached.	Following	deletion	or	editing	all	remaining	records	are	copied
to	the	new	file.

For	a	direct-access	file	there	is	no	need	to	create	a	new	file.	If	a	record	needs	editing	it	can	be	accessed
directly	and	edited	without	disturbing	any	other	content.	However,	if	a	record	is	to	be	deleted	it	is
necessary	to	have	a	flag	set	in	the	record.	Then,	in	a	subsequent	reading	process,	that	record	is	skipped
over.

Choice	of	file	organisation
Serial	file	organisation	is	well	suited	to	batch	processing	or	for	backing	up	data	on	magnetic	tape.	A
direct	access	file	is	used	if	rapid	access	to	an	individual	record	in	a	large	file	is	required.	An	example
would	be	on	a	system	with	many	users.	In	this	case,	the	file	that	is	used	to	check	passwords	when	users
log	in	should	be	direct-access.	A	sequential	file	is	suitable	for	applications	when	multiple	records	are
required	from	one	search	of	the	file.	An	example	could	be	a	family	history	file	where	a	search	could	be
used	for	all	records	with	a	particular	family	name.

At	this	point	it	is	worth	mentioning	the	difference	between	key	fields	in	a	file	and	primary	keys	in	a
database	table.	In	the	database	table	the	primary	key	values	must	all	be	unique.	This	is	not	a
requirement	for	key	fields	in	any	type	of	file.	It	may	be	sensible	in	certain	applications	to	ensure	key
fields	have	unique	values,	but	it	is	not	mandatory.

16.03	Real	numbers
A	real	number	is	one	with	a	fractional	part.	When	we	write	down	a	value	for	a	real	number	in	the
denary	system	we	have	a	choice.	We	can	use	a	simple	representation,	or	we	can	use	an	exponential
notation	(sometimes	referred	to	as	scientific	notation).	For	example,	the	number	25.3	might	be	written
as:

.253	×	102	or	2.53	×	101	or	25.3	×	100	or	253	×	10–1

For	this	number,	the	simple	expression	is	best.	But	if	a	number	is	very	large	or	very	small	the
exponential	notation	is	the	only	sensible	choice.

Floating-point	and	fixed-point	representations
A	binary	code	must	be	used	for	storing	a	real	number	in	a	computer	system.	One	possibility	is	to	use	a
fixed-point	representation.	In	fixed-point	representation,	an	overall	number	of	bits	is	chosen	with	a
defined	number	of	bits	for	the	whole	number	part	and	the	remainder	for	the	fractional	part.	The
alternative	is	a	floating-point	representation.	The	format	for	a	floating-point	number	can	be
generalised	as:

±	M	×	RE

In	floating-point	representation	a	defined	number	of	bits	are	used	for	what	is	called	the	significand	or
mantissa,	±M.	The	remaining	bits	are	used	for	the	exponent	or	exrad,	E.	The	radix,	R	is	not	stored	in
the	representation;	R	has	an	implied	value	of	2.

A	simple	example	can	be	used	to	illustrate	the	differences	between	the	two	representations.	Let’s
consider	that	a	real	number	is	to	be	stored	in	eight	bits.

For	the	fixed-point	option,	a	possible	choice	would	be	to	use	the	most	significant	bit	as	a	sign	bit	and
the	next	five	bits	for	the	whole	number	part.	This	would	leave	two	bits	for	the	fractional	part.	Some
important	non-zero	values	in	this	representation	are	shown	in	Table	16.01.	(The	bits	are	shown	with	a
gap	to	indicate	the	implied	position	of	the	binary	point.)

Description Binary	code Denary	equivalent

Largest	positive	value 011111	11 		31.75

Smallest	positive	value 000000	01 				0.25

Smallest	magnitude	negative	value 100000	01 		−0.25

Largest	magnitude	negative	value 111111	11 −31.75

Table	16.01	Example	fixed-point	representations	(using	sign	and	magnitude)

A	possible	choice	for	a	floating-point	representation	would	be	four	bits	for	the	mantissa	and	four	bits	for
the	exponent	with	each	using	two’s	complement	representation.	The	exponent	is	stored	as	a	signed
integer.	The	mantissa	has	to	be	stored	as	a	fixed-point	real	value.	The	question	now	is	where	the	binary
point	should	be.

Two	of	the	options	for	the	mantissa	being	expressed	in	four	bits	are	shown	in	Table	16.02(a)	and	Table
16.02(b).	In	each	case,	the	denary	equivalent	is	shown,	and	the	position	of	the	implied	binary	point	is
shown	by	a	gap.	Table	16.02(c)	shows	the	three	largest	magnitude	positive	and	negative	values	for
integer	coding	that	will	be	used	for	the	exponent.

a
First	bit

pattern	for	a
real	value

Real	value	in
denary

011	1 		3.5

b
Second	bit

pattern	for	a
real	value

Real	value	in
denary

0	111 		0.875

c
Integer

bit
pattern

Integer
value	in
denary

0111 		7

0110 		6

011	0 		3.0

010	1 		2.5

101	0 –3.0

100	1 –3.5

100	0 –4.0

0	110 0.75

0	101 		0.625

1	010  –0.75		

1	001  –0.875

1	000 –1.0			

0101 		5

1010 –6

1001 –7

1000 –8

Table	16.02	Coding	a	floating-point	real	value	in	eight	bits	(four	for	the	mantissa	and	four	for	the
exponent)

When	the	mantissa	has	the	implied	binary	point	immediately	following	the	sign	bit,	a	smaller	spacing	is
produced	between	the	values	that	can	be	represented.	This	is	the	preferred	option	for	a	floating-point
representation.	Using	this	option,	the	most	important	non-zero	values	for	the	floating-point
representation	are	shown	in	Table	16.03.	(The	implied	binary	point	and	the	mantissa	exponent
separation	are	shown	by	a	gap.)

Description Binary	code Denary	equivalent

Largest	positive	value 0	111	0111 0.875	×	27	=	112				

Smallest	positive	value 0	001	1000 0.125	×	2–8	=	1/2048

Smallest	magnitude	negative	value 1	111	1000 –0.125	×	2–8	=	–1/2048

Largest	magnitude	negative	value 1	000	0111 				–1	×	27	=	–128

Table	16.03	Example	floating-point	representations

The	comparison	between	the	values	in	Tables	16.01	and	16.03	illustrate	the	greater	range	of	positive
and	negative	values	available	if	floating-point	representation	is	used.

Extension	Question	16.02

Using	the	methods	suggested	in	Chapter	1	(Section	1.01)	can	you	confirm	for	yourself	that	the
denary	equivalents	of	the	binary	codes	shown	in	Tables	16.02	and	Table	16.03	are	as	indicated?

Can	you	also	confirm	that	conversion	from	positive	to	negative	(or	the	conversion	from	negative	to
positive)	for	a	fixed-format	real	value	still	follows	the	rules	defined	in	Chapter	1	(Section	1.02)	for
two’s	complement	representation?

Precision	and	normalisation
You	have	to	decide	about	the	format	of	a	floating-point	representation	in	two	respects.	You	have	to
decide	the	total	number	of	bits	to	be	used	and	decide	on	the	split	between	those	representing	the
mantissa	and	those	representing	the	exponent.	In	practice,	a	choice	for	the	total	number	of	bits	to	be
used	will	be	available	as	an	option	when	the	program	is	written.	However,	the	split	between	the	two
parts	of	the	representation	will	have	been	determined	by	the	floating-point	processor.	If	you	did	have	a
choice	you	would	base	your	decision	on	the	fact	that	increasing	the	number	of	bits	for	the	mantissa
would	give	better	precision	for	a	value	stored	but	would	leave	fewer	bits	for	the	exponent,	which
reduces	the	range	of	possible	values.

To	achieve	maximum	precision	you	have	to	normalise	a	floating-point	number.	(This	normalisation	is
unrelated	to	the	process	associated	with	designing	a	database.)	Precision	increases	with	an	increasing
number	of	bits	for	the	mantissa,	so	optimum	precision	will	only	be	achieved	if	full	use	is	made	of	these
bits.	In	practice,	that	means	using	the	largest	possible	magnitude	for	the	value	represented	by	the
mantissa.

To	illustrate	this,	we	can	consider	the	eight-bit	representation	used	in	Table	16.03.	Table	16.04	shows
possible	representations	for	denary	2	using	this	representation.

Denary	representation Floating-point	binary	representation

a

b

0.125	×	24 0	001	0100

0.25	×	23		 0	010	0011

0.5	×	22				 0	100	0010

Table	16.04	Alternative	representations	of	denary	2	using	four	bits	each	for	mantissa	and	exponent

For	a	negative	number	we	can	consider	representations	for	–4	as	shown	in	Table	16.05.

Denary	representation Floating-point	binary	representation

–0.25	×	24 1	110	0100

–0.5	×	23		 1	100	0011

–1.0	×	22		 1	000	0010

Table	16.05	Alternative	representations	of	denary	−4	using	four	bits	each	for	mantissa	and	exponent

When	the	number	is	represented	with	the	highest	magnitude	for	the	mantissa,	the	two	most	significant
bits	are	different.	This	fact	can	be	used	to	recognise	that	a	number	is	in	a	normalised	representation.
The	values	in	Tables	16.03	and	16.04	also	show	how	a	number	could	be	normalised.	For	a	positive
number,	the	bits	in	the	mantissa	are	shifted	left	until	the	most	significant	bits	are	0	followed	by	1.	For
each	shift	left	the	value	of	the	exponent	is	reduced	by	1.

The	same	process	of	shifting	is	used	for	a	negative	number	until	the	most	significant	bits	are	1	followed
by	0.	In	this	case,	no	attention	is	paid	to	the	fact	that	bits	are	falling	off	the	most	significant	end	of	the
mantissa.

Extension	Question	16.03
Look	at	the	data	in	Table	16.03.	Do	you	see	any	conflict	with	the	above	discussion?	What	is	likely	to	be
the	approach	in	a	typical	floating-point	system?

Conversion	of	representations
In	Chapter	1	(Section	1.01),	a	number	of	methods	for	converting	numbers	into	different	representations
were	discussed.	These	only	considered	integer	values.	We	now	need	to	consider	the	conversion	of	real
numbers.

We	can	start	by	considering	the	conversion	of	a	simple	real	number,	such	as	4.75,	into	a	simple	fixed-
point	binary	representation.	This	looks	easy	because	4	converts	to	100	in	binary	and	.75	converts	to	.11
in	binary	so	the	binary	version	of	4.75	should	be:

100.11

However,	remember	that	a	positive	number	should	start	with	0.	Can	we	just	add	a	sign	bit?	For	a
positive	number	we	can.	Denary	4.75	can	be	represented	as	0100.11	in	binary.

For	negative	numbers	we	still	want	to	use	two’s	complement	form.	So,	to	find	the	representation	of
−4.75	we	can	start	with	the	representation	for	4.75	then	convert	it	to	two’s	complement	as	follows:

0100.11	converts	to	1011.00	in	one’s	complement

then	to	1011.01	in	two’s	complement

To	check	the	result,	we	can	apply	Method	2	from	Worked	Example	1.01	in	Chapter	1.	1011	is	the	code
for	−8	+	3	and	.01	is	the	code	for	.25;	−8	+	3	+	.25	=	−4.75.

We	can	now	consider	the	conversion	of	a	denary	value	expressed	as	a	real	number	into	a	floating-point
binary	representation.	Before	considering	the	conversion	method	it	should	be	remembered	that	most
fractional	parts	do	not	convert	to	a	precise	representation.	This	is	because	the	binary	fractional	parts
represent	a	half,	a	quarter,	an	eighth,	a	sixteenth	and	so	on.	Unless	a	denary	fraction	is	a	sum	of	a
collection	of	these	values,	there	cannot	be	an	accurate	conversion.	In	particular,	of	the	values	from	.1
through	to	.9,	only	.5	converts	accurately.	This	was	mentioned	in	Chapter	1	(Section	1.03)	in	the
discussion	about	storing	currency	values.

The	method	for	conversion	of	a	positive	value	is	as	follows.

To	convert	a	negative	value	the	number	is	treated	initially	as	positive	and	the	same	first	five	steps	are
followed.	At	this	stage	a	two’s	complement	conversion	of	the	mantissa	code	is	used	to	convert	this	to	a
negative	value	before	step	6	is	carried	out.

WORKED	EXAMPLE	16.01

Converting	a	denary	value	to	a	floating-point	representation

Example	1

Let’s	consider	the	conversion	of	8.75.

Example	2

Let’s	consider	the	conversion	of	8.63.	The	first	step	is	the	same	but	now	the	.63	has	to	be
converted	by	the	‘multiply	by	two	and	record	whole	number	parts’	method.	This	works	as	follows:

.63	×	2	=	1.26	so	1	is	stored	to	give	the	fraction	.1

.26	×	2	=	.52	so	0	is	stored	to	give	the	fraction	.10

.52	×	2	=	1.04	so	1	is	stored	to	give	the	fraction	.101

.04	×	2	=	.08	so	0	is	stored	to	give	the	fraction	.1010

At	this	stage	it	can	be	seen	that,	multiplying	.08	by	2	successively	is	going	to	give	a	lot	of	zeros	in
the	binary	fraction	before	another	1	is	added	so	the	process	can	be	stopped.	.63	has	been
approximated	as	.625.	So,	following	Steps	3–5	in	Example	1,	the	final	representation	becomes
0100010100	for	the	mantissa	and	0100	for	the	exponent.

TASK	16.01
Convert	the	denary	value	–7.75	to	a	floating-point	binary	representation	with	ten	bits	for	the
mantissa	and	four	bits	for	the	exponent.	Start	by	converting	7.75	to	binary	(make	sure	you	add
the	sign	bit!).	Then	convert	to	two’s	complement	form.	Finally,	choose	the	correct	value	for	the
exponent	to	leave	the	implied	position	of	the	binary	point	after	the	sign	bit.	Convert	back	to
denary	to	check	the	result.

Problems	with	using	floating-point	numbers

Convert	the	whole-number	part	using	the	method	described	in	Chapter	1	(Section	1.01).

Add	the	0	sign	bit.

Convert	the	fractional	part	choosing	a	method	from	one	of	the	examples	in	Worked	Example	16.01.

Combine	the	whole	number	and	fractional	parts	and	enter	these	into	the	most	significant	of	the	bits
allocated	for	the	representation	of	the	mantissa.

Fill	the	remaining	bits	for	the	mantissa	and	the	bits	for	the	exponent	with	zeros.

Adjust	the	position	of	the	binary	point	by	changing	the	exponent	value	to	achieve	a	normalised
representation.

1

2

3

4

5

6

The	8	converts	to	1000,	adding	the	sign	bit	gives	01000.

The	.75	can	be	recognised	as	being	.11	in	binary.

The	combination	gives	01000.11	which	has	exponent	value	zero.

Shifting	the	binary	point	gives	0.100011	which	has	exponent	value	denary	4.

The	next	stage	depends	on	the	number	of	bits	defined	for	the	mantissa	and	the	exponent;	if	ten
bits	are	allocated	for	the	mantissa	and	four	bits	are	allocated	for	the	exponent	the	final
representation	becomes	0100011000	for	the	mantissa	and	0100	for	the	exponent.

1

2

3

4

5

As	illustrated	above,	the	conversion	of	a	real	value	in	denary	to	a	binary	representation	almost
guarantees	a	degree	of	approximation.	There	is	also	a	restriction	of	the	number	of	bits	used	to	store	the
mantissa.

Floating-point	numbers	are	used	in	extended	mathematical	procedures	involving	repeated	calculations.
For	example,	in	weather	forecasting	using	a	mathematical	model	of	the	atmosphere,	or	in	economic
forecasting.	In	such	programming	there	is	a	slight	approximation	in	recording	the	result	of	each
calculation.	These	so-called	rounding	errors	can	become	significant	if	calculations	are	repeated	enough
times.	The	only	way	of	preventing	the	errors	becoming	a	serious	problem	is	to	increase	the	precision	of
the	floating-point	representation	by	using	more	bits	for	the	mantissa.	Programming	languages	therefore
offer	options	to	work	in	‘double	precision’	or	‘quadruple	precision’.

The	other	potential	problem	relates	to	the	range	of	numbers	that	can	be	stored.	Referring	back	to	the
simple	eight-bit	representation	illustrated	in	Table	16.03,	the	highest	value	represented	is	denary	112.
A	calculation	can	easily	produce	a	value	higher	than	this.	As	Chapter	1	(Section	1.02)	illustrated,	this
produces	an	overflow	error	condition.	However,	for	floating-point	values	there	is	also	a	possibility	that	if
a	very	small	number	is	divided	by	a	number	greater	than	1	the	result	is	a	value	smaller	than	the
smallest	that	can	be	stored.	This	is	an	underflow	error	condition.	Depending	on	the	circumstances,	it
may	be	possible	for	a	program	to	continue	running	by	converting	this	very	small	number	to	zero	but
this	must	involve	risk.

Summary
Examples	of	non-composite	user-defined	data	types	include	enumerated	and	pointer	data	types.
Record,	set	and	class	are	examples	of	composite	user-defined	data	types.
File	organisation	allows	for	serial,	sequential	or	direct	access.
Floating-point	representation	for	a	real	number	allows	a	wider	range	of	values	to	be	represented.
A	normalised	floating-point	representation	achieves	the	best	precision	for	the	value	stored.
Stored	floating-point	values	rarely	give	an	accurate	representation	of	the	denary	equivalent.

Reflection	Point:
Whenever	you	are	asked	to	create	a	binary	representation	from	a	denary	value	or	vice-versa	are	you
always	checking	your	answer	by	converting	it	back	to	the	original	value?

■
■
■
■
■
■

Exam-style	Questions

[3]

[2]

[2]

[5]

[2]

[3]

[4]

[3]

[3]

[1]

[2]

[2]

[3]

[2]

[5]

A	programmer	may	choose	to	use	a	user-defined	data	type	when	writing	a	program.

Give	an	example	of	a	non-composite	user-defined	data	type	and	explain	why	its	use	by	a
programmer	is	different	to	the	use	of	an	in-built	data	type.

A	program	is	to	be	written	to	handle	data	relating	to	the	animals	kept	in	a	zoo.

The	programmer	chooses	to	use	a	record	user-defined	data	type.

Explain	what	a	record	user-defined	data	type	is.

Explain	the	advantage	of	using	a	record	user-defined	data	type.

Write	pseudocode	for	the	definition	of	a	record	type	which	is	to	be	used	to	store:	animal
name,	animal	age,	number	in	zoo	and	location	in	the	zoo.

A	binary	file	is	to	be	used	to	store	data	for	a	program.

State	the	terms	used	to	describe	the	components	of	such	a	file?

Explain	the	difference	between	a	binary	file	and	a	text	file.

A	binary	file	might	be	organised	for	serial,	sequential	or	direct	access.

Explain	the	difference	between	the	three	types	of	file	organisation.

Give	an	example	of	file	use	for	which	a	serial	file	organisation	would	be	suitable.

Justify	your	choice.

Give	an	example	of	file	use	when	direct	access	would	be	advantageous.

Justify	your	choice.

A	file	contains	binary	coding.	The	following	are	four	successive	bytes	in	the	file:

10010101 	 00110011      11001000 	 00010001

	 	 	 	 	 	 	

The	four	bytes	represent	two	numbers	in	floating-point	representation.	The	first	byte	in	each	case
represents	the	mantissa.	Each	byte	is	stored	in	two’s	complement	representation.

Give	the	name	for	what	the	second	byte	represents	in	each	case.

State	whether	the	representations	are	for	two	positive	numbers	or	two	negative	numbers	and
explain	why.

One	of	the	numbers	is	in	a	normalised	representation.	State	which	one	it	is	and	give	the
reason	why.

State	where	the	implied	binary	point	is	in	a	normalised	representation	and	explain	why	a
normalised	representation	gives	better	precision	for	the	value	represented.

If	two	bytes	were	still	to	be	used	but	the	number	of	bits	for	each	component	was	going	to	be
changed	by	allocating	more	to	the	mantissa,	state	what	effect	this	would	have	on	the	numbers
that	could	be	represented.	Explain	your	answer.

Using	the	representation	described	in	part	a,	give	the	representation	of	denary	12.43	as	a
floating-point	binary	number.

A	particular	programming	language	allows	the	programmer	to	define	their	own	data	types.

ThisDate	is	an	example	of	a	user-defined	structured	data	type.
TYPE	ThisDate

			DECLARE	ThisDay						:				(1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,

																													14,	15,	16,	17,	18,	19,	20,	21,	22,	23,

																													24,	25,	26,	27,	28,	29,	30,	31)

1

a

b

i

ii

iii

2 a

i

ii

b

i

ii

iii

3

a

i

ii

iii

iv

v

b

4 a

[1]

[1]

[1]

[5]

[2]

			DECLARE	ThisMonth				:				(Jan,	Feb,	Mar,	Apr,	May,	Jun,	Jul,	Aug,

																													Sep,	Oct,	Nov,	Dec)

			DECLARE	ThisYear					:				INTEGER

ENDTYPE

A	variable	of	this	new	type	is	declared	as	follows:
			DECLARE	DateOfBirth			:			ThisDate

Name	the	non-composite	data	type	used	in	the	ThisDay	and	ThisMonth	declarations.

Name	the	data	type	of	ThisDate.

The	month	value	of	DateOfBirth	needs	to	be	assigned	to	the	variable	MyMonthOfBirth.

Write	the	required	statement.

Annual	rainfall	data	from	a	number	of	locations	are	to	be	processed	in	a	program.

The	following	data	are	to	be	stored:

location	name

height	above	sea	level	(to	the	nearest	metre)

total	rainfall	for	each	month	of	the	year	(centimetres	to	1	decimal	place).

A	user-defined,	composite	data	type	is	needed.	The	programmer	chooses	LocationRainfall	as	the
name	of	this	data	type.

A	variable	of	this	type	can	be	used	to	store	all	the	data	for	one	particular	location.

Write	the	definition	for	the	data	type	LocationRainfall.

The	programmer	decides	to	store	all	the	data	in	a	file.	Initially,	data	from	27	locations	will	be
stored.	More	rainfall	locations	will	be	added	over	time	and	will	never	exceed	100.

The	programmer	has	to	choose	between	two	types	of	file	organisation.	The	two	types	are
serial	and	sequential.

Give	two	reasons	for	choosing	serial	file	organisation.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	31	Q3	June	2015

	

In	a	particular	computer	system,	real	numbers	are	stored	using	floating-point	representation	with:

8	bits	for	the	mantissa

8	bits	for	the	exponent

two’s	complement	form	for	both	mantissa	and	exponent.

Calculate	the	floating	point	representation	of	+3.5	in	this	system.	Show	your	working.

[3]

Calculate	the	floating	point	representation	of	–3.5	in	this	system.	Show	your	working.

Find	the	denary	value	for	the	following	binary	floating-point	number.	Show	your	working.

[3]

i

ii

iii

b

i

ii

5

a

b

c

[1]

[1]

State	whether	the	floating-point	number	given	in	part	(c)	is	normalised	or	not	normalised.

Justify	your	answer	given	in	part	(d)(i).

Give	the	binary	two’s	complement	pattern	for	the	negative	number	with	the	largest	magnitude.

[2]

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	32	Q1	November	2016

d i

ii

e

Chapter	17:
Communication	and	Internet	technologies

17.01	Transmission	modes
For	communication	over	an	internetwork	there	are	two	possible	approaches:	circuit	switching	or	packet
switching.

Circuit	switching
Circuit	switching	is	the	method	used	in	the	traditional	telephone	system.	Because	the	Public	Switched
Telephone	Networks	(PTSNs)	have	now	largely	converted	to	digital	technology,	the	same	method	can	be
provided	for	data	transfer	that	was	traditionally	used	for	voice	communication.	In	Chapter	2	(Section
2.06)	the	concept	of	support	for	Internet	usage	by	a	PTSN	was	introduced.	Typically,	this	is	provided	in
a	leased	line	service.	The	concept	is	illustrated	in	Figure	17.01,	which	shows	end-systems	connected	to
local	exchanges	which	have	a	switching	function	and	which	are	connected	via	a	number	of	intermediate
nodes	with	a	switching	function.

Figure	17.01	Circuit-switched	data	transmission

For	data	transfer	to	take	place,	the	following	has	to	happen.

It	is	not	necessary	for	this	discussion	to	define	what	could	constitute	a	node	in	a	circuit-switched
network.	The	links	that	are	provided	between	the	nodes	are	dedicated	channels	in	shared	transmission
media	that	guarantee	unimpeded	transmission.	When	a	telephone	call	has	finished	there	is	a	definite
end	to	the	call	with	removal	of	the	links.	However,	for	a	leased-line	data	connection	there	might	be	a
permanent	circuit	established.

Packet	switching
The	packet-switching	method	allows	data	transmission	without	a	circuit	being	established.	Data	cannot
be	sent	in	a	continuous	stream.	Instead	data	is	packaged	in	portions	inside	packets.	A	packet	consists	of
a	header	which	contains	instructions	for	delivery	plus	the	data	body.	The	method	is	similar	to	that	used
by	the	postal	service	but	rather	more	complex!	The	network	schematic	shown	in	Figure	17.01	is	still
appropriate	to	describe	packet	switching	except	that	the	links	used	are	not	defined	at	the	time	a	packet
is	transmitted	by	the	sender.	Furthermore,	the	nodes	will	have	an	extended	functionality	compared	to
that	required	in	a	circuit-switched	transmission.	How	a	router	acts	as	a	node	and	supports	packet
switching	is	discussed	in	Section	17.04.

When	packet	switching	is	used,	there	are	two	ways	that	the	network	can	provide	a	service:
connectionless	service	or	connection-oriented	service.	If	a	connectionless	service	is	provided,	a	packet
is	dispatched	with	no	knowledge	of	whether	or	not	the	receiver	is	ready	to	accept	the	packet,	and	has
no	way	of	finding	out	if	the	transmission	has	succeeded.	In	a	connection-oriented	service	the	first
packet	sent	includes	a	request	for	an	acknowledgement.	If	the	acknowledgement	is	received,	the	sender

The	sender	provides	the	identity	of	the	intended	receiver.

The	system	checks	whether	or	not	the	receiver	is	ready	to	accept	data.

If	the	receiver	is	available,	a	sequence	of	links	is	established	across	the	network.

The	data	is	transferred.

The	links	are	removed.

1

2

3

4

5

transmits	further	packets.	If	no	acknowledgement	is	received,	the	sender	tries	again	with	the	first
packet.

17.02	Protocols
The	basic	definition	of	a	protocol	is	simple	–	it	is	a	set	of	rules.	So,	what	do	these	rules	relate	to?
Before	answering,	it	should	be	understood	that	we	often	talk	about	‘a	protocol’	when	we	are	referring
to	a	protocol	suite	which	contains	more	than	one	individual	protocol.	The	complexity	of	networking
requires	many	individual	protocols.	A	further	complication	is	that	there	might	be	a	number	of	different
versions	of	a	protocol.	Finally,	there	are	often	protocols	that	can	be	used	to	complement	the	use	of
another	protocol.

The	set	of	rules	that	constitute	a	protocol	must	be	agreed	between	the	sender	and	the	receiver	for	any
communication	transmitted	over	a	network.	At	the	simplest	level,	a	protocol	could	define	that	a	positive
voltage	represents	a	bit	with	value	1.	A	protocol	might	define	a	transmission	speed	that	a	sender	must
not	exceed.	Many	of	the	rules	relate	to	the	format	of	a	message	or	of	a	component	of	a	message.	For
example,	a	definition	of	the	format	of	the	first	40	bytes	in	a	packet.

17.03	A	protocol	stack
For	a	protocol	suite	the	protocols	can	be	viewed	as	layers	within	a	protocol	stack.	There	are	a	number
of	aspects	relating	to	this	concept.

Each	layer	can	only	accept	input	from	the	next	higher	layer	or	the	next	lower	layer.

There	is	a	defined	interface	between	adjacent	layers	which	constitutes	the	only	interaction	allowed
between	layers.

A	layer	is	serviced	by	the	actions	of	lower	layers.

With	the	possible	exception	of	the	lowest	layer	the	functioning	of	a	layer	is	created	by	installed
software.

A	layer	may	comprise	sub-layers.

Any	user	interaction	will	take	place	using	protocols	associated	with	the	highest	level	layer	in	the
stack.

Any	direct	access	to	hardware	is	confined	to	the	lowest	layer	in	the	stack.

17.04	The	TCP/IP	protocol	suite
TCP/IP	is	the	protocol	suite	underpinning	Internet	usage.	TCP/IP	can	be	explained	on	the	basis	of	the
network	model	shown	in	Figure	17.02.	It	can	be	seen	that	TCP/IP	only	occupies	the	top	three	layers	of
this	model.

	TIP
Unfortunately	there	are	different	names	used	for	two	of	the	layers.	Figure	17.02	shows
the	Network	layer	and	the	Data	link	layer.	In	some	sources	these	will	be	named	as	the
Internet	layer	and	the	Link	layer.

Figure	17.02	A	network	model	relating	to	the	TCP/IP	protocol	suite

There	are	two	end-systems	and	the	diagram	shows	the	logical	connections	between	corresponding
layers	in	these	two	systems.	An	application	can	run	on	one	end-system	and	behave	as	though	there	was
a	direct	connection	with	an	application	running	on	a	different	end-system.	The	application	layer
protocol	on	the	sender	end-system	sends	a	‘message’	to	the	transport	layer	protocol	on	the	same
system.	The	transport	layer	protocol	then	initiates	a	process	which	results	in	the	identical	‘message’
being	delivered	to	the	receiver	end-system.	On	the	receiver	end-system,	the	final	stage	is	the	transport
layer	protocol	delivering	the	‘message’	to	the	application	layer	protocol.

The	TCP/IP	suite	comprises	a	number	of	protocols,	including	the	following:

application	layer:	HTTP,	SMTP,	DNS,	FTP,	POP3,	IMAP

transport	layer:	TCP,	UDP,	SCTP

network	layer:	IP,	IGMP,	ICMP,	ARP.

The	selection	has	been	chosen	to	illustrate	that	the	TCP/IP	suite	encompasses	a	very	wide	range	of
protocols	that	is	still	evolving.	Some	of	the	listed	protocols	will	not	be	considered	further.

TCP	(Transmission	Control	Protocol)
If	an	application	is	running	on	an	end-system	where	a	‘message’	is	to	be	sent	to	a	different	end-system
the	application	will	be	controlled	by	an	application	layer	protocol	as	described	above.	The	protocol	will
transmit	the	user	data	to	the	transport	layer.	The	TCP	protocol	operating	in	the	transport	layer	now	has
to	take	responsibility	for	ensuring	the	safe	delivery	of	the	‘message’	to	the	receiver.	The	TCP	protocol
creates	sufficient	packets	to	hold	all	of	the	data.	Each	packet	consists	of	a	header	plus	the	user	data.

Question	17.01
Can	you	find	out	some	details	about	the	format	of	a	packet	that	TCP	would	send	to	IP?

As	well	as	ensuring	safe	delivery,	TCP	has	to	ensure	that	any	response	is	directed	back	to	the
application	protocol.	So,	one	item	in	the	header	is	the	port	number	which	identifies	the	application
layer	protocol.	For	example,	for	HTTP	the	port	number	is	80.	The	packet	must	also	include	the	port
number	for	the	application	layer	protocol	at	the	receiving	end-system.	However,	TCP	is	not	concerned
with	the	address	of	the	receiving	end-system.	If	the	packet	is	one	of	a	sequence,	a	sequence	number	is
included	to	ensure	eventual	correct	reassembly	of	the	user	data.

The	TCP	protocol	is	connection-oriented.	In	accordance	with	the	procedure	described	in	Section	17.01,
initially	just	one	packet	of	a	sequence	is	sent	to	the	network	layer.	Once	the	network	layer	returns	an
acknowledgement	to	the	Transport	layer	indicating	that	the	connection	has	been	established,	TCP
sends	the	other	packets	and	receives	response	packets	containing	acknowledgements.	This	allows
missing	packets	to	be	identified	and	re-sent.

IP	(Internet	Protocol)
The	function	of	the	network	layer,	and	in	particular	of	the	IP,	is	to	ensure	correct	routing	over	the
Internet.	To	do	this	the	IP	protocol	takes	the	packet	received	from	the	transport	layer	and	adds	a
further	header.	The	header	contains	the	IP	addresses	of	both	the	sender	and	the	receiver.	To	find	the	IP
address	of	the	receiver,	it	is	very	likely	to	use	the	DNS	service	to	find	the	address	corresponding	to	the
URL	supplied	in	the	user	data.	The	DNS	service	is	discussed	in	some	detail	in	Chapter	2	(Section	2.09).

The	IP	packet,	which	is	usually	called	a	‘datagram’,	is	sent	to	the	data-link	layer	and	therefore	to	a
different	protocol	suite.	The	data-link	layer	assembles	datagrams	into	‘frames’	as	discussed	in	the	next
section	of	this	chapter.	Once	the	IP	packet	has	been	sent	to	the	data-link	layer,	IP	has	no	further	duty.	IP
functions	as	a	connectionless	service.	Once	a	packet	has	been	sent,	IP	will	have	no	knowledge	of
whether	or	not	it	reached	its	destination.	If	IP	receives	a	packet	which	contains	an	acknowledgement	of
a	previously	sent	packet,	it	will	simply	pass	the	packet	on	to	TCP	with	no	awareness	of	the	content.

The	router
As	Figure	17.02	shows,	the	frame	sent	by	the	data-link	layer	will	arrive	at	a	router	during	transmission
(more	likely	at	several	routers).	At	this	stage,	the	datagram	content	of	the	frame	is	given	back	to	IP.	It	is
now	the	function	of	the	router	software	to	choose	the	next	target	host	in	the	transmission.	The	software
has	access	to	a	routing	table	appropriate	to	that	router.	The	size	and	complexity	of	the	Internet
prohibits	a	router	from	having	a	global	routing	table.	Once	the	appropriate	address	has	been	inserted
into	the	datagram,	IP	passes	it	back	to	the	data-link	layer	of	the	router.

The	routing	table	for	every	router	has	details	of	any	current	problems	with	any	of	the	options	for	the
next	transmission	step.	This	ensures	that	packets	are	delivered	to	their	destination	in	the	shortest
possible	time	available.

The	major	distinction	between	a	switch	and	a	router	as	a	node	in	a	network	is	that	when	a	frame	arrives
at	a	switch,	it	is	transmitted	on	without	any	routing	decision.	A	switch	operates	in	the	data-link	layer
but	has	no	access	to	the	network	layer.

17.05	The	Ethernet	protocol	stack
As	discussed	in	Chapter	2	(Section	2.05),	Ethernet	is	a	protocol	suite	designed	for	use	in	a	local	area
network	(LAN).	As	such	it	can	function	in	an	isolated	LAN	with	no	connection	to	the	Internet	or	any
other	network.	However,	it	is	now	almost	inevitable	that	a	LAN	will	be	connected	to	the	Internet	and,
therefore,	a	LAN’s	protocol	suite	will	support	the	protocol	suite	in	use	for	the	Internet.

If	we	look	at	the	protocol	stack	for	one	end-system,	as	shown	in	Figure	17.02,	we	can	see	that	the
TCP/IP	protocol	suite	occupies	the	top	three	layers	of	the	five-layer	stack	and	is	therefore	supported	by
the	lower	two	layers.	TCP/IP	has	no	concern	with	the	functioning	of	these	two	lower	layers;	it	is
designed	to	be	capable	of	being	supported	by	whatever	protocols	are	available.	It	should	be	noted	that
some	sources	only	use	a	four-layer	stack	for	an	end-system.	This	is	either	a	decision	to	only	include
layers	that	are	handled	entirely	by	software.	Or	it	is	a	decision	to	amalgamate	all	of	the	support	for
TCP/IP	into	one	layer.

Ethernet	is	the	most	likely	protocol	to	be	used	to	provide	the	functionality	required	of	the	two	lower
layers.	Logically	the	Ethernet	suite	can	be	viewed	as	comprising	two	sub-layers	for	each	of	the	Data	link
and	Physical	layers.	This	is	illustrated	in	Figure	17.03.

Figure	17.03	The	sub-layers	of	Ethernet

The	following	points	explain	how	Ethernet	functions	when	supporting	TCP/IP.

The	Logical	Link	Control	(LCC)	protocol	is	responsible	for	the	interaction	with	the	Network	layer.	It
manages	data	transmissions	and	ensures	the	integrity	of	data	transmissions.	However,	because
Ethernet	is	a	connectionless	protocol	it	has	no	responsibility	for	checking	that	a	transmission	has
been	successfully	delivered.

The	Medium	Access	Control	(MAC)	protocol	is	responsible	for	assembling	the	Ethernet	packet
which	is	referred	to	as	a	frame.	Two	components	of	this	are	the	address	of	the	transmitter	and	the
address	of	the	receiver.	In	addition	the	MAC	protocol	initiates	frame	transmission	and	handles
recovery	from	transmission	failure	due	to	a	collision	(possibly	using	CSMA/CD).

The	Physical	Coding	Sublayer	(PCS)	protocol	is	responsible	for	coding	data	ready	for	transmission
or	decoding	data	received.	It	either	receives	a	frame	from	the	MAC	protocol	or	sends	one	to	it.

The	Physical	Medium	Attachment	(PMA)	protocol	is	responsible	for	signal	transmitting	and
receiving.

MAC	addresses
Both	addresses	in	the	Ethernet	frame	are	examples	of	what	are	called	physical	or	MAC	addresses.	A
MAC	address	is	the	one	which	uniquely	defines	one	NIC,	as	described	in	Chapter	2	(Section	2.04).

The	reason	that	unique	addresses	have	so	far	been	guaranteed	is	that	the	48	bits	used	for	the	definition
have	given	a	sufficient	number	of	different	addresses.	However,	there	is	a	64-bit	alternative	which	is
already	used	occasionally	but	is	available	for	future	use	when	48	bits	are	insufficient.	The	48-bit
address	is	usually	written	in	hexadecimal	notation,	for	example:

4A:30:12:24:1A:10

In	one	version	of	this	addressing	scheme	the	first	three	bytes	identify	the	manufacturer.

17.06	Application-layer	protocols	associated	with	TCP/IP
There	are	very	many	application-layer	protocols.	This	discussion	considers	some	that	are	used	most
often.

HTTP	(HyperText	Transfer	Protocol)

	TIP
Be	careful	not	to	confuse	HTTP	and	HTML.

Because	HTTP	(HyperText	Transfer	Protocol)	underpins	the	World	Wide	Web	it	has	to	be	considered	to
be	the	most	important	application-layer	protocol.	Every	time	a	user	accesses	a	website	using	a	browser,
HTTP	is	used	but	its	functionality	is	hidden	from	view.

HTTP	is	a	transaction-oriented,	client–server	protocol.	The	transaction	involves	the	client	sending	a
‘request’	message	and	the	server	sending	back	a	‘response’	message.	The	HTTP	protocol	defines	the
format	of	the	message.	The	first	line	of	a	request	message	is	the	‘request	line’.	Optionally	this	can	be
followed	by	header	lines.	All	of	this	uses	ASCII	coding.	The	format	of	the	request	line	is:

<Method>	<URL>	<Version>CRLF

where	CR	and	LF	are	the	ASCII	carriage	return	and	line	feed	characters.	The	request	line	usually	has
GET	as	the	method.	However,	there	are	several	alternatives	to	the	GET	method	which	makes	HTTP
potentially	a	more	widely	applicable	protocol	than	just	being	used	for	webpage	access.	The	version	has
to	be	specified	because	HTTP	has	evolved	so	there	is	more	than	one	version	in	use.

Email	protocols
The	traditional	method	of	sending	and	receiving	emails	is	illustrated	in	Figure	17.04	which	shows	that
three,	individual,	client–server	interactions	are	involved.	The	email	sender	acting	as	a	client	has	a
connection	to	a	mail	server.	This	server	then	has	to	function	as	a	client	in	the	transmission	to	the	mail
server	used	by	the	email	receiver	acting	as	a	client.

Figure	17.04	An	email	message	being	transmitted	from	a	sender	to	a	receiver

Of	the	two	protocols	shown	being	used,	SMTP	(Simple	Mail	Transfer	Protocol)	is	a	‘push’	protocol
whereas	POP3	(Post	Office	Protocol	version	3)	is	a	‘pull’	protocol.	There	is	a	more	recent	alternative	to
POP3,	which	is	IMAP	(Internet	Message	Access	Protocol).	The	approach	using	POP3	is	for	emails	to	be
downloaded	onto	the	client	computer.	With	IMAP	the	emails	are	not	downloaded;	they	remain	stored	on
the	server	but	remain	accessible	from	the	client.	It	can	be	argued	that	POP3	is	more	secure	to	cyber-
attack	because	emails	are	locally	stored.	However,	the	server	will	be	backed	up	regularly	whereas	the
local	client	might	not	be.	The	major	advantage	for	IMAP	is	that	the	server	can	be	accessed	from	any
client.	This	makes	it	suitable	for	anyone	on	the	move	or	if	someone	is	using	a	system	other	than	that
normally	used.	POP3	emails	are	only	accessible	from	the	one	client	system.

SMTP	has	been	largely	replaced	by	the	use	of	web-based	mail.	A	browser	is	used	to	access	the	email
application,	so	HTTP	is	now	the	protocol	used.	However,	SMTP	remains	in	use	for	transfer	between	the

mail	servers.

Question	17.02
Which	protocols	are	being	used	in	your	email	system?	Does	your	email	system	give	you	any	choices?

FTP	(File	Transfer	Protocol)
For	routine	transfers	of	files	from	one	user	to	another	the	most	likely	method	is	to	attach	the	file	to	an
email.	However,	this	is	not	always	a	suitable	method.	FTP	(File	Transfer	Protocol)	is	the	application-
layer	protocol	that	can	handle	any	file	transfer	between	two	end-systems.	File	transfer	is	not	simple	if
the	end-systems	have	different	operating	systems	with	different	file	systems.	FTP	handles	this	by
separating	the	control	process	from	the	data-transfer	process.

Question	17.03
If	you	were	setting	up	a	website,	you	would	need	to	upload	files	to	a	server.	Do	you	know	how	you	can
use	FTP	for	this	from	the	system	you	normally	use?

17.07	Peer-to-peer	(P2P)	file	sharing
The	network	traffic	generated	by	peer-to-peer	(P2P)	file	sharing	is	one	of	the	main	features	of	Internet
use.	P2P	is	an	architecture	that	has	no	structure	and	no	controlling	mechanism.	Peers	act	as	both
clients	and	servers	and	each	peer	is	just	one	end-system.	When	a	peer	acts	as	a	server	it	is	called	a
‘seed’.

The	BitTorrent	protocol	is	the	most	used	protocol	because	it	allows	fast	sharing	of	files.	There	are	three
basic	problems	to	solve	if	end-systems	are	using	BitTorrent.

It	is	worth	noting	that	the	language	of	BitTorrent	is	quite	unusual	and	there	are	other	terms	used	which
have	not	been	mentioned.	Fortunately,	the	principles	are	straightforward.

Question	17.04
Who	runs	the	tracker	server?	Are	there	alternative	approaches	for	BitTorrent?

Reflection	Point:
Networking	is	a	large	subject	area	with	many	interconnected	concepts.	Have	you	considered	how	you
might	make	some	structured	notes	to	help	with	revision	later?

Summary
Circuit	switching	requires	a	dedicated	circuit	to	be	established	between	sender	and	receiver
before	transmission	can	start.
In	packet	switching,	packets	can	be	transmitted	without	any	circuit	being	created.
Packet	switching	can	use	connectionless	or	connection-oriented	transmission.
A	protocol	suite	is	implemented	as	a	layered	stack.
The	TCP/IP	protocol	suite	supports	usage	of	the	Internet.
Ethernet	is	the	most	likely	option	for	use	in	the	Network	and	Data	link	layers.
Examples	of	application-layer	protocols	are	HTTP,	SMTP,	POP3,	IMAP	and	FTP.
Peer-to-peer	file	sharing	on	the	Internet	uses	the	BitTorrent	protocol.

How	does	a	peer	find	others	that	have	the	wanted	content?

Every	content	provider	should	provide	a	content	description,	called	a	torrent,	which	is	a	file	that
contains	the	name	of	the	tracker	(a	server	that	leads	peers	to	the	content)	and	a	list	of	the	chunks
that	make	up	the	content.	The	torrent	file	is	at	least	three	orders	of	magnitude	smaller	than	the
content	so	can	be	transferred	quickly.	The	tracker	is	a	server	that	maintains	a	list	of	all	the	other
peers	(the	‘swarm’)	actively	downloading	and	uploading	the	content.

How	do	peers	replicate	content	to	provide	high-speed	downloads	for	everyone?

Peers	download	and	upload	chunks	at	the	same	time,	but	peers	have	to	exchange	lists	of	chunks	and
aim	to	download	rare	chunks	for	preference.	Each	time	a	rare	chunk	is	downloaded	it	automatically
becomes	less	rare!

How	do	peers	encourage	other	peers	to	provide	content	rather	just	using	the	protocol	to	download
for	themselves?

This	requires	dealing	with	the	free-riders	or	‘leechers’	who	only	download.	The	solution	is	for	a	peer
to	initially	randomly	try	other	peers	but	then	to	only	continue	to	upload	to	those	peers	that	provide
regular	downloads.	If	a	peer	is	not	downloading	or	only	downloading	slowly,	the	peer	will	eventually
be	isolated	or	‘choked’.

1

2

3

■

■
■
■
■
■
■
■

Exam-style	Questions

[6]

[5]

[3]

[6]

[8]

[12]

The	following	represents	the	structure	of	an	IP	datagram.

IP	Header TCP	Header TCP	Content

Using	the	code	IP	for	IP	Header,	TCP	for	TCP	Header	and	Content	for	TCP	Content	identify	where
the	following	data	will	be	found:

Destination	address

Sender	address

Destination	port

Sender	port

Packet	sequence	number

Acknowledgement.

Ethernet	can	be	used	in	conjunction	with	the	TCP/IP	protocol	suite.

Draw	a	diagram	to	illustrate	how	the	combination	of	Ethernet	and	the	TCP/IP	suite	provides
support	for	data	communication.

Explain	the	meaning	of	the	term	‘MAC	address’.

One	end-system	with	an	Internet	connection	has	a	file.	A	user	on	another	end-system	connected	to
the	Internet	needs	a	copy	of	the	file.	There	are	different	methods	that	might	be	used	to	enable	the
user	to	obtain	a	copy	of	the	file.

Identify	three	possible	methods	with	a	brief	explanation	for	each.

Identify	the	application-layer	protocols	that	each	method	will	use	with	a	brief	explanation	for	each
one.

For	sending	and	receiving	emails	the	following	application	protocols	might	be	used:

SMTP

POP3

IMAP

HTTP

For	each	of	these	protocols	give	a	brief	explanation	as	to	how	they	might	be	used	in	association	with
an	email	application.	You	might	find	it	useful	to	include	a	diagram	for	some	of	your	account.

Four	descriptions	and	three	protocols	are	shown	below.

Draw	a	line	to	connect	each	description	to	the	appropriate	protocol.
Description   Protocol	used

email	client	downloads	an	email	from	an	email	server   HTTP

email	is	transferred	from	one	email	server	to	another
email	server   POP3

email	client	sends	email	to	email	server   SMTP

1

a

b

c

d

e

f

2

a

b

3

a

b

4

5 a

[4]

[1]

[2]
[2]
[2]

[2]

[3]

[2]

[1]

[3]

browser	sends	a	request	for	a	web	page	to	a	web	server 	

	

Downloading	a	file	can	use	the	client-server	model.	Alternatively,	a	file	can	be	downloaded	using
the	BitTorrent	protocol.

Name	the	model	used.

For	the	BitTorrent	protocol,	explain	the	function	of	each	of	the	following:
tracker
seed
swarm

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	31	Q6	June	2015

An	email	is	sent	from	one	email	server	to	another	using	packet	switching.

State	two	items	that	are	contained	in	an	email	packet	apart	from	the	data.

Explain	the	role	of	routers	in	sending	an	email	from	one	email	server	to	another.

Sending	an	email	message	is	an	appropriate	use	of	packet	switching.

Explain	why	this	is	the	case.

Packet	switching	is	not	always	an	appropriate	solution.

Name	an	alternative	communication	method	of	transferring	data	in	a	digital	network.

Name	an	application	for	which	the	method	identified	in	part	(d)	is	an	appropriate	solution.	Justify
your	choice.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	31	Q3	November	2015

b

c
i
ii
iii

6

a

b

c

d

e

Chapter	18:
Hardware	and	virtual	machines

18.01	The	control	unit
While	a	program	is	being	executed,	the	CPU	is	receiving	a	sequence	of	machine-code	instructions.	It	is
the	responsibility	of	the	control	unit	within	the	CPU	to	ensure	that	each	machine	instruction	is	handled
correctly.	There	are	two	methods	by	which	a	control	unit	can	be	designed	to	allow	it	to	perform	its
function.

One	method	is	for	the	control	unit	to	be	constructed	as	a	logic	circuit.	This	is	called	the	hard-wired
solution.	The	machine-code	instructions	are	handled	directly	by	hardware.

The	alternative	method	is	for	the	control	unit	to	use	microprogramming.	In	this	approach,	the	control
unit	contains	a	ROM	component	that	stores	the	microinstructions	or	microcode	for	microprogramming,
often	referred	to	as	firmware.	In	the	next	section	we	will	see	what	might	influence	the	choice	of	design
of	the	control	unit.

18.02	CISC	and	RISC	processors
A	processor	will	have	an	architecture	which	refers	to	its	physical	construction.	However,	a	processor
will	also	have	what	is	termed	an	‘instruction	set	architecture’.

This	is	concerned	with:

the	instruction	set

the	instruction	format

the	addressing	modes

the	registers	accessible	by	instructions.

The	choice	of	the	instruction	set	is	the	main	factor	in	distinguishing	one	instruction	set	architecture
from	another.

In	the	early	days	of	computing	a	significant	factor	in	choosing	the	instruction	set	architecture	for	a
computer	was	that	it	should	make	the	writing	of	a	compiler	for	a	high-level	language	easier.	At	that	time
the	term	did	not	exist,	but	we	would	now	refer	to	this	as	being	the	architecture	for	a	Complex
Instruction	Set	Computer	(CISC).

This	philosophy	began	to	be	challenged	in	the	late	1970s.	It	was	argued	that	using	a	Reduced
Instruction	Set	Computer	(RISC)	would	be	a	better	approach.	Table	18.01	contains	a	number	of
features	that	distinguish	RISC	from	CISC.

RISC CISC

Fewer	instructions More	instructions

Simpler	instructions More	complex	instructions

Small	number	of	instruction	formats Many	instruction	formats

Single-cycle	instructions	whenever	possible Multi-cycle	instructions

Fixed-length	instructions Variable-length	instructions

Only	load	and	store	instructions	to	address	memory Many	types	of	instructions	to	address	memory

Fewer	addressing	modes More	addressing	modes

Multiple	register	sets Fewer	registers

Hard-wired	control	unit Microprogrammed	control	unit

Pipelining	easier Pipelining	more	difficult

Table	18.01	Comparison	of	RISC	with	CISC

The	following	are	some	points	to	note.

For	RISC	the	term	‘reduced’	affects	more	than	just	the	number	of	instructions.

A	reduction	in	the	number	of	instructions	is	not	the	major	driving	force	for	the	use	of	RISC.

The	reduction	in	the	complexity	of	the	instructions	is	a	key	feature	of	RISC.

The	typical	CISC	architecture	contains	many	specialised	instructions.

The	specialised	instructions	are	designed	to	match	the	requirement	of	a	high-level	programming
language.

The	specialised	instructions	require	multiple	memory	accesses	which	are	very	slow	compared	with
register	accesses.

The	simplicity	of	the	instructions	for	a	RISC	processor	allows	data	to	be	stored	in	registers	and

manipulated	in	them	with	no	resource	to	memory	access	other	than	that	necessary	for	initial
loading	and	possible	final	storing.

The	simplicity	of	RISC	instructions	makes	it	easier	to	use	hard-wiring	inside	the	control	unit.

The	complexity	of	many	of	the	CISC	instructions	makes	hard-wiring	much	more	difficult	so
microprogramming	is	the	norm.

Extension	Question	18.01
Can	you	find	out	whether	the	processors	in	any	systems	you	are	using	are	described	as	RISC	or	CISC?

Pipelining
One	of	the	major	driving	forces	for	creating	RISC	processors	was	the	opportunity	they	would	provide
for	efficient	pipelining.	Pipelining	is	a	form	of	parallelism	applied	specifically	to	instruction	execution.
Other	forms	of	parallelism	are	discussed	in	Section	18.03.

The	underlying	principle	of	pipelining	is	that	the	fetch–decode–execute	cycle	described	in	Chapter	5
(Section	5.06)	can	be	separated	into	a	number	of	stages.	One	possibility	is	a	five-stage	model	consisting
of:

Figure	18.01	Pipelining	for	five-stage	instruction	handling

Figure	18.01	shows	how	pipelining	would	work	with	this	five-stage	breakdown	of	instruction	handling.
For	pipelining	to	be	implemented,	the	construction	of	the	processor	must	have	five	independent	units,
with	each	handling	one	of	the	five	stages	identified.	This	explains	the	need	for	a	RISC	processor	to	have
many	register	sets;	each	processor	unit	must	have	access	to	its	own	set	of	registers.	Figure	18.01	uses
the	representation	1.1,	1.2	and	so	on	to	define	the	instruction	and	the	stage	of	the	instruction.	Initially
only	the	first	stage	of	the	first	instruction	has	entered	the	pipeline.	At	clock	cycle	6	the	first	instruction
has	left	the	pipeline,	the	last	stage	of	instruction	2	is	being	handled	and	instruction	6	has	just	entered.

Once	under	way,	the	pipeline	is	handling	five	stages	of	five	individual	instructions.	In	particular,	at	each
clock	cycle	the	complete	processing	of	one	instruction	has	finished.	Without	the	pipeline	the	processing
time	would	be	five	times	longer.

One	issue	with	a	pipelined	processor	is	interrupt	handling.	The	discussion	in	Chapter	5	(Section	5.08)
referred	to	a	processor	with	instructions	handled	sequentially.	This	approach	where	a	check	for	any
interrupt	is	made	following	the	execution	of	an	instruction	is	applicable	to	a	CISC	processor.	It	would
also	be	applicable	to	a	RISC	processor	if	there	were	no	pipelining.	However,	this	is	an	unlikely
circumstance.	In	the	pipelined	system	described	above	there	will	be	five	instructions	in	the	pipeline
when	an	interrupt	occurs.	One	option	for	handling	the	interrupt	is	to	erase	the	pipeline	contents	for	the
latest	four	instructions	to	have	entered.	Then	the	normal	interrupt-handling	routine	can	be	applied	to
the	remaining	instruction.	The	other	option	is	to	construct	the	individual	units	in	the	processor	with
individual	program	counter	registers.	This	option	allows	current	data	to	be	stored	for	all	of	the
instructions	in	the	pipeline	while	the	interrupt	is	handled.

Discussion	Point:
Consider	the	two	consecutive	instructions:

ADD	R1,	R2,	R3

ADD	R5,	R1,	R4

These	are	typical	three-register	instructions	favoured	for	RISC.	The	first	adds	the	contents	of	registers
R2	and	R3	and	stores	the	result	in	R1.	The	next	instruction	is	similar	but	uses	the	value	stored	in	R1.	In
a	pipelined	structure,	the	second	instruction	will	be	reading	the	contents	of	R1	before	the	previous
instruction	has	placed	the	value	there.	How	could	this	potential	problem	be	overcome?

18.03	The	basic	computer	architectures
A	well-established	approach	to	describing	different	computer	architectures	is	to	consider	the	number	of
instruction	streams	and	the	number	of	data	streams.	This	leads	to	four	different	types.

Single	Instruction	Stream	Single	Data	Stream	(SISD)
SISD	is	the	typical	arrangement	found	in	early	computers	which	was	also	adopted	for	the	earliest
microprocessors.	The	functioning	is	purely	sequential	with	no	parallelism.	Figure	18.02	illustrates	how
individual	elements	in	an	array	are	manipulated	using	SISD.

Figure	18.02	SISD	sequential	processing	of	array	elements

The	same	instruction	is	used	repeatedly	to	carry	out	the	multiplication	by	two.

Single	Instruction	Stream	Multiple	Data	Stream	(SIMD)
SIMD	can	be	considered	as	parallelism	applied	to	the	data	stream.	The	difference	when	array	elements
are	processed	is	shown	in	Figure	18.03.

Figure	18.03	SIMD	parallel	processing	of	array	elements

The	architecture	for	SIMD	is	usually	represented	by	a	diagram	such	as	Figure	18.04.

Figure	18.04	Schematic	representation	of	the	SIMD	architecture

In	Figure	18.04	the	structure	shows	four	data	streams	entering	four	individual	components	which	are
simultaneously	supplied	with	the	same	instruction.	The	components	are	labelled	PU	(Processing	Unit).
Sometimes	the	components	are	labelled	PE	(Processing	Element).	Whatever	name	is	used,	the
components	are	arithmetic	logic	units.	One	of	the	reasons	for	the	different	names	is	that	there	are
options	for	how	this	architecture	could	be	implemented.

	TIP
Be	careful	to	distinguish	between	the	pipelining	of	instructions	where	diff	erent
instructions	are	executed	in	parallel	and	SIMD	when	only	one	instruction	is	being
simultaneously	executed	on	different	data	streams.

One	option	has	been	used	in	computers	that	are	called	array	or	vector	processors.	These	might	have	a
parallel	set	of	registers;	one	for	each	data	stream.	Alternatively,	there	would	be	a	large	register,
perhaps	with	64	or	128	bits	which	could	store	four	data	values	at	the	same	time.	In	this	type	of
implementation,	the	parallelism	is	built	into	just	one	processor.

The	alternative	is	the	multi-core	processor	where	four	individual	processors	work	in	parallel.	In	this
case	each	processor	is	likely	to	have	its	own	dedicated	cache	memory	to	provide	the	data	stream.

Multiple	Instruction	Stream	Single	Data	Stream	(MISD)
MISD	is	not	evidenced	in	any	individual	computer	architecture	design.	One	example	where	the
approach	could	be	implemented	would	be	in	a	fault-tolerant	system.	The	same	data	stream	could	be	fed
into	two	or	more	processors.	The	output	would	only	be	accepted	if	the	same	output	was	produced	by	all
of	the	processors.

Multiple	Instruction	Stream	Multiple	Data	Stream	(MIMD)
The	MIMD	architecture	is	similar	to	that	for	the	type	of	SIMD	architecture	shown	in	Figure	18.04	with
more	than	one	processing	unit	receiving	the	parallel	data	streams.	The	difference	is	that	each
Processing	unit	does	not	execute	the	same	instruction.	The	multiple	data	stream	can	be	provided	by	a
suitably	partitioned	single	memory.	Each	Processing	Unit	might	have	a	dedicated	cache	memory.

Massively	parallel	computer	systems
The	MIMD	architecture	can	be	implemented	in	multicomputer	systems	known	as	massively	parallel
computers.	These	are	the	systems	used	by	large	organisations	for	computations	involving	highly
complex	mathematical	processing.	They	are	the	latest	type	of	‘supercomputer’.	The	major	difference	in
architecture	is	that	instead	of	having	a	bus	structure	to	support	multiple	processors	there	is	a	network
infrastructure	to	support	multiple	computer	units.	The	programs	running	on	the	different	computers
can	communicate	by	passing	messages	using	the	network.

An	alternative	type	of	multicomputer	system	is	cluster	computing	using	PCs	(sometimes	referred	to	as	a
‘server	farm’).

Whatever	the	technology	used,	these	systems	have	an	extremely	large	number	of	individual	processors
working	in	parallel.

Extension	Question	18.02
The	IBM	Sequoia	and	a	Beowulf	cluster	are	different	examples	of	cluster	computing.	You	might	wish	to
carry	out	some	research	to	get	some	details	of	their	computing	power.

18.04	Virtual	machines
A	virtual	machine	is	software	not	hardware.	The	most	usual	type	of	virtual	machine	is	the	system
virtual	machine	which	is	software	that	emulates	the	hardware	of	a	real	computer	system.

Remember	that	when	a	virtual	machine	is	not	being	used	an	application	program	requires	support	from
an	operating	system	in	order	for	the	program	to	run	on	the	hardware.	The	principle	of	a	virtual	machine
is	that	a	process	interacts	directly	with	a	software	interface	provided	by	an	operating	system.	The
logical	structure	for	the	operation	of	a	system	virtual	machine	is	shown	in	Figure	18.05.

Figure	18.05	Logical	structure	for	a	system	virtual	machine	implementation

The	following	points	should	be	noted	when	looking	at	Figure	18.05.

The	main	advantage	of	the	virtual	machine	approach	is	that	more	than	one	different	operating	system
can	be	made	available	on	one	computer	system.	This	is	particularly	valuable	if	an	organisation	has
legacy	systems	and	wishes	to	continue	to	use	the	old	software	but	does	not	wish	to	keep	the	old
hardware.	Alternatively,	the	same	operating	system	can	be	made	available	many	times	by	companies
with	large	mainframe	computers	that	offer	server	consolidation	facilities.	Different	companies	can	be
offered	their	own	virtual	machine	running	as	a	server.

One	drawback	to	using	a	virtual	machine	is	the	time	and	effort	required	for	implementation.	Another
drawback	is	the	fact	that	the	implementation	will	not	offer	the	same	level	of	performance	that	would	be
obtained	on	a	normal	system.

Discussion	Point:
Are	there	other	advantages	or	disadvantages	in	using	a	system	virtual	machine?

The	Java	virtual	machine	discussed	in	Chapter	8	(Section	8.05)	is	an	example	of	a	process	virtual
machine,	based	on	a	different	underlying	concept.	The	process	virtual	machine	provides	a	platform-
independent	programming	environment	that	allows	a	program	to	execute	in	the	same	way	on	any
platform.	This	is	specific	software	that	only	supports	running	a	Java	program.	A	system	virtual	machine
supports	any	application.

Reflection	Point:
The	description	‘virtual’	occurs	in	several	places	in	this	book.	Are	you	clear	about	how	these	different

The	application	programs	are	installed	with	the	assistance	of	a	guest	OS.	This	guest	OS	will	support
the	running	application	by	interacting	with	the	virtual	machine	as	though	it	were	the	hardware	that
the	guest	OS	would	normally	run	on.

The	virtual	machine	implementation	software	can	be	considered	to	be	a	utility	program	which,	when
running,	is	supported	by	the	particular	host	OS	which	is	specific	to	the	host	hardware.

There	can	be	application	programs	running	at	the	same	time	directly	on	the	host	hardware	under
the	control	of	the	host	OS.

1

2

3

examples	have	their	own	specific	context	and	meaning?

Summary
A	control	unit	can	be	hard-wired	or	microprogrammed.
RISC	(Reduced	Instruction	Set	Computers)	processors	have	a	number	of	advantages	compared	to
CISC	(Complex	Instruction	Set	Computers).
Pipelining	is	one	of	the	reasons	for	choosing	a	RISC	architecture.
Parallelism	can	be	based	at	the	instruction	level,	processor	level	or	computer	level.
A	system	virtual	machine	is	software	emulating	hardware.
The	Java	Virtual	Machine	is	an	example	of	a	process	virtual	machine.

■
■

■
■
■
■

Exam-style	Questions

[1]

[4]

[3]

[2]

[4]

[8]

[2]

[3]

[1]

[5]

[3]

[3]

Computer	systems	are	now	often	constructed	with	RISC	processors.

State	what	the	acronym	RISC	stands	for.

State	four	characteristics	to	be	expected	of	a	RISC	system.

A	RISC	processor	is	likely	to	be	‘hard-wired’.

Explain	what	this	term	means	and	which	specific	part	of	the	processor	will	be	hard-wired.

State	what	the	alternative	to	hard-wiring	is	and	what	hardware	component	is	needed	to	be
part	of	the	processor	to	allow	this	alternative	to	be	implemented.

The	following	diagram	represents	a	system	which	has	implemented	a	virtual	machine.

For	each	of	A,	B,	C,	D	give	a	suitable	name.

For	each	of	A,	B,	C	and	D	give	a	brief	description	of	the	function	of	the	feature.

Explain	why	the	diagram	is	different	for	Application	2

Parallelism	can	be	achieved	in	a	number	of	ways.

Identify	three	different	types	of	parallelism.

Identify	which	type	pipelining	belongs	to.

Using	a	diagram,	explain	how	pipelining	works.

Interrupt	handling	is	not	so	straightforward	in	a	pipelined	system.	Explain	why	this	is	so	and	give
a	brief	account	of	how	problems	can	be	avoided.

Three	descriptions	and	two	types	of	processor	are	shown	below.

Draw	a	line	to	connect	each	description	to	the	appropriate	type	of	processor.

Description Type	of	processor

Makes	extensive	use	of	general	purpose	registers
RISC

Many	addressing	modes	are	available
CISC

Has	a	simplified	set	of	instructions

	

In	a	RISC	processor	three	instructions	(A	followed	by	B,	followed	by	C)	are	processed	using

1 a

i

ii

b

i

ii

2

a

b

c

3 a

i

ii

iii

b

4 a

b

[3]

[3]

[2]

[2]

[4]

[2]

pipelining.

The	following	table	shows	the	five	stages	that	occur	when	instructions	are	fetched	and	executed.

The	“A”	in	the	table	indicates	that	instruction	A	has	been	fetched	in	time	interval	1.

Complete	the	table	to	show	the	time	interval	in	which	each	stage	of	each	instruction	(A,	B,	C)
is	carried	out.

Stage
Time	interval

1 2 3 4 5 6 7 8 9

Fetch	instruction A

Decode	instruction

Execute	instruction

Access	operand	in	memory

Write	result	to	register

	

The	completed	table	shows	how	pipelining	allows	instructions	to	be	carried	out	more	rapidly.
Each	time	interval	represents	one	clock	cycle.

Calculate	how	many	clock	cycles	are	saved	by	the	use	of	pipelining	in	the	above	example.

Show	your	working.

Cambridge	International	AS	&	A	level	Computer	Science	9608	paper	31	Q4	November	2015

The	following	diagram	shows	how	applications	X,	Y	and	Z	can	run	on	a	virtual	machine	system.

The	virtual	machine	software	undertakes	many	tasks.

Describe	two	of	these	tasks.

Explain	the	difference	between	a	guest	operating	system	and	a	host	operating	system.

A	company	uses	a	computer	as	web	server.	The	manufacturer	will	no	longer	support	the
computer’s	operating	system	(OS)	in	six	months	time.	The	company	will	then	need	to	decide	on	a
replacement	OS.

The	company	is	also	considering	changing	the	web	server	software	when	the	OS	is	changed.

Whenever	any	changes	are	made,	it	is	important	that	the	web	server	service	is	not	disrupted.

In	developing	these	changes,	the	company	could	use	virtual	machines.

Describe	two	possible	uses	of	virtual	machines	by	the	company.

The	web	server	often	has	to	handle	many	simultaneous	requests.

The	company	uses	a	virtual	machine	to	test	possible	solutions	to	the	changes	that	they	will
need	to	make.

Explain	one	limitation	of	this	approach.

Cambridge	international	AS	&;	A	Level	Computer	Science	9608	paper	31	Q3	June	2016

i

ii

5 a

i

ii

b

i

ii

Chapter	19:
Logic	circuits	and	Boolean	algebra

19.01	Logic	circuits
Chapter	4	introduced	the	symbols	for	logic	gates	that	are	used	in	logic	circuits	and	discussed	the
relationships	between	logic	circuits,	truth	tables	and	logic	expressions.	This	chapter	introduces	some
specific	circuits	that	are	used	to	construct	components	that	provide	functionality	in	computer	hardware.

The	half	adder
A	fundamental	operation	in	computing	is	binary	addition.	The	result	of	adding	two	bits	is	either	1	or	0.
However,	when	1	is	added	to	1	the	result	is	0	but	there	is	a	carry	bit	equal	to	1.	This	cannot	be	ignored
if	two	numbers	with	several	bits	in	each	are	being	added.

The	simplest	circuit	that	can	be	used	for	binary	addition	is	the	half	adder.	This	can	be	represented	by
the	diagram	in	Figure	19.01.	The	circuit	takes	two	input	bits	and	outputs	a	sum	bit	(S)	and	a	carry	bit
(C).

Figure	19.01	A	half	adder

The	truth	table	for	this	circuit	is	shown	in	Table	19.01.

Input Output

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table	19.01	The	truth	table	for	a	half	adder

One	possible	circuit	can	be	defined	directly	by	examination	of	the	truth	table.	It	can	be	seen	that	the
only	combination	of	inputs	that	produces	a	1	for	the	carry	bit	is	when	two	1	bits	are	input.	The	truth
table	for	the	C	output	is	in	fact	the	AND	truth	table.	The	truth	table	for	the	S	output	can	be	seen	to
match	that	for	the	XOR	operator	which	is	shown	in	Figure	4.02	in	Chapter	4	(Section	4.04).	Therefore,
one	circuit	that	would	produce	the	half	adder	functionality	would	contain	an	AND	gate	and	an	XOR	gate
with	each	gate	receiving	input	from	A	and	B.

This	is	only	one	of	several	circuits	that	would	provide	the	functionality.	The	NAND	and	NOR	gates	are
universal	gates.	Any	logic	circuit	can	be	constructed	using	only	NAND	gates	or	only	NOR	gates.	This
fact	combined	with	the	ease	of	manufacture	of	these	gates	leads	circuit	manufacturers	to	prefer	their
use.	The	circuit	shown	in	Figure	19.02	consisting	only	of	NAND	gates	has	the	correct	logic	to	produce
the	C	and	S	outputs	and	is	a	likely	choice	for	implementation.

Figure	19.02	A	half	adder	circuit	constructed	from	NAND	gates

Question	19.01
In	Figure	19.02,	can	you	identify	the	individual	circuits	that	represent	the	AND	operator	and	the	XOR
operator?

TASK	19.01
Use	the	intermediate	points	labelled	W,	X	and	Y	to	construct	a	truth	table	for	the	circuit	shown	in
Figure	19.02.	Check	that	this	reproduces	the	truth	table	shown	as	Table	19.01.

The	full	adder
If	two	numbers	expressed	in	binary	with	several	bits	to	be	added,	the	addition	must	start	with	the	two
least	significant	bits	and	then	proceed	to	the	most	significant	bits.	At	each	stage,	the	carry	from	the
previous	addition	has	to	be	incorporated	into	the	current	addition.	If	a	half	adder	is	used	each	time,
there	has	to	be	separate	circuitry	to	handle	the	carry	bit	because	the	half	adder	only	takes	two	inputs.

The	full	adder	is	a	circuit	that	has	three	inputs	including	the	previous	carry	bit.	The	truth	table	is
shown	as	Table	19.02.

Input Output

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table	19.02	The	truth	table	for	a	full	adder

One	possible	circuit	for	implementation	contains	two	half	adder	circuits	and	an	OR	gate	as	shown	in
Figure	19.03.

Figure	19.03	A	possible	implementation	of	a	full	adder

As	before,	it	is	possible	to	construct	the	circuit	entirely	from	NAND	gates	as	shown	in	Figure	19.04.

Figure	19.04	A	full	adder	circuit	constructed	from	NAND	gates

Discussion	Point:
Can	you	see	how	full	adders	could	be	combined	to	handle	addition	of,	for	example,	four-bit	binary
numbers?	What	happens	to	the	carry	input	for	the	first	addition?

19.02	Sequential	logic	circuits
All	of	the	circuits	so	far	encountered	in	this	book	have	been	combinational	circuits.	For	such	a	circuit
the	output	is	dependent	only	on	the	input	values.	An	alternative	type	of	circuit	is	a	sequential	circuit
where	the	output	depends	on	the	input	and	on	the	previous	output.

The	SR	flip-flop
The	SR	flip-flop	or	‘latch’	is	a	simple	example	of	a	sequential	circuit.	It	can	be	constructed	with	two
NAND	gates	or	two	NOR	gates.	Figure	19.05	shows	the	version	with	two	NOR	gates

Figure	19.05	A	circuit	for	an	SR	flip-flop	using	NOR	gates

The	cross-coupled	circuit	with	output	feedback	has	some	interesting	consequences.	For	example,	if	we
consider	the	hypothetical	situation	where	R,	S,	Q	and	Q’	all	had	value	0	we	can	see	that	this	would	be
self-contradictory	because	two	inputs	value	0	to	a	NOR	gate	produce	a	1	output.	A	state	with	Q	and	Q’
both	set	to	value	1	would	be	self-contradictory	because	the	output	from	a	NOR	gate	is	always	0	if	either
input	is	1.	The	flip-flop	is	therefore	a	two-state	device.	Either	it	has	Q=1	and	Q’=0	or	it	has	the	reverse.

The	truth	table	for	the	circuit	can	be	presented	as	shown	in	Table	19.03.	The	two	lines	of	the	truth	table
where	both	S	and	R	are	input	as	0	represent	the	condition	when	no	signal	is	input	to	the	flip-flop.	If	we
consider	the	state	with	Q=1	and	Q’=0:

and	we	consider	the	condition	that	both	S	and	R	inputs	are	0

then	the	top	NOR	gate	has	inputs	both	0

giving	output	1

and	the	bottom	NOR	gate	has	inputs	1	and	0

giving	output	0.

This	means	that	this	is	a	self-consistent	state	which	is	referred	to	as	the	set	state.	A	similar	argument
can	be	applied	for	the	alternative	to	the	set	state	which	is	the	unset	state	with	Q=0	and	Q’=1.

The	S	and	R	inputs	are	for	set	and	reset,	respectively.	The	truth	table	shows	that	an	input	combination
of	S=0	and	R=1	converts	a	set	state	to	an	unset	state	and	an	input	combination	of	S=1	and	R=0
converts	an	unset	state	to	a	set	state.

Input	signals Initial	state Final	state

S R Q Q’ Q Q’

0 0 1 0 1 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 0 1

1 0 0 1 1 0

0 1 0 1 0 1

Table	19.03	A	representation	of	a	truth	table	for	an	SR	flip-flop

These	properties	explain	why	the	SR	flip-flop	can	be	used	as	a	storage	device	for	1	bit	and	therefore
could	be	used	as	a	component	in	RAM	because	a	value	is	stored	but	can	be	altered.	The	truth	table	does
not	contain	rows	for	R=1	and	S=1	because	this	leads	to	an	invalid	state	with	both	Q	and	Q’	having
value	0.	Because	of	this	the	circuit	must	be	protected	from	receiving	an	input	signal	on	R	and	S
simultaneously.

The	alternative	NAND	gate	circuit	for	the	SR	flip-flop	has	a	similar	structure	but	the	labeling	is
different.	The	important	difference	is	that	setting	is	achieved	with	S=0	and	R=1	and	resetting	with	R=0
and	S=1.

TASK	19.02
Find	a	diagram	for	a	NAND	gate	SR	flip-flop	and	construct	the	truth	table.

The	JK	flip-flop
In	addition	to	the	possibility	of	entering	an	invalid	state	there	is	also	the	potential	for	a	circuit	to	arrive
in	an	uncertain	state	if	inputs	do	not	arrive	quite	at	the	same	time.	In	order	to	prevent	this,	a	circuit
may	include	a	clock	pulse	input	to	give	a	better	chance	of	synchronising	inputs.	The	JK	flip-flop	is	an
example.

The	JK	flip-flop	can	be	illustrated	by	the	symbol	shown	in	Figure	19.06(a).	A	possible	circuit	is	shown	in
Figure	19.06(b).

Figure	19.06	(a)	A	symbol	for	a	JK	flip-flop	and	(b)	a	possible	circuit

	TIP
There	is	one	special	case	for	a	NAND	gate;	when	all	inputs	are	1	the	output	is	0.	There	is
one	special	case	for	a	NOR	gate;	when	all	inputs	are	0	the	output	is	1.

To	understand	the	workings	of	the	circuit	you	must	first	remember	that	a	NAND	gate	gives	a	1	output
unless	all	inputs	are	1.	If	the	circuit	is	in	the	unset	state	with	Q	=	0	and	Q’	=1	this	is	stable	and	self-
consistent	as	shown	by	the	following	argument:

the	clock	and	R	both	input	0

the	top-left	NAND	gate	therefore	has	output	1

this	then	leads	to	two	1	inputs	to	the	top-right	NAND	gate

ensuring	that	Q	=	0.

If	the	input	from	J	now	becomes	1	and	the	clock	pulse	switches	to	a	1	then:

the	top-left	NAND	gate	has	all	1	inputs

so	the	output	is	0

this	causes	the	top-right	NAND	gate	to	output	a	1	for	Q

there	are	now	two	1	inputs	to	the	bottom-right	NAND	gate

so	the	Q’	output	becomes	0.

This	shows	how	the	J	input	is	a	set	input.	A	similar	argument	shows	that	the	K	is	a	clear	input.	In	this
respect	the	JK	flip-flop	behaves	in	a	similar	way	to	the	SR	flip-flop	as	a	storage	device	for	one	bit.
However,	there	is	an	important	difference	in	that	if	both	J	and	K	are	input	as	a	1	then	the	values	for	Q
and	Q’	are	toggled	(they	switch	value).	This	makes	the	JK	flip-flop	a	more	reliable	device	because	there
is	no	combination	of	input	states	that	leave	uncertainty	as	to	which	values	are	stored.	The	significant
part	of	the	truth	table	is	shown	as	Table	19.04.

J K Clock Q

0 0 ↑ Q	unchanged

1 0 ↑ 1

0 1 ↑ 0

1 1 ↑ Q	toggles

Table	19.04	Part	of	the	truth	table	for	a	JK	flip-flop

Question	19.02
Can	you	follow	the	logic	in	the	JK	flip-flop	circuit	to	see	that	the	truth	table	is	an	accurate
representation	of	the	logic	for	all	combinations	of	input?

19.03	Boolean	algebra	basics
Chapter	4	(Section	4.01)	introduced	logic	expressions	consisting	of	logic	propositions	combined	using
Boolean	operators.	Boolean	algebra	provides	a	simplified	way	of	writing	a	logic	expression	and	a	set	of
rules	for	manipulating	an	expression.

Whenever	a	form	of	algebra	is	used	it	is	vital	that	there	is	an	understanding	of	its	meaning.	As	a	simple
example	we	can	consider	the	following	four	interpretations	of	the	meaning	of	1	+	1:

1 + 1 = 2

1 + 1 = 10

1 + 1 = 0

1 + 1 = 1

The	first	shows	denary	arithmetic,	the	second	binary	arithmetic	and	the	third	bit	arithmetic.	The	last
one	applies	if	Boolean	algebra	is	being	used.	This	is	because	in	Boolean	algebra	1	represents	TRUE,	0
represents	FALSE,	and	+	represents	OR.	Therefore	the	fourth	statement	represents	the	logic
statement:

TRUE	OR	TRUE	is	TRUE

There	are	options	for	the	representation	of	Boolean	algebra.	For	example,	the	symbols	for	AND	and	OR
are	sometimes	represented	as	∧	and	∨.	There	is	also	the	option	of	writing	A.B	or	AB	for	A	AND	B.	The
dot	notation	is	used	in	this	book.	Finally,	there	are	options	for	how	NOT	A	(the	inverse	of	A)	can	be
represented.	A¯	is	used	here.

	TIP
You	do	not	need	to	remember	the	∧	and	∨	notation.

Having	established	the	notation	for	Boolean	algebra	we	have	to	consider	the	rules	that	apply.	These	can
formally	be	described	as	‘laws’	or	‘identities’.	Table	19.05	contains	a	full	listing.

Identity/Law AND	form OR	form

Identity 		 1.A	=	A 0	+	A	=	A

Null 		 0.A	=	0 1	+	A	=	1

Idempotent 		 A.A	=	A A	+	A	=	A

Inverse A.A¯=0  A.A¯=1

Commutative     A.B	=	B.A      A	+	B	=	B	+	A

Associative     (A.B).C	=	A.(B.C)      (A	+	B)	+	C	=	A	+	(B	+	C)

Distributive
        A	+	B.C	=	(A	+	B).(A	+

C)
       A.(B	+	C)	=	A.B	+	A.C

Absorption A.(A	+	B)	=	A      A	+	A.B	=	A			

De	Morgan’s          A.B¯=A¯+B¯  A+B¯=A¯.B¯

Double	Complement       A¯¯=A

Table	19.05	Boolean	algebra	identities	(laws)

Some	of	the	names	used	for	the	identities	may	be	unfamiliar	to	you.	This	is	not	a	concern.	You	should
note	that	for	all	but	one	of	the	identities	there	is	an	AND	form	and	an	OR	form.	Furthermore,	it	is
important	to	note	that	an	identity	written	in	one	form	can	be	transformed	into	the	other	by
interchanging	each	0	or	1	and	each	AND	or	OR.	For	example,	0.A	=	0	which	reads	FALSE	AND	A	is

FALSE	transforms	into	TRUE	OR	A	is	TRUE,	written	in	the	algebra	as	1	+	A	=	1.

It	can	also	be	seen	that	some	of	the	identities	look	like	those	applying	in	normal	algebra	with	AND
functioning	as	multiplication	and	OR	functioning	as	addition.	So	you	can	use	the	terms	‘product’	and
‘sum’	in	the	context	of	Boolean	algebra.

TASK	19.03
It	is	vital	that	you	can	interpret	a	Boolean	expression	correctly.	Go	through	Table	19.05	item	by
item	and	in	each	case	read	out	the	full	meaning.	For	example:

1	+	A	=	1	can	be	read	as	‘one	plus	A	equals	1’

but	must	be	understood	as	‘TRUE	OR	A	is	TRUE’.

Although	De	Morgan’s	laws	look	complicated	at	first	glance,	they	can	be	rationalised	easily.	The	inverse
of	a	Boolean	product	becomes	the	sum	of	the	inverses	of	the	individual	values	in	the	product.	The
inverse	of	a	Boolean	sum	is	the	product	of	the	individual	inverses.

Unfortunately,	using	the	algebra	to	simplify	expressions	is	not	something	which	can	be	learnt	as	a
routine.	It	requires	lateral	thinking	as	Worked	Example	19.01	will	show.

WORKED	EXAMPLE	19.01

Using	Boolean	algebra	to	simplify	an	expression

Let’s	consider	a	simple	example:

A+A¯.B	can	be	simplified	to	A	+	B

In	order	to	simplify	the	expression,	we	have	to	first	make	it	more	complicated!	This	is	where	the
lateral	thinking	comes	in.	The	OR	form	of	the	absorption	identity	is	A	+	A.B	=	A.	This	can	be	used
in	reverse	to	replace	A	by	A	+	A.B	to	produce	the	following:

A+A.B+A¯.B

We	can	for	the	moment	ignore	the	A.

Applying	the	AND	form	of	the	commutative	law	and	the	OR	form	of	the	distributive	law	in	reverse
we	can	see	that:

A.B+A¯.B	is	the	same	as	B.A+B.A¯	which	converts	to	B.(A+A¯)

This	allows	us	to	use	the	OR	form	of	the	inverse	identity	which	converts	A+A¯	into	1.	As	a	result,
the	full	expression,	including	the	A	that	was	ignored,	has	become:

A	+	B.1

The	AND	form	of	the	identity	law	can	now	be	applied	to	the	B.1	term	to	change	it	to	B	so	the
expression	then	becomes	A	+	B.

19.04	Boolean	algebra	applications
Creating	a	Boolean	algebra	expression	directly	from	a	truth	table
One	formal	approach	to	creating	a	Boolean	algebra	expression	for	a	particular	problem	is	to	start	with
the	truth	table	and	apply	the	sum	of	products	method.	This	establishes	a	‘minterm’	for	each	row	of	the
table	that	results	in	a	1	for	the	output.	This	can	be	illustrated	using	the	half	adder	circuit	truth	table
shown	in	Figure	19.01.	The	only	row	of	the	table	creating	a	1	output	for	C	has	a	1	input	for	A	and	for	B.
The	product	becomes	A.B	and	the	sum	of	products	has	only	this	one	term	so	we	have:

C	=	A.B

For	the	S	output,	there	are	two	rows	that	produce	a	1	output	so	there	is	a	sum	of	products	containing
two	minterms:

S=A¯.B+A.B¯

Note	that	the	0	in	a	row	is	represented	by	the	inverse	of	the	input	symbol.

In	certain	cases	Boolean	algebra	laws	can	be	applied	directly	to	parts	of	the	truth	table.	For	example,
consider	a	truth	table	which	contains	the	following	two	rows:

A B C X

0 1 0 1

0 1 1 1

The	output	for	X	is	the	same	whether	C	=	0	or	C	=	1.	There	must	therefore	be	a	minterm	which	has	no
reference	to	C	which	in	this	case	will	be	A¯.B.

The	Boolean	algebra	representation	of	a	logic	circuit
This	approach	can	also	be	used	as	part	of	the	process	of	creating	a	Boolean	algebra	logic	expression
from	a	circuit	diagram.	The	truth	tables	for	the	individual	logic	gates	are	used	and	then	some	algebraic
simplification	is	applied.

WORKED	EXAMPLE	19.02

Creating	a	Boolean	algebra	logic	expression	for	a	half	adder	circuit

Figure	19.07	A	half	adder	circuit

Figure	19.07	shows	inputs	A	and	B	to	a	NAND	gate	with	output	W.	The	first	three	rows	of	the
NAND	truth	table	produce	a	1	output	so	the	sum	of	products	has	three	minterms:

W=A¯.B¯+A¯.B+A.B¯

We	can	now	consider	the	input	of	W	to	a	NAND	gate	with	A	as	the	other	input	to	produce	the	X
output.	Instead	of	using	the	NAND	truth	table	we	will	use	the	fact	that	the	NAND	gate	operates	as
an	AND	gate	followed	by	a	NOT	gate.

The	result	of	the	AND	operation	is	the	product	of	the	inputs	so	we	get	the	following	expression	as
output:

A.(A¯.B¯+A¯.B+A.B¯)

This	can	be	simplified	by	applying	the	distributive	and	inverse	laws	to	give:

0+0+A.A.B¯	which	is	simply	A.B¯

To	complete	the	NAND	operation	and	get	the	value	for	X	we	have	to	apply	the	NOT	operation
which	means	we	have	to	take	the	inverse	of	the	above	expression.

This	is	where	we	need	the	AND	version	of	De	Morgan’s	law	which	transforms	the	A.B¯	into	A¯+B.
So	we	have:

X=A¯+B

The	same	laws	applied	to	the	output	Y	from	the	other	intermediate	NAND	gate	to	give

Y=A+B¯

Finally,	we	need	to	consider	A+B¯	and	A¯+B	being	input	to	the	final	NAND	gate.	Again	we	can
consider	the	AND	operation	first	as	the	product	of	the	inputs	to	produce	the	expression:

(A+B¯).(A¯+B)

We	will	not	multiply	this	out;	we	will	instead	apply	De	Morgan’s	law	directly	to	the	expression	to
perform	the	inverse	operation	to	complete	the	NAND	operation.	This	gives:

S=A¯.B+A.B¯

This	is	the	value	obtained	directly	from	the	truth	table	so	the	algebra	has	been	used	correctly.

Extension	Question	19.01
Worked	Example	19.02	did	not	show	that	the	circuit	produced	the	correct	output	for	C.	Also	a	shortcut
was	used	to	reach	the	final	form	of	S.	Can	you	use	Boolean	algebra	to	find	the	form	of	C	from	the	circuit
and	can	you	convert	the	expression	for	S	if	you	start	by	using	the	distributive	law	before	applying	De
Morgan’s	law?

19.05	Karnaugh	maps	(K-maps)
A	Karnaugh	map	is	a	method	of	creating	a	Boolean	algebra	expression	from	a	truth	table.	A	K-map	can
make	the	process	much	easier	than	if	you	use	sum-of-products	to	create	minterms.	If	applied	correctly	a
K-map	produces	the	simplest	possible	form	for	the	Boolean	algebra	expression.

A B X

0 0 0

0 1 1

1 0 1

1 1 1

Table	19.06	The	truth	table	for	the	OR	operand

The	truth	table	for	an	OR	gate,	shown	as	Table	19.06,	can	be	used	to	illustrate	the	method.	The	sum	of
products	method	produces	the	following	expression:

X=A¯.B+A.B¯+A.B

This	is	not	instantly	recognisable	as	A	+	B	but,	with	a	little	effort,	using	Boolean	algebra	laws	it	could
be	shown	to	be	the	same.

The	Karnaugh	map	approach	is	simpler.	The	corresponding	K-map	is	shown	in	Figure	19.08.	Each	cell	in
a	Karnaugh	map	shows	the	value	of	the	output	X	for	a	combination	of	input	values	for	A	and	B.

Figure	19.08	A	K-map	of	the	truth	table	in	Table	19.06

The	interpretation	of	a	Karnaugh	map	follows	these	rules.

Only	cells	containing	a	1	are	considered.

Groups	of	cells	containing	1s	are	identified	where	possible,	with	a	group	being	a	row,	a	column	or	a
rectangle.

Groups	must	contain	2,	4,	8	and	so	on	cells.

Each	group	should	be	as	large	as	possible.

Groups	can	overlap	and	all	overlapping	groups	must	be	used.

If	an	individual	cell	cannot	be	contained	in	any	group	it	is	treated	as	being	a	group.

Within	each	group,	the	only	input	values	retained	are	those	which	retain	a	constant	value
throughout	the	group.

These	rules	define	a	column	and	a	row	group	as	indicated	by	the	blue	outlines.	In	the	column	group,	B
remains	unchanged	but	A	changes	so	B	is	retained.	In	the	row	group,	it	is	A	that	remains	unchanged.
The	Boolean	algebra	expression	is	then	just	the	sum	of	these	retained	values:

X	=	A	+	B

Thus,	the	Karnaugh	map	has	found	the	OR	expression	without	using	any	algebra.

WORKED	EXAMPLE	19.03

Using	a	K-map	to	interpret	a	three-input	problem

Let’s	consider	the	following	truth	table:

A B C X

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table	19.07	A	sample	truth	table	with	three	inputs

Before	starting	any	application	of	a	method	it	is	always	worth	looking	to	see	if	there	are	any
trends.	In	this	case	you	can	see	that	whenever	B	=	1	the	output	for	X	is	1.	This	means	that	the	final
algebra	should	have	B	+	something.

Applying	sum	of	products	gives	the	following	five-minterm	expression:

A¯.B¯.C¯+A¯.B.C¯+A¯.B.C+A.B.C¯+A.B.C

There	are	two	options	for	how	the	K-map	is	presented.	We	will	choose	to	combine	input	values	in
the	columns.

Figure	19.09	shows	the	result.	This	follows	the	convention	of	having	the	rows	corresponding	to
values	of	A	and	the	columns	to	combinations	of	values	for	B	and	C.

Figure	19.09	A	K-map	representation	of	the	truth	table	shown	in	Table	19.07

It	is	important	to	note	that	the	labelling	of	the	columns	does	not	follow	a	binary	value	pattern.
Instead	it	follows	the	Gray	coding	sequence	where	only	one	bit	changes	value	each	time.

Following	the	rules	stated	above	the	first	group	to	identify	is	the	square	of	four	cells	with	a	value	1
as	identified	by	the	blue	rectangle	in	the	diagram.	For	these	it	can	be	seen	that	A	has	different
values,	B	has	a	constant	value	but	C	changes	values.	So,	only	B	is	retained.	Note	this	was
anticipated	from	the	initial	inspection	of	the	truth	table.

This	apparently	only	leaves	the	top	left	cell.	It	looks	like	an	isolated	cell	but	it	is	not	because	K-
maps	wrap	round.	The	cell	is	defined	by	BC	=	00.	This	has	two	adjacent	cells	under	Gray	coding
rules.	It	is	immediately	obvious	that	the	cell	BC	=	01	is	adjacent	but	this	contains	0	so	it	can	be
ignored.	The	other	adjacent	cell	is	the	BC	=	10	combination	because	of	the	wrap	round	rule.	Thus,
there	is	a	row	group	containing	BC	=	00	and	BC	=	10,	indicated	by	the	dotted	line	partial	group
outlines.	For	this	row	the	value	A¯	remains	unchanged,	B	changes	but	C¯	remains	unchanged	so
the	product	A¯.C¯	results.	By	adding	this	to	the	B	for	the	other	group	the	final	expression	becomes:

A¯.C¯+B

This	is	much	simpler	than	the	expression	with	five	minterms	derived	directly	from	the	truth	table.

Extension	Question	19.02
Consider	the	Karnaugh	map	shown	in	Figure	19.10.	This	corresponds	to	a	problem	with	four	inputs.	It
wraps	round	horizontally	and	vertically.	Use	the	map	to	create	a	Boolean	algebra	expression.

Figure	19.10	A	K-map	for	a	four	input	problem

Reflection	Point:
When	using	Karnaugh	maps	will	you	remember	to	use	Gray	coding	if	there	are	three	inputs	and	will	you
remember	to	use	all	overlapping	groups?

Summary
Binary	addition	can	be	carried	out	using	a	half	adder	or	a	full	adder	circuit.
SR	or	JK	flip-flop	circuits	can	be	used	to	store	a	bit	value.
There	are	Boolean	algebra	laws	that	can	be	used	to	simplify	logic	expressions.
The	sum-of-products	method	can	be	used	to	create	an	equivalent	logic	expression	containing
minterms	from	a	truth	table.
A	Karnaugh	map	is	a	representation	of	a	truth	table	that	allows	a	simplified	logic	expression	to	be
derived	from	a	truth	table.

■
■
■
■

■

Exam-style	Questions

[2]

[5]

[3]

[3]

[2]

[2]

[3]

[4]

Consider	the	following	circuit:

Identify	the	three	different	logic	gates	used.

Complete	the	following	truth	table	for	the	circuit	for	the	inputs	shown	for	A	and	B.

Inputs Workspace Outputs

A B S R

0 0

0 1

1 0

1 1

For	the	circuit	shown	in	part	a,	identify	the	type	of	circuit	and	what	the	outputs	represent.

Consider	the	following	truth	table:

A B X

0 0 1

0 1 0

1 0 1

1 1 1

Using	the	sum-of-products	approach,	write	a	Boolean	expression	that	matches	the	logic.

For	the	rows	that	have	A	=	1,	the	output	for	X	is	1.	Explain	how	this	would	be	reflected	in	a
simplified	form	of	Boolean	expression	matching	the	truth	table.

Consider	the	following	circuit:

Using	your	knowledge	of	the	truth	table	for	an	AND	gate,	write	a	Boolean	algebra	expression
for	the	output	from	the	first	AND	gate.

Using	your	knowledge	of	the	truth	table	for	an	OR	gate	write	a	Boolean	algebra	expression
for	the	output	from	the	OR	gate.

Using	De	Morgan’s	law,	write	the	logic	expression	for	the	output	from	the	NOT	gate.

Consider	the	following	truth	table:

A B X

0 0 1

1 a

i

ii

b

2 a

i

ii

b

i

ii

iii

3 a

[4]

[3]

[3]

[1]

[3]

[4]

[1]

[1]

[2]

0 1 0

1 0 1

1 1 1

Sketch	a	Karnaugh	map	to	match	this	truth	table.

Use	the	Karnaugh	map	to	write	a	Boolean	algebra	expression	for	this	logic.

Consider	the	truth	table	shown	in	part	a.

Use	the	sum-of-products	method	to	write	a	Boolean	algebra	expression	from	the	truth	table.

Use	Boolean	algebra	to	demonstrate	that	this	expression	can	be	simplified	to	give	the
same	expression	created	from	the	Karnaugh	map.	Hint:	you	might	wish	to	use	the	fact	that

A.B¯+A.B¯+A.B¯

Complete	the	truth	table	for	this	NAND	gate:

A B X

0 0 	

0 1 	

1 0 	

1 1 	

An	SR	flip-flop	is	constructed	using	two	NAND	gates.

Complete	the	truth	table	for	the	SR	flip-flop.

S R Q Q¯

Initially 1 0 0 1

R	change	to	1 1 1

S	changed	to	0 0 1

S	changed	to	1 1 1

S	and	R	changed	to	0 0 0

One	of	the	combinations	in	the	truth	table	should	not	be	allowed	to	occur.

State	the	values	of	S	and	R	that	should	not	be	allowed.	Justify	your	choice.

Another	type	of	flip-flop	is	the	JK	flip-flop.

Give	one	extra	input	present	in	the	JK	flip-flop.

Give	one	advantage	of	the	JK	flip-flop.

Describe	the	role	of	flip-flops	in	a	computer.

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	31	Q5	June	2016

i

ii

b

i

ii

4 a

b i

ii

c i

ii

d

[2]

[1]

[4]

[2]

[4]

A	half	adder	is	a	logic	circuit	with	the	following	truth	table.

Input Output

X Y A B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The	following	logic	circuit	is	constructed.

Complete	the	following	truth	table	for	this	logic	circuit.

Input
Working	space

Output

P Q R J K

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

	

State	the	name	given	to	this	logic	circuit.

Name	the	labels	usually	given	to	J	and	K.

Explain	why	your	answers	are	appropriate	labels	for	these	outputs.

Write	down	the	Boolean	expression	corresponding	to	the	following	logic	circuit:

	

Use	Boolean	algebra	to	simplify	the	expression	given	in	part	b(i).

Show	your	working.

5 a i

ii

iii

b i

ii

Cambridge	International	AS	&	A	level	Computer	Science	9608	Paper	32	Q5	November	2016

Chapter	20:
System	software

20.01	The	purposes	of	an	operating	system	(OS)
Chapter	8	(Section	8.02)	contained	a	categorised	summary	of	the	various	activities	that	an	operating
system	engages	in.	This	chapter	discusses	some	of	them	in	more	detail.

We	can	begin	by	considering	a	few	aspects	relating	to	the	use	of	an	OS.

Operating	system	structure
An	operating	system	is	structured	to	provide	a	platform	for	both	resource	management	and	the
provision	of	facilities	for	users.	The	logical	structure	of	the	operating	system	provides	two	modes	of
operation.	User	mode	is	the	one	available	for	the	user	or	an	application	program.	The	alternative	has	a
number	of	different	names	but	the	most	often	used	is	‘kernel	mode’.	The	difference	between	the	two	is
that	kernel	mode	has	sole	access	to	part	of	the	memory	and	to	certain	system	functions	that	user	mode
cannot	access.

The	parts	of	the	OS	that	provide	the	two	modes	of	operation	are	separated.	The	kernel	runs	all	of	the
time.	The	remainder	of	the	OS	runs	in	user	mode	so	individual	parts	are	only	accessed	when	needed.
One	possibility	then	is	to	use	a	layered	structure	as	illustrated	in	Figure	20.01.	In	this	model,
application	programs	or	utility	programs	could	make	system	calls	to	the	kernel.	However,	to	work
properly	each	higher	layer	needs	to	be	fully	serviced	by	a	lower	layer	(as	in	a	network	protocol	stack).

Figure	20.01	Layered	structure	for	an	operating	system

A	layered	structure	for	an	operating	system	is	hard	to	achieve	in	practice.	A	more	flexible	approach
uses	a	modular	structure,	illustrated	in	Figure	20.02.	The	structure	works	by	the	kernel	calling	on	the
individual	services	when	required.	It	could	be	associated	with	a	micro-kernel	structure	where	the
functionality	in	the	kernel	is	reduced	to	the	absolute	minimum.

A	computer	system	needs	a	program	that	begins	to	run	when	the	system	is	first	switched	on.	At	this
stage,	the	operating	system	programs	are	stored	on	disk	so	there	is	no	operating	system.	However,
the	computer	has	stored	in	ROM	a	basic	input/output	system	(BIOS)	which	starts	a	bootstrap
program.	It	is	this	bootstrap	program	that	loads	the	operating	system	into	memory	and	sets	it
running.

An	operating	system	can	provide	facilities	to	have	more	than	one	program	stored	in	memory.	Only
one	program	can	access	the	CPU	at	any	given	time	but	others	are	ready	when	the	opportunity	arises,
which	is	described	as	multi-programming	and	will	happen	for	one	single	user.	Some	systems	are
designed	to	have	many	users	simultaneously	logged	in,	which	is	described	as	a	time-sharing	system.

The	purposes	of	an	operating	system	can	usefully	be	considered	from	two	viewpoints:	an	internal
viewpoint	and	an	external	viewpoint.	The	internal	viewpoint	concerns	how	the	activities	of	the
operating	system	are	organised	to	best	use	the	resources	available.	The	external	viewpoint	concerns
the	facilities	made	available	for	the	user	of	the	system.

The	major	resources	associated	with	the	internal	viewpoint	are	the	CPU,	the	memory	and	the	I/O
system.

1

2

3

4

Figure	20.02	Modular	structure	for	an	operating	system

20.02	The	input/output	(I/O)	system
The	I/O	system	does	not	just	relate	to	input	and	output	that	directly	involves	a	computer	user.	It	also
includes	input	and	output	to	storage	devices	while	a	program	is	running.	Figure	20.03	is	a	schematic
diagram	that	illustrates	the	structure	of	the	I/O	system.

Figure	20.03	Main	components	associated	with	the	I/O	system

The	bus	structure	in	Figure	20.03	shows	that	there	can	be	an	option	for	the	transfer	of	data	between	an
I/O	device	and	memory.	The	operating	system	can	ensure	that	I/O	passes	via	the	CPU	but	for	large
quantities	of	data	the	operating	system	can	ensure	direct	transfer	between	memory	and	an	I/O	device.

To	understand	the	issues	associated	with	I/O	management,	some	discussion	of	timescales	is	required.	It
must	be	understood	that	one	second	is	a	very	long	time	for	a	computer	system.	A	CPU	typically
operates	at	GHz	frequencies.	One	second	sees	more	than	one	trillion	clock	cycles.	Some	typical	speeds
for	I/O	are	given	in	Table	20.01.

Device Data	rate Time	for	transfer	of	1	byte

Keyboard 10	Bps 0.1	s

Screen 50	MBps 2	×	10−8	s

Disk 5	MBps 2	×	10−7	s

Table	20.01	Typical	rates	and	times	for	data	transfer

The	slow	speed	of	I/O	compared	to	a	typical	CPU	clock	cycle	shows	that	management	of	CPU	usage	is
vital	to	ensure	that	the	CPU	does	not	remain	idle	while	I/O	is	taking	place.	This	is	discussed	in	the	next
section.

20.03	Process	scheduling
Resource	management	relating	to	the	CPU	mainly	concerns	scheduling	to	ensure	efficient	usage.	The
methods	discussed	here	consider	the	CPU	as	a	single	unit;	specific	issues	relating	to	a	multiprocessor
system	are	not	considered.

Programs	that	are	available	to	be	run	on	a	computer	system	are	initially	stored	on	disk.	A	user	could
submit	a	program	as	a	‘job’	which	would	include	the	program	and	some	instructions	about	how	it
should	be	run.	Figure	20.04	shows	an	overview	of	the	components	involved	when	a	program	is	run.

A	long-term	or	high-level	scheduler	program	controls	the	selection	of	a	program	stored	on	disk	to	be
moved	into	main	memory.	Occasionally	a	program	has	to	be	taken	back	to	disk	due	to	the	memory
getting	overcrowded.	This	is	controlled	by	a	medium-term	scheduler.	When	the	program	is	installed	in
memory,	a	short-term	or	low-level	scheduler	controls	when	it	has	access	to	the	CPU.

Figure	20.04	Components	involved	in	running	a	program

Process	states
In	Chapter	8	(Section	8.02),	it	was	stated	that	a	process	can	be	defined	as	‘a	program	being	executed’.
This	definition	can	be	improved	by	including	the	state	when	the	program	first	arrives	in	memory.	At	this
stage	a	process	control	block	(PCB)	can	be	created	in	memory	ready	to	receive	data	when	the
process	is	executed.	Once	in	memory	the	state	of	the	process	can	change.

The	transitions	between	the	states	shown	in	Figure	20.05	can	be	described	as	follows.

A	new	process	arrives	in	memory	and	a	PCB	is	created;	it	changes	to	the	ready	state.

A	process	in	the	ready	state	is	given	access	to	the	CPU	by	the	dispatcher;	it	changes	to	the	running
state.

A	process	in	the	running	state	is	halted	by	an	interrupt;	it	returns	to	the	ready	state.

A	process	in	the	running	state	cannot	progress	until	some	event	has	occurred	(I/O	perhaps);	it
changes	to	the	waiting	state	(sometimes	called	the	‘suspended’	or	‘blocked’	state).

A	process	in	the	waiting	state	is	notified	that	an	event	is	completed;	it	returns	to	the	ready	state.

A	process	in	the	running	state	completes	execution;	it	changes	to	the	terminated	state.

Figure	20.05	The	five	states	defined	for	a	process	being	executed

It	is	possible	for	a	process	to	be	separated	into	different	parts	for	execution.	The	separate	parts	are
called	threads.	If	this	has	happened,	each	thread	is	handled	as	an	individual	process.

Interrupts
Some	interrupts	are	caused	by	errors	that	prematurely	terminate	a	running	process.	Otherwise	there
are	two	reasons	for	interrupts.

Processes	consist	of	alternating	periods	of	CPU	usage	and	I/O	usage.	I/O	takes	far	too	long	for	the
CPU	to	remain	idle	waiting	for	it	to	complete.	The	interrupt	mechanism	is	used	when	a	process	in
the	running	state	makes	a	system	call	requiring	an	I/O	operation	and	has	to	change	to	the	waiting
state.

The	scheduler	decides	to	halt	the	process	for	one	of	several	reasons	as	discussed	later	under	the
heading	‘Scheduling	algorithms’.

Whatever	the	reason	for	an	interrupt,	the	OS	kernel	must	invoke	an	interrupt-handling	routine.	This
may	have	to	decide	on	the	priority	of	an	interrupt.	One	required	action	is	that	the	current	values	stored
in	registers	must	be	recorded	in	the	process	control	block.	This	allows	the	process	to	continue
execution	when	it	eventually	returns	to	the	running	state.

Discussion	Point:
What	would	happen	if	an	interrupt	was	received	while	the	interrupt-handling	routine	was	being
executed	by	the	CPU?	Does	this	require	a	priority	being	set	for	each	interrupt?

Scheduling	algorithms
Although	the	long-term	or	high-level	scheduler	will	have	decisions	to	make	when	choosing	which
program	should	be	loaded	into	memory,	we	concentrate	here	on	the	options	for	the	short-term	or	low-
level	scheduler.

A	scheduling	algorithm	can	be	preemptive	or	non-preemptive.	A	preemptive	algorithm	can	halt	a
process	that	would	otherwise	continue	running	undisturbed.	If	an	algorithm	is	preemptive	it	may
involve	prioritising	processes.

The	simplest	possible	algorithm	is	first	come	first	served	(FCFS).	This	is	a	non-preemptive	algorithm
and	can	be	implemented	by	placing	the	processes	in	a	first-in	first-out	(FIFO)	queue.	The	algorithm	will
be	very	inefficient	if	it	is	the	only	algorithm	employed	but	it	can	be	used	as	part	of	a	more	complex
algorithm.

A	round-robin	algorithm	allocates	a	time	slice	to	each	process	and	is	therefore	preemptive,	because	a
process	will	be	halted	when	its	time	slice	has	run	out.	It	can	be	implemented	as	a	FIFO	queue.	It
normally	does	not	involve	prioritising	processes.	However,	if	separate	queues	are	created	for	processes
of	different	priorities	then	each	queue	could	be	scheduled	using	a	round-robin	algorithm.

A	priority-based	scheduling	algorithm	is	more	complicated.	One	reason	for	this	is	that	every	time	a	new
process	enters	the	ready	queue	or	when	a	running	process	is	halted,	the	priorities	for	the	processes
may	have	to	be	re-evaluated.	The	other	reason	is	that	whatever	scheme	is	used	to	judge	priority	level	it
will	require	some	computation.	Possible	criteria	are:

estimated	time	of	process	execution

estimated	remaining	time	for	execution

length	of	time	already	spent	in	the	ready	queue

whether	the	process	is	I/O	bound	or	CPU	bound.

More	than	one	of	these	criteria	might	be	considered.	Clearly,	estimating	a	time	for	execution	may	not
be	easy.	Some	processes	require	extensive	I/O,	for	instance	printing	wage	slips	for	employees.	There	is
very	little	CPU	usage	for	such	a	process	so	it	makes	sense	to	allocate	it	a	high	priority	so	that	the	small
amount	of	CPU	usage	can	take	place.	The	process	will	then	change	to	the	waiting	state	while	the
printing	takes	place.

20.04	Memory	management
The	term	memory	management	includes	a	number	of	aspects.

The	provision	of	protected	memory	space	for	the	OS	kernel.

The	loading	of	a	program	into	memory	requires	defining	the	memory	addresses	for	the	program
itself,	for	associated	procedures	and	for	the	data	required	by	the	program.

In	a	multiprogramming	system,	this	might	not	be	straightforward.	The	storage	of	processes	in	main
memory	can	get	fragmented	in	the	same	way	as	happens	for	files	stored	on	a	hard	disk.	There	may
be	a	need	for	the	medium-term	scheduler	to	move	a	process	out	of	main	memory	to	ease	the
problem.

Decisions	have	to	be	made	about	how	large	a	part	of	memory	should	be	allocated	to	individual
processes	sharing	memory.

Partitions	and	segments
An	early	approach	to	memory	management	when	different	processes	were	loaded	into	memory
simultaneously	was	to	partition	the	memory.	The	aim	was	to	load	the	whole	of	a	process	into	one
partition.	This	was	wasteful	of	memory	if	the	process	size	was	less	than	the	partition	size.	An
improvement	was	dynamic	partitioning	where	the	partition	size	was	allowed	to	adjust	to	match	the
process	size.	The	rule	of	one	process	per	partition	remained.

An	extension	of	this	idea	which	allowed	for	larger	processes	to	be	handled	was	segmentation.	The
large	process	was	divided	into	segments.	Each	segment	was	loaded	into	a	dynamic	partition	in	memory.

There	were	two	factors	that	limited	the	efficiency	of	this	approach.	The	first	was	that	the	segments
were	not	constrained	to	be	the	same	size.	The	second	was	that	the	size	of	process	did	not	allow	all	of
the	segments	for	one	process	to	be	in	memory	at	the	same	time.	Segments	had	to	be	moved	from	disk
to	memory	but	then	back	again	to	disk	when	a	different	segment	was	needed	in	memory.

These	two	factors	combined	to	cause	fragmentation	both	of	the	memory	and	of	the	disk	storage.	This
resulted	in	degradation	in	the	performance	of	the	system.

Paging	and	virtual	memory
The	modern	approach	is	to	use	paging.	The	process	is	divided	into	equal-sized	pages	and	memory	is
divided	into	frames	of	the	same	size.	The	secondary	storage	can	also	be	divided	into	frames.

It	could	be	possible	to	load	all	of	the	pages	into	memory	at	the	same	time.	However,	even	if	this	were
possible	it	is	usually	the	case	that	not	all	parts	of	the	program	are	needed	at	the	same	time.	A	large
program	is	likely	to	have	optional	routes	for	the	execution.

A	special	case	for	the	use	of	paging	is	when	a	program	is	so	large	that	the	address	space	needed	for	it
is	larger	than	the	size	of	the	memory.	Paging	now	supports	what	is	known	as	virtual	memory
management.

Paging	requires	the	CPU	to	transfer	address	values	to	a	memory	management	unit	that	allocates	a
corresponding	address	on	a	page.	An	address	has	to	comprise	two	parts:	the	page	number	plus	the
offset	from	the	start	of	the	page.	The	memory	management	unit	functions	through	the	use	of	a	page
table.	Figure	20.06	shows	a	very	simplified	system	sufficient	to	illustrate	how	this	works.

The	left-hand	part	of	Figure	20.06	shows	a	program	with	48	instructions.	These	instructions	occupy
three	pages.	The	three	pages	occupy	the	first	48	logical	memory	addresses.	Because	only	8	bits	are
used	to	store	the	logical	address	there	are	only	16	pages	allowed.	The	logical	address	stores	the	page
number	in	the	four	most	significant	bits	and	the	page	offset	in	the	four	least	significant	bits.

The	right-hand	part	of	Figure	20.06	shows	the	page	frames	with	physical	memory	addresses.	It	shows	a
scenario	where	the	first	two	program	pages	have	been	loaded	into	page	frames.	Note	that	the	page
frames	used	do	not	have	to	be	adjacent.	The	centre	part	of	Figure	20.06	shows	the	contents	of	the	page

table	for	this	process	(there	will	be	a	separate	page	table	for	each	process	in	memory).	This	table	has
the	page	number	functioning	as	an	index.	It	has	a	value	for	the	presence	flag	indicating	whether	or	not
the	page	is	in	memory.	In	the	version	shown	here	the	third	entry	shows	the	page	frame	number.	This
might	instead	have	recorded	the	physical	address	of	the	first	item	in	the	page	frame.

	TIP
Remember	that	you	will	often	see	numbering	starting	from	0.

Figure	20.06	The	use	of	a	page	table	for	a	paging	system

When	paging	is	being	used	the	starting	situation	is	that	the	set	of	pages	comprising	a	process	are
stored	on	disk.	One	or	more	of	these	pages	is	loaded	into	memory	when	the	process	is	changing	to	the
ready	state.	When	the	process	is	dispatched	to	the	running	state,	the	process	starts	executing.	At	some
stage,	the	process	will	need	access	to	a	page	that	the	page	table	indicates	is	not	in	memory.	This	is
called	a	page	fault	condition.	It	is	now	almost	inevitable	that,	in	order	to	bring	in	the	required	page
from	secondary	storage,	a	page	will	need	to	be	taken	out	of	memory	first.	This	is	when	a	page
replacement	algorithm	is	needed.	There	are	a	number	of	options	for	this.	A	simple	algorithm	would	use
a	first-in	first-out	method.	A	more	sensible	method	would	be	the	least-recently-used	page	but	this
requires	statistics	of	page	use	to	be	recorded.

The	system	overhead	in	running	virtual	memory	can	be	a	disadvantage.	The	worst	problem	is	disk
thrashing,	when	part	of	a	process	on	one	page	requires	another	page	which	is	on	disk.	When	that	page
is	loaded	it	almost	immediately	requires	the	original	page	again.	This	can	lead	to	almost	never-ending
loading	and	unloading	of	pages.	Algorithms	have	been	developed	to	guard	against	this	never-ending
loading	and	unloading	but	the	problem	can	still	occur.

Extension	Question	20.01
Find	out	information	about	the	virtual	memory	capacity	and	page	size	of	a	computer	system	that	you
use.	In	what	circumstances	might	these	need	to	be	changed?

20.05	Operating	system	facilities	provided	for	the	user
The	user	interface	may	be	made	available	as	a	command	line,	a	graphical	display	or	a	voice	recognition
system.	But	the	function	of	a	user	interface	is	always	to	allow	the	user	to	interact	with	running
programs.	When	a	program	involves	use	of	a	device,	the	operating	system	provides	the	device	driver:
the	user	just	expects	the	device	to	work.	(You	might,	however,	wish	to	argue	that	printers	do	not	always
quite	fit	this	description.)

The	operating	system	will	provide	a	file	system	for	a	user	to	store	data	and	programs.	The	user	has	to
choose	filenames	and	organise	a	directory	(folder)	structure	but	the	user	does	not	have	to	organise	the
physical	data	storage	on	a	disk.	If	the	user	is	a	programmer,	the	operating	system	supports	the
provision	of	a	programming	environment.	The	operating	system	allows	a	program	to	be	created	and	run
without	the	programmer	being	familiar	with	how	the	processor	functions.

When	a	program	is	running	it	can	be	considered	to	be	a	type	of	user.	The	operating	system	provides	a
set	of	system	calls	that	provide	an	interface	to	the	services	it	offers.	For	instance,	if	a	program	specifies
that	it	needs	to	read	data	from	a	file,	the	request	for	the	file	is	converted	into	a	system	call	that	causes
the	operating	system	to	take	charge,	find	the	file	and	make	it	available	to	the	program.	An	extension	of
this	concept	is	when	an	operating	system	provides	an	application	programming	interface	(API).	Each
API	call	fulfils	a	specific	function	such	as	creating	a	screen	icon.	The	API	might	use	one	or	more	system
calls.	The	API	concept	aims	to	provide	portability	for	a	program,	where	a	program	can	run	on	different
operating	systems	with	minimal	changes.

20.06	Translation	software
Chapter	8	(Section	8.05)	provided	an	overview	of	how	a	compiler	or	an	interpreter	is	used.	We	will	now
will	consider	some	details	of	how	a	compiler	works	with	a	brief	reference	to	the	workings	of	an
interpreter.	Compiler	or	interpreter	writing	is	a	specialised	task	carried	out	by	professionals	who	each
will	have	their	own	particular	methods.	So,	we	will	just	look	at	some	general	principles	and	illustrations
of	some	of	the	techniques	that	are	likely	to	be	used.

A	compiler	can	be	described	as	having	a	‘front	end’	and	a	‘back	end’.	The	front-end	program	performs
analysis	of	the	source	code	and	unless	errors	are	found	produces	an	intermediate	code	that	expresses
completely	the	semantics	(the	meaning)	of	the	source	code.	The	back-end	program	then	takes	this
intermediate	code	as	input	and	performs	synthesis	of	object	code.	This	analysis–synthesis	model	is
represented	in	Figure	20.07.

Figure	20.07	Analysis-synthesis	model	for	a	compiler

For	simplicity,	Figure	20.07	assumes	no	error	in	the	source	code.	There	is	a	repetitive	process	in	which
the	source	code	is	read	line-by-line.	For	each	line,	the	compiler	creates	matching	intermediate	code.
Figure	20.07	also	shows	how	an	interpreter	program	would	have	the	same	analysis	front-end:	In	this
case,	however,	once	a	line	of	source	code	has	been	found	to	be	error	free	and	therefore	converted	to
intermediate	code,	the	line	of	source	code	is	executed.

Front-end	analysis	stages
The	four	stages	of	front-end	analysis,	shown	in	Figure	20.08,	are:

lexical	analysis

syntax	analysis

semantic	analysis

intermediate	code	generation.

Figure	20.08	Front-end	analysis

The	source	code	that	is	the	input	data	for	a	compiler	or	interpreter	consists	of	a	sequence	of	characters.
Each	meaningful	individual	character	or	collection	of	characters	is	referred	to	as	a	lexeme.	A	lexeme
may	be	an	identifier	used	by	the	programmer	or	may	be	a	keyword,	operator	or	symbol	that	is	defined
by	the	programming	language.	One	approach	to	lexical	analysis	is	first	to	remove	all	white	space	and	all
comments	then	to	take	each	line	of	source	code	and	identify	each	lexeme.	This	is	a	pattern-matching
exercise.	It	requires	the	analyser	to	have	knowledge	of	the	components	that	can	be	found	in	a	program
written	in	the	particular	programming	language.

For	example,	the	declaration	statement:

Var	Count	:	integer;

would	be	recognised	as	containing	five	lexemes:

Var	Count	:	integer	;

The	assignment	statement:

PercentMark[Count]	:=	Score	*	10

would	be	recognised	as	containing	eight	lexemes:

PercentMark	[Count]	:=	Score	*	10

The	lexical	analyser	must	now	categorise	each	lexeme	in	order	to	tokenise	the	line	of	code.	For
instance,	in	the	first	example,	Var	and	integer	must	be	recognised	as	keywords;	Count	recognised	as	an
identifier	and	:	and	;	must	be	recognised	as	distinct	lexemes.

For	each	identifier	recognized	there	must	be	an	entry	made	in	the	symbol	table	(which	could	have
been	called	the	identifier	table).	The	symbol	table	contains	identifier	attributes	such	as	the	data	type,
where	it	is	declared	and	where	it	is	assigned	a	value.	The	symbol	table	is	an	important	data	structure
for	a	compiler.	Although	Figure	20.08	shows	it	only	being	used	by	the	syntax	analysis	program,	it	is	also
used	by	later	stages	of	compilation.	Furthermore,	most	compilers	are	multi-pass	allowing	the	contents
of	the	symbol	table	to	be	frequently	upgraded.

Question	20.01
A	symbol	table	is	used	by	an	assembler	and	by	a	compiler	or	interpreter.	What	are	the	differences
between	these?

Another	table	is	used	to	identify	the	relevant	token	for	each	lexeme	that	is	not	an	identifier	so	that	the
lexeme	in	the	line	of	code	can	be	replaced	by	a	token.	In	some	cases	each	identifier	is	also	replaced	by	a
token.	Whatever	scheme	is	applied	the	output	from	lexical	analysis	is	a	tokenised	version	of	the	source
code.	A	wide	variety	of	formats	for	the	representation	of	tokens	are	mentioned	in	the	literature.

Question	20.02
Can	you	think	of	any	reason	why	a	compiler	might	wish	to	tokenise	white	space	rather	than	removing	it
all?

Syntax	analysis,	which	is	also	known	as	parsing,	involves	analysis	of	the	program	constructs.	The
results	of	the	analysis	are	recorded	as	a	syntax	or	parse	tree.	Figure	20.09	shows	the	parse	tree	for	the
following	assignment	statement:

y	:=	2	*	x	+	4

Figure	20.09	Parse	tree	for	an	assignment	statement

Note	that	the	hierarchical	structure	of	the	tree,	if	correctly	interpreted,	ensures	that	the	multiplication
of	2	by	x	is	carried	out	before	the	addition	of	4.

Semantic	analysis	is	about	establishing	the	full	meaning	of	the	code.	An	annotated	abstract	syntax	tree
is	constructed	to	record	this	information.	For	the	identifiers	in	this	tree	an	associated	set	of	attributes	is
established	including,	for	example,	the	data	type.	These	attributes	are	also	recorded	in	the	symbol
table.

An	often-used	intermediate	code	created	by	the	last	stage	of	front-end	analysis	is	a	three-address	code.

As	an	example	the	following	assignment	statement	has	five	identifiers	requiring	five	addresses:

y	:=	a	+	(b	*	c	−	d)	/	e

The	assignment	statement	could	be	converted	into	the	following	four	statements,	each	requiring	at
most	three	addresses:

temp	:=	b	*	c

temp	:=	temp	−	d

temp	:=	temp	/	e

y	:=	a	+	temp

Representation	of	the	grammar	of	a	language
For	each	programming	language,	there	is	a	defined	grammar.	This	grammar	must	be	understood	by	a
programmer	and	also	by	a	compiler	writer.

Figure	20.10	Syntax	diagram	defining	an	identifier

One	method	of	presenting	the	grammar	rules	is	a	syntax	diagram.	Figure	20.10	represents	the
grammar	rule	that	an	identifier	must	start	with	a	letter	which	can	be	followed	by	any	combination	of
none	or	more	letters	or	digits.	The	convention	used	here	is	that	options	are	drawn	above	the	main	flow
line	and	repetitions	are	drawn	below	it.

An	alternative	approach	is	to	use	Backus–Naur	Form	(BNF).	A	possible	format	for	a	BNF	definition	of	an
identifier	is:

<Identifier>	::=	<Letter>|<Identifier><Letter>|<Identifier><Digit>

<Digit>	::=	0|1|2|3|4|5|6|7|8|9

<Letter>	::=	<UpperCaseLetter>|<LowerCaseLetter>

<UpperCaseLetter>	::=	A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<LowerCaseLetter>	::=	a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

The	use	of	|	is	to	separate	individual	options.	The	::=	characters	can	be	read	as	‘is	defined	as’.	Note	the
recursive	definition	of	<Identifier>	in	this	particular	version	of	BNF.	Without	the	use	of	recursion	the
definition	would	need	to	be	more	complicated	to	include	all	possible	combinations	following	the	initial
<Letter>.

A	syntax	diagram	is	only	used	in	the	context	of	a	language.	It	has	limited	use	because	it	cannot	be
incorporated	into	a	compiler	program	as	an	algorithm.	By	contrast,	BNF	is	a	general	approach	which
can	be	used	to	describe	any	assembly	of	data.	Furthermore,	it	can	be	used	as	the	basis	for	an	algorithm.

Back-end	synthesis	stages
If	the	front-end	analysis	has	established	that	there	are	syntax	errors,	the	only	back-end	process	is	the
presentation	of	a	list	of	these	errors.	For	each	error,	there	will	be	an	explanation	and	the	location	within
the	program	source	code.

In	the	absence	of	errors,	the	main	back-end	stage	is	machine	code	generation	from	the	intermediate
code.	This	may	involve	optimisation	of	the	code.	The	aim	of	optimisation	is	to	create	an	efficient

program.	One	type	of	optimisation	focuses	on	features	that	were	inherent	in	the	original	source	code
and	have	been	propagated	into	the	intermediate	code.	As	a	simple	example,	consider	these	successive
assignment	statements:

x	:=	(a	+	b)	*	(a	−	b)

y	:=	(a	+	2	*	b)	*	(a	−	b)

The	most	efficient	code	would	be:

temp	:=	(a	−	b)

x	:=	(a	+	b)	*	temp

y	:=	x	+	temp	*	b

Question	20.03
Check	the	maths	for	the	efficient	code	defined	above.

Another	example	is	when	a	statement	inside	a	loop,	which	is	therefore	executed	for	each	repetition	of
the	loop,	does	the	same	thing	each	time.	Optimisation	would	place	the	statement	immediately	before
the	loop.

The	other	type	of	optimisation	is	instigated	when	the	machine	code	has	been	created.	This	type	of
optimisation	may	involve	efficient	use	of	registers	or	of	memory.

Evaluation	of	expressions
An	assignment	statement	often	has	an	algebraic	expression	defining	a	new	value	for	an	identifier.	The
expression	can	be	evaluated	by	first	converting	the	infix	representation	in	the	code	to	Reverse	Polish
Notation	(RPN).	RPN	is	a	postfix	representation	which	never	requires	brackets	and	has	no	rules	of
precedence.

WORKED	EXAMPLE	20.01

Manually	converting	an	expression	between	RPN	and	infix

Converting	an	expression	to	RPN

We	consider	a	very	simple	expression:

a	+	b	*	c

The	conversion	to	RPN	has	to	take	into	account	operator	precedence	so	the	first	step	is	to	convert
b	*	c	to	get	the	intermediate	form:

a	+	b	c	*

We	then	convert	the	two	terms	to	give	the	final	RPN	form:

a	b	c	*	+

If	the	original	expression	had	been	(a	+	b)	*	c	(where	the	brackets	were	essential)	then	the
conversion	to	RPN	would	have	given:

a	b	+	c	*

Converting	an	expression	from	RPN

Consider	this	more	complicated	example	of	an	RPN	expression:

x	2	*	y	3	*	+	6	/

The	RPN	is	scanned	until	two	identifiers	are	followed	by	an	operator.	This	combination	is	converted
to	give	an	intermediate	form	(brackets	are	used	for	clarification):

(x	*	2)	y	3	*	+	6	/

This	process	is	repeated	to	give	the	following	successive	versions:

(x	*	2)(y	*	3)	+	6	/

(x	*	2)	+	(y	*	3)	6	/

((x	*	2)	+	(y	*	3))	/	6

Because	of	the	precedence	rules,	some	of	the	brackets	are	unnecessary;	the	final	version	could	be
written	as:

(x	*	2	+	y	*	3)	/	6

WORKED	EXAMPLE	20.02

Using	a	syntax	tree	to	convert	an	expression	to	RPN

In	the	syntax	analysis	stage,	an	expression	is	represented	as	a	syntax	tree.	The	expression	a	+	b	*	c
would	be	presented	as	shown	in	Figure	20.11.

Figure	20.11	Syntax	tree	for	an	infix	expression

To	create	this	tree,	the	lowest	precedence	operator	(+)	is	positioned	at	the	root.	If	there	are
several	with	the	same	precedence,	the	first	one	is	used.	The	RPN	form	of	the	expression	can	now
be	extracted	by	a	post-order	traversal.	This	starts	at	the	lowest	leaf	to	the	left	of	the	root	and	then
uses	left–right–root	ordering	which	ensures,	in	this	case,	that	the	RPN	representation	is:

a	b	c	*	+

WORKED	EXAMPLE	20.03

Using	a	stack	with	an	RPN	expression

Figure	20.12	Shunting-yard	algorithm

To	convert	an	infix	expression	to	RPN	using	a	stack,	the	shunting-yard	algorithm	is	used	(Figure
20.12).

Converting	an	expression	to	RPN

The	rules	of	the	algorithm	are	to	consider	the	string	of	tokens	representing	the	infix	expression.
These	represent	the	railroad	wagons	that	are	to	be	shunted	from	the	infix	line	to	the	RPN	line.	The
tokens	are	examined	one	by	one.	For	each	one,	the	rules	are	as	follows.

If	it	is	an	identifier,	it	passes	straight	through	to	the	RPN	expression	line.

If	it	is	an	operator,	there	are	two	options.

If	the	stack	line	is	empty	or	contains	a	lower	precedence	operator,	the	operator	is	diverted
into	the	stack	line.

If	the	stack	line	contains	an	equal	or	higher	preference	operator,	then	that	operator	is
popped	from	the	stack	into	the	RPN	expression	line	and	the	new	operator	takes	its	place	on
the	stack	line.

When	all	tokens	have	left	the	infix	line,	the	operators	remaining	on	the	stack	line	are	popped
one	by	one	from	the	stack	line	onto	the	RPN	expression	line.

Consider	the	infix	expression	a	+	b	*	c.	Table	20.02	traces	the	conversion	process.	The	first
operator	to	enter	the	stack	line	is	the	+	so	when	the	higher	precedence	*	comes	later	it	too	enters
the	stack	line.	At	the	end	the	*	is	popped	followed	by	the	+.

Infix	line Stack	line RPN	line

a	+	b	*	c

+	b	*	c a

b	*	c + a

*	c + a	b

C +	* a	b

+	* a	b	c

+ a	b	c	*

a	b	c	*	+

Table	20.02	Trace	of	the	conversion	process

Had	the	infix	expression	been	a	*	b	+	c	then	*	would	have	been	first	to	enter	the	stack	line	but	it
would	have	been	popped	from	the	stack	before	+	could	enter.

Evaluating	an	RPN	expression
A	stack	can	be	used	to	evaluate	an	RPN	expression.	Let’s	consider	the	execution	of	the	following	RPN
expression	when	x	has	the	value	3	and	y	has	the	value	4:

x	2	*	y	3	*	+	6	/

The	rules	followed	here	are	that	the	values	are	added	to	the	stack	in	turn.	The	process	is	interrupted	if
the	next	item	in	the	RPN	expression	is	an	operator.	This	causes	the	top	two	items	to	be	popped	from	the
stack.	Then	the	operator	is	used	to	create	a	new	value	from	these	two	and	the	new	value	is	added	to	the
stack.	The	process	then	continues.	Figure	20.13	shows	the	successive	contents	of	the	stack	with	an
indication	of	when	an	operator	has	been	used.	The	intermediate	states	of	the	stack	when	two	values
have	been	popped	are	not	shown.

Figure	20.13	Evaluating	a	Reverse	Polish	expression	using	a	stack

TASK	20.01
Practise	your	understanding	of	RPN.

Convert	the	following	infix	expressions	into	RPN	using	the	methods	described	in	Worked
Examples	20.01,	20.02	and	20.03:

		(x	−	y)	/	4

3	*	(2	+	x	/	7)

Convert	the	following	RPN	expressions	into	the	corresponding	infix	expressions:

1

2

The	use	of	RPN	would	be	of	little	value	if	the	simple	processor	with	a	limited	instruction	set	discussed
in	Chapter	6	was	being	used.	Modern	processors	will	have	instructions	in	the	instruction	set	that	handle
stack	operations,	so	a	compiler	can	convert	expressions	into	RPN	knowing	that	conversion	to	machine
code	can	utilise	these	and	allow	stack	processing	in	program	execution.

Reflection	Point:
Have	you	learned	that	two	data	structures	illustrated	here,	the	binary	tree	and	the	stack,	have	many
different	uses	in	computer	science?

Summary
The	operating	system	provides	resource	management	including	scheduling	of	processes,	memory
management	and	control	of	the	I/O	system.
For	the	user,	the	operating	system	provides	an	interface,	a	file	system	and	application
programming	interfaces.
A	modular	approach	provides	a	flexible	structure	for	the	operating	system.
There	are	five	states	for	a	process:	new,	ready,	running,	waiting	and	terminated.
A	process	may	be	interrupted	by	an	error,	a	need	for	an	I/O	activity	or	the	scheduling	algorithm.
A	virtual	memory	system	uses	paging	and	a	memory	management	unit	that	uses	a	page	table.
Compiler	operation	has	a	front-end	program	providing	analysis	and	a	back-end	program	providing
synthesis.
Backus–Naur	form	is	used	to	represent	the	rules	of	a	grammar.
Reverse	Polish	Notation	is	used	for	the	evaluation	of	expressions.

4	a	b	+	c	+	d	+	e	+	*

		y	2	^	z	3	^	+	6/

Note	that	the	caret	(^)	symbol	represents	‘to	the	power	of’.

Using	simple	values	for	each	variable	in	part	2,	use	the	infix	version	to	evaluate	the
expression.	Then	use	the	stack	method	to	evaluate	the	RPN	expression	and	check	that	you	get
the	same	result.

3

■

■

■
■
■
■
■

■
■

Exam-style	Questions

[2]

[6]

[4]

[2]

[3]

[2]

[1]

[4]

[2]

[2]

[2]

[2]

[4]

[2]

[2]

In	a	multiprogramming	environment,	the	concept	of	a	process	has	been	found	to	be	very	useful	in
controlling	the	execution	of	programs.

Explain	the	concept	of	a	process.

In	one	model	for	the	execution	of	a	program,	there	are	five	defined	process	states.	Identify
three	of	them	and	explain	the	meaning	of	each.

The	transition	of	processes	between	states	is	controlled	by	a	scheduler.

Identify	two	scheduling	algorithms	and	for	each	classify	its	type.

A	scheduling	algorithm	might	be	chosen	to	use	prioritisation.	Identify	two	criteria	that	could
be	used	to	assign	a	priority	to	a	process.

Three	memory	management	techniques	are	partitioning,	scheduling	and	paging.

Give	definitions	of	them.

Identify	two	ways	in	which	they	might	be	combined.

Some	systems	use	virtual	memory.

Identify	which	of	the	techniques	in	part	a	is	used	to	create	virtual	memory. 

Explain	two	advantages	of	using	virtual	memory.

Explain	one	problem	that	can	occur	in	a	virtual	memory	system.

A	compiler	is	used	to	translate	a	program	into	machine	code.

A	compiler	is	modelled	as	containing	a	front	end	and	a	back	end.	State	the	overall	aim	of	the
front	end	and	of	the	back	end.

Identify	two	processes	which	are	part	of	the	front	end.

Identify	two	processes	which	are	part	of	the	back	end.

Complete	the	following	Backus–Naur	definition	of	a	signed	integer:

<Digit>	::=

<Sign>	::=

<Unsigned	integer>	::=

<Signed	integer>	::=

Convert	the	expression	(a	+	6)	+	b	/	c	into	Reverse	Polish	Notation.

Convert	the	Reverse	Polish	Notation	expression	a	3	b	*	6	c	*	-	+	into	infix	notation.

The	following	syntax	diagrams,	for	a	particular	programming	language,	show	the	syntax	of:

an	assignment	statement

a	variable

a	letter

an	operator

1 a

i

ii

b

i

ii

2 a

i

ii

b

i

ii

iii

3 a

i

ii

iii

b

i

ii

iii

iv

c

d

4

[1]

[1]

[1]

[6]

[2]

[1]

[1]

[2]

[6]

[3]

[2]

The	following	assignment	statements	are	invalid.

Give	the	reason	in	each	case.

a	=	b	+	c

a	=	b	−	2;

a	=	dd	*	cce;

Write	the	Backus-Naur	Form	(BNF)	for	the	syntax	diagrams	shown	above.

<assignmentstatement>	::=

<variable>	::=

<letter>	::=

<operator>	::=

Rewrite	the	BNF	rule	for	a	variable	so	that	it	can	be	any	number	of	letters.

<variable>	::=

Programmers	working	for	a	software	development	company	use	both	interpreters	and	compilers.

The	programmers	prefer	to	debug	their	programs	using	an	interpreter.

Give	one	possible	reason	why.

The	company	sells	compiled	versions	of	its	programs.

Give	a	reason	why	this	helps	to	protect	the	security	of	the	source	code.

Cambridge	International	AS	&	A	level	Computer	Science	9608	Paper	31	Q1	June	2015

A	number	of	processes	are	being	executed	in	a	computer.

Explain	the	difference	between	a	program	and	a	process.

A	process	can	be	in	one	of	three	states:	running,	ready	or	blocked.

For	each	of	the	following,	the	process	is	moved	from	the	first	state	to	the	second	state.	Describe
the	conditions	that	cause	each	of	the	following	changes	of	the	state	of	a	process:

From	running	to	ready

From	ready	to	running

From	running	to	blocked

Explain	why	a	process	cannot	be	moved	from	the	blocked	state	to	the	running	state.

Explain	the	role	of	the	high-level	scheduler	in	a	multiprogramming	operating	system.

Cambridge	International	AS	&	A	level	Computer	Science	9608	Paper	31	Q6	November	2015

a

i

ii

iii

b

i

ii

iii

iv

c

d

i

ii

5

a

b

i

ii

iii

c

d

Chapter	21:
Security

21.01	Encryption	fundamentals
Encryption	can	be	used	as	a	routine	procedure	when	storing	data	within	a	computing	system.	However,
the	focus	in	this	chapter	is	on	the	use	of	encryption	when	transmitting	data	over	a	network.

There	are	three	issues	that	will	be	considered	in	this	chapter:

is	the	encryption	algorithm	sufficiently	robust	to	prevent	the	encrypted	data	being	decrypted	by
some	unauthorised	third-party?

how	is	it	possible	to	ensure	that	a	secret	key	remains	secret?

how	can	the	receiver	of	a	communication	be	sure	who	sent	the	communication?

The	use	of	encryption	is	illustrated	in	Figure	21.01.The	process	starts	with	original	data	referred	to	as
plaintext,	whatever	form	it	takes.	The	plaintext	is	encrypted	by	an	encryption	algorithm	which	makes
use	of	a	key.	The	product	of	the	encryption	is	ciphertext,	which	is	transmitted	to	the	recipient.	When
the	transmission	is	received	it	is	decrypted	using	a	decryption	algorithm	and	a	key	to	produce	the
original	plaintext.

Figure	21.01	Overview	of	encryption	and	decryption

Security	concerns
There	are	a	number	of	security	concerns	relating	to	a	transmission.

Confidentiality:	Only	the	intended	recipient	should	be	able	to	decrypt	the	ciphertext.

Authenticity:	The	receiver	must	be	certain	who	sent	the	ciphertext.

Integrity:	The	ciphertext	must	not	be	modified	during	transmission.

Non-repudiation:	Neither	sender	nor	receiver	should	be	able	to	deny	involvement	in	the
transmission.

Availability:	Nothing	should	happen	to	prevent	the	receiver	from	receiving	the	transmission.

This	chapter	will	consider	only	confidentiality,	authenticity	and	integrity.

The	confidentiality	concern	arises	because	a	message	could	be	intercepted	during	transmission	and	the
contents	read	by	an	unauthorised	person.	The	concern	about	integrity	reflects	the	fact	that	the
transmission	might	be	interfered	with	deliberately	but	also	that	there	might	be	accidental	corruption	of
the	data	during	transmission.

Encryption	methods
The	fundamental	principle	of	encryption	is	that	the	encryption	algorithm	must	not	be	a	secret:	it	must
be	in	the	public	domain.	In	contrast,	an	encryption	key	must	be	secret.	However,	there	are	two
alternative	approaches.	One	is	symmetric	key	encryption,	and	the	other	is	asymmetric	key
encryption	also	known	as	public	key	encryption.

In	symmetric	key	encryption	there	is	just	one	key.	This	key	is	a	secret	shared	by	the	sender	and	the
receiver	of	a	message.	The	sender	uses	the	encryption	algorithm	together	with	the	key	to	encrypt	some
plaintext.	The	receiver	decrypts	the	ciphertext	using	the	same	key.

The	issue	with	symmetric	key	encryption	is	delivery	of	the	secret	key.	The	sender	needs	the	key	to
encrypt	but	how	can	the	key	be	securely	delivered	to	the	receiver	to	allow	decryption?

In	asymmetric	key	encryption	two	different	keys	are	used,	one	for	encryption	and	the	other	one	for

decryption.	Only	one	of	these	is	a	secret.

If	asymmetric	encryption	is	to	be	used	the	process	is	initiated	by	someone	in	possession	of	two	keys.
One	of	these	is	a	public	key	which	is	sent	to	anyone	who	is	going	to	partake	in	an	encrypted
communication.	The	other	is	a	secret	private	key	which	is	never	sent	to	anyone.	Having	a	means	of
secure	transmission	of	a	secret	key	is	no	longer	an	issue.

The	most	likely	scenario	is	that	the	holder	of	the	two	keys	wishes	to	receive	a	transmission.	In	this	case
a	sender	uses	the	public	key	to	encrypt	some	plaintext	and	sends	the	ciphertext	to	the	receiver.	The
receiver	is	now	the	only	person	who	can	decrypt	the	message	because	the	private	and	public	keys	are	a
matched	pair.	The	public	key	can	be	provided	to	any	number	of	different	people	allowing	the	receiver	to
receive	a	private	message	from	any	of	the	different	people.	There	are	two	points	to	note	here.

If	two	people	require	two-way	communication,	both	communicators	need	a	private	key	and	must
send	the	matching	public	key	to	the	other	person.

There	are	two	requirements	to	ensure	confidentiality	should	the	transmission	be	intercepted	and
the	message	extracted:	the	encryption	algorithm	must	be	complex	and	the	number	of	bits	used	to
define	the	key	must	be	large.

Question	21.01
One	method	used	by	an	unauthorised	person	attempting	to	decrypt	a	message	is	called	a	brute-force
attack	where	all	possible	values	for	the	key	are	tried.	Calculate	how	long	it	would	take	to	try	all
possibilities	for	a	64-bit	or	128-bit	key,	assuming	each	attempt	took	1	second.

The	above	account	does	not	completely	answer	the	question	of	how	encryption	works.	The	missing
factor	is	an	organisation	to	provide	keys	and	to	ensure	their	safe	delivery	to	individuals	using	them.
This	will	be	discussed	in	the	next	section.

21.02	Digital	signatures	and	digital	certificates
Using	asymmetric	encryption,	the	decryption–encryption	works	if	the	keys	are	used	the	other	way
round.	An	individual	can	encrypt	a	message	with	a	private	key	and	send	this	to	a	recipient	who	has	the
corresponding	public	key	and	who	can	then	use	this	to	decrypt	the	received	ciphertext.	This	approach
would	not	be	used	if	the	content	of	a	message	was	confidential	because	anyone	might	be	in	possession
of	the	public	key.	However,	it	could	be	used	if	it	was	important	to	verify	who	the	sender	was.	Only	the
sender	has	the	private	key	and	the	public	key	only	works	with	that	one	specific	private	key.	Therefore,	if
the	recipient	finds	that	the	decryption	is	successful,	the	message	has	in	effect	been	received	with	a
digital	signature	identifying	the	sender.

Figure	21.02	Sender	using	a	one-way	hash	function	to	send	a	digital	signature

There	is	a	disadvantage	in	using	this	method	of	applying	a	digital	signature:	it	is	associated	with	an
encryption	of	the	whole	of	a	message.	An	alternative	is	for	the	sender	to	use	a	public	cryptographic	one-
way	hash	function	which	creates	a	number	that	is	uniquely	defined	for	the	particular	message,	called	a
‘digest’.	The	process	at	the	sender’s	end	of	the	transmission	is	outlined	in	Figure	21.02.	The	private	key
is	used	to	encrypt	the	digest.	The	encrypted	digest	is	the	digital	signature.	The	message	can	be
transmitted	as	plaintext	together	with	the	encrypted	digest	as	a	separate	file.	Because	the	digest	is
much	smaller	than	the	whole	message	the	encryption	and	the	transmission	are	faster	processes	than	if
the	whole	message	were	encrypted.

The	processes	that	take	place	at	the	receiver	end	are	outlined	in	Figure	21.03.	The	same	public	one-way
hash	function	is	used	to	create	a	digest	from	the	received	message.	Then	the	encrypted	version	of	the
original	digest	is	decrypted	using	the	public	key.

If	the	two	digests	are	identical	the	receiver	can	be	confident	that	the	message	is	authentic	and	has	been
transmitted	unaltered.

Note	that	the	digital	signature	is	different	each	time	this	process	is	used.	This	is	because	the	digest	is
uniquely	defined	by	the	hash	function	being	applied	to	that	particular	message.

Figure	21.03	Receiver	checking	that	the	received	transmission	is	authentic	and	unchanged

However,	the	authenticity	only	confirms	to	the	receiver	that	the	message	was	sent	from	the	person	who
had	sent	them	the	public	key.	It	does	not	consider	the	fact	that	someone	might	create	a	public	key	and
pretend	to	be	someone	else.

Therefore,	a	more	strict	way	of	ensuring	authentication	is	needed.	This	can	be	provided	by	a
Certification	Authority	(CA)	as	part	of	a	Public	Key	Infrastructure	(PKI).

Figure	21.04	Processes	involved	in	obtaining	a	digital	certificate

Let’s	consider	a	would-be	receiver	who	has	a	public–private	key	pair.	The	receiver	wants	to	be	able	to
receive	secure	messages	from	other	individuals,	and	these	individuals	want	to	be	confident	about	the
identity	of	the	receiver.	The	public	key	must	be	made	available	in	a	way	that	ensures	authentication.
The	steps	taken	by	the	would-be	receiver	to	obtain	a	digital	certificate	to	allow	safe	public	key	delivery
are	illustrated	in	Figure	21.04.	The	process	can	be	summarised	as	follows.

Figure	21.04	shows	person	A	placing	the	digital	certificate	on	that	person’s	website	but	another	option
is	to	post	it	on	a	website	designed	specifically	for	keeping	digital	certificate	data.

Anyone	who	wishes	to	extract	the	public	key	from	the	certificate	has	to	use	the	CA’s	public	key.

For	this	overall	process	to	work	there	is	a	need	for	standards	to	be	defined	regarding	the	public	key
infrastructure	and	the	production	of	the	digital	certificate.	As	ever,	the	name	for	the	standard,	X.509,	is
not	very	memorable.

	TIP
There	are	two	similar	processes	that	have	been	discussed.	In	one	case	someone	with	a
private	key	sends	a	public	key	to	someone	else.	In	another	case	the	CA	sends	a	digital
certificate	containing	a	public	key.	Try	not	to	confuse	these	two.

The	following	are	a	few	notes	to	summarise	the	options	available.

The	starting	position	is	someone	who	has	a	public–private	key	pair	which	are	associated	with	a
specific	asymmetric	key	encryption	algorithm.

This	person	could	just	make	the	public	key	available	to	anyone	who	is	going	to	be	either	a	sender	or
a	receiver.

For	optimum	security	the	person	instead	sends	the	public	key	to	a	Certification	Authority.

The	Certification	Authority	creates	a	digital	certificate	which	contains	the	public	key	with	proof	of

An	individual	(person	A)	who	is	a	would-be	receiver	and	has	a	public–private	key	pair	contacts	a	local
CA.

The	CA	confirms	the	identity	of	person	A.

Person	A’s	public	key	is	given	to	the	CA.

The	CA	creates	a	public-key	certificate	(a	digital	certificate)	and	writes	person	A’s	public	key	into
this	document.

The	CA	uses	encryption	with	the	CA’s	private	key	to	add	a	digital	signature	to	this	document.

The	digital	certificate	is	given	to	person	A.

Person	A	posts	the	digital	certificate	on	a	website.

1

2

3

4

5

6

7

the	ownership	of	the	public	key.

Anyone	wishing	to	use	the	public	key	obtains	it	from	this	digital	certificate.

A	message	encrypted	with	the	public	key	could	be	sent	to	the	owner	of	the	private	key.

A	message	encrypted	with	the	private	key	could	be	sent	to	anyone	having	the	public	key.

The	owner	of	the	private	key	could	use	it	to	create	a	digital	signature	that	could	be	used	to
authenticate	an	email	as	was	suggested	in	Chapter	9	(Section	9.03).

21.03	Symmetric	key	encryption	methods
For	many	years	the	Data	Encryption	Standard	(DES)	was	the	normal	choice	for	symmetric	key
encryption.	As	the	weakness	of	DES	became	a	problem,	Triple	DES	took	its	place.	In	2001	the	Advanced
Encryption	Standard	(AES)	was	introduced	as	a	superior	approach.	For	education	purposes	only	a
simplified	DES	(S-DES)	was	introduced	which	allowed	the	sort	of	operations	performed	in	encryption	to
be	better	understood.	The	following	is	an	overview	of	S-DES.

S-DES	is	an	example	of	a	block	cipher	which	means	encrypting	blocks	of	bits.	In	S-DES	8-bit	blocks	are
encrypted.	A	10-bit	key	is	chosen.	The	first	stage	is	to	create	two	8-bit	keys	from	the	10-bit	key.	The	first
step	in	this	first	stage	is	a	permutation	(reordering	of	digits)	which	can	be	illustrated	by	the	following.

 

Suppose	that	the	10-bit	key	is	chosen	to	be 0101010101

when	subjected	to	a	permutation	which	can	be	represented	by 3	5	2	7	4	10	1	9	8	6

it	becomes 0010110011

The	numbering	of	the	bit	positions	is	read	from	left	to	right	so	the	new	10-bit	version	has	the	old
position	3	value	followed	by	the	old	position	5	value	and	so	on.	The	next	step	is	to	apply	a	circular	left
shift	to	the	first	5	bits	and	to	the	last	5	bits.	This	produces	0101000111.	Finally,	the	first	of	the	two	8-bit
keys	to	be	used	in	the	encryption	is	created	using	the	permutation	6	3	7	4	8	5	10	9.	In	our	example	this
key	is	00011011.	A	slightly	modified	version	of	this	is	used	to	create	a	second	8-bit	key.

The	second	stage	is	the	encryption,	which	is	a	five	step	process.

The	decryption	by	the	receiver	of	a	transmission	uses	the	same	generated	8-bit	keys	and	follows	the
reverse	of	the	above	process.

The	AES	standard	defines	the	block	length	as	128	bits.	The	user	can	choose	to	use	128,	192	or	256	bits
for	the	key.	The	chances	of	the	key	being	identified	from	the	transmitted	ciphertext	are	small.	The	main
concern	is	the	safety	of	the	method	used	to	provide	the	key	to	both	sender	and	receiver.

Extended	Question	21.01
Would	you	like	to	investigate	S-DES	further?	You	could	attempt	an	encryption	and	decryption.

An	initial	permutation.

Application	of	a	function	using	the	permuted	code	and	the	first	encryption	key.

A	switch	of	the	first	and	last	4-bit	parts.

A	repeat	application	of	the	function	but	this	time	with	the	second	encryption	key.

A	final	permutation	using	the	reverse	of	the	initial	permutation	sequence.

1

2

3

4

5

21.04	Public	key	encryption	methods
RSA	(Rivest-Shamir-Adleman),	the	usual	method	for	public	key	encryption,	is	named	after	the	three
people	who	created	it.	The	major	features	of	the	method	are	the	key	generation	algorithm	and	the
encryption	function.

The	key	generation	can	be	summarised	as	follows.

The	security	of	the	algorithm	depends	on	the	fact	that	finding	factors	of	a	very	large	number	is	not
feasible	within	any	reasonable	time	scale.	Computing	n	from	p	and	q	is	straightforward	but	deducing	p
and	q	given	n	is	not!

The	encryption	works	on	numbers	so	a	text	to	be	encrypted	must	first	have	the	characters	replaced	by
numbers	according	to	a	sensible	coding	scheme.	If	such	a	number	x	is	to	be	encrypted	as	y	then	y	is
calculated	so	that	the	following	relationship	holds:

y	=	xe	mod	n

A	similar	relationship	involving	d	rather	than	e	is	used	for	decryption.

Public	key	encryption	is	inherently	more	secure	than	symmetric	key	encryption	but	the	algorithms	are
not	as	fast.	It	is	quite	common	for	public	key	encryption	to	be	used	to	deliver	securely	a	key	that	can
then	be	used	for	symmetric	key	encryption.

Two	very	large	prime	numbers	p	and	q	are	chosen	and	their	product	n	is	calculated.

The	product	(p-1)(q-1)	is	calculated.

A	prime	number	e	less	than	(p-1)(q-1)	and	not	a	factor	of	it	is	chosen	(65537	is	the	usual	choice).

Another	number	d	is	found	which	satisfies	the	condition	that	the	product	of	d	times	e	when	divided
by	(p-1)(q-1)	gives	a	remainder	of	1.

The	public	key	becomes	the	pair	(n,e).

The	private	key	becomes	the	pair	(n,d).

1

2

3

4

5

6

21.05	SSL	and	TLS
When	we	access	a	website,	we	have	two	concerns.	The	first	is	whether	or	not	the	website	is	genuine.
The	second	is	whether	we	can	transfer	sensitive	personal	data	to	the	website,	for	example	to	buy	a
product	offered	for	sale	on	the	website.	The	Secure	Socket	Layer	(SSL)	protocol	was	created	to	give
assurance	to	a	website	user	when	a	client–server	application	is	underway.	As	described	in	Chapter	17
(Section	17.04),	the	interface	between	an	application	and	TCP	uses	a	port	number.	In	the	absence	of	a
security	protocol,	TCP	services	an	application	using	the	port	number.	The	combination	of	an	IP	address
and	a	port	number	is	called	a	‘socket’.	When	the	Secure	Socket	Layer	protocol	is	implemented	it
functions	as	an	additional	layer	between	TCP	in	the	transport	layer	and	the	application	layer.	When	the
SSL	protocol	is	in	place,	the	application	protocol	HTTP	becomes	HTTPS.

The	following	are	some	facts	concerning	SSL.

Although	SSL	is	referred	to	as	a	protocol,	it	is	in	fact	a	protocol	suite.

There	is	a	Record	Protocol	that	deals	with	the	format	for	data	transmission.

There	is	also	a	Handshake	Protocol	responsible	for	security.

The	operation	of	SSL	happens	without	any	action	from	the	user.

The	starting	point	for	SSL	implementation	is	a	connection	between	the	client	and	the	server	being
established	by	TCP.

The	client	browser	then	invokes	the	Handshake	Protocol	from	the	SSP	suite.

The	Handshake	Protocol	requests	from	the	server	its	SSL	certificate	which	is	a	digital	certificate
confirming	its	identity.

The	server	sends	this	SSL	certificate	plus	its	public	key.

The	browser	uses	this	public	key	to	encrypt	a	key	which	is	to	be	used	as	a	one-off	session	key	for
symmetric	key	encryption	to	be	used	for	the	data	transfer	during	the	session.

There	may	also	be	a	need	at	this	time	to	agree	which	encryption	algorithms	are	to	be	used.

SSL	was	originally	a	proprietary	protocol.	However,	it	was	taken	over	by	the	Internet	Engineering	Task
Force	(IETF)	in	order	for	a	standardised	version	to	be	produced.	This	progressed	to	version	3.0.	When
the	IETF	realised	that	an	improved	version	was	required	it	decided	that	a	new	name	was	appropriate.
Transport	Layer	Security	(TLS)	is	an	upgraded	version	of	SSL	recommended	for	use	because	of	some
security	concerns	with	the	use	of	SSL.	Despite	this	SSL	is	still	in	general	use.

Discussion	Point:
The	use	of	encryption	has	always	been	a	controversial	subject.	There	are	two	important	aspects	to	this.
The	first	is	whether	powerful,	unbreakable	encryption	algorithms	should	be	made	available	to	the
public.	The	second	relates	to	the	key	escrow	scheme,	which	allows	governments	access	to	all	secret
keys.	You	might	wish	to	consider	how	the	content	here	has	relevance	to	some	of	the	topics	in	Chapter	9
and	Chapter	10.

21.06	Quantum	cryptography
Quantum	mechanics	provides	fundamental	laws	of	physics	applicable	to	the	behaviour	of	particles.	The
particles	that	transmit	light	are	called	photons.	Photons	demonstrate	wave	behaviour,	so	that	each
photon	appears	to	vibrate	in	a	particular	direction	at	right	angles	to	its	direction	of	travel.	The	direction
each	photon	vibrates	in	is	called	its	polarisation,	and	is	represented	in	a	diagram	as	a	double-ended
arrow.	A	photon	can	be	created	with	a	specific	polarisation	to	represent	a	value	for	a	bit.	If	we	allow
four	possibilities	for	the	state	of	polarisation	there	are	two	ways	to	represent	a	1	and	two	ways	to
represent	a	0.	This	can	be	illustrated	as	follows:

This	scheme	can	be	used	to	enable	a	sender	and	receiver	to	create	a	‘shared	secret’	code	consisting	of	a
number	of	bits.	Table	21.01	illustrates	the	process.

Bit	values	sent 1 0 1 1 0 0 0 1 0 1

Polarisation	basis + × × + + × × + × +

	 	 	 	 	 	 	 	 	 	 	

Polarisation	chosen	by	receiver × + + + × × + × × +

	 	 	 	 	 	 	 	 	 	 	

Bit	values	confirmed 	 	 	 1 	 0 	 	 0 1

Table	21.01	Creation	of	a	‘shared	secret’	code

In	Table	21.01	the	first	row	indicates	the	bit	sent,	the	second	row	shows	the	basis	used	for	this	with	+
representing	the	one	using	vertical	and	horizontal	and	x	representing	the	diagonal	pair.	The	sender
chooses	the	bit	pattern	at	random	and	also	the	polarisation	basis	for	each	value	at	random.	The	third
row	shows	the	receiver’s	choice	for	the	polarisation	basis	for	each	value.	Again	this	is	a	random	choice.
Following	the	transmission	the	sender	informs	the	receiver	about	the	polarisation	basis	used	for	each
value.	The	receiver	responds	by	saying	which	ones	were	chosen	to	match.	For	these	matches	there	is
now	a	stored	value	for	a	bit.	In	the	example	shown	a	‘shared	secret’	code	1001	has	been	created.

The	above	scheme	has	been	incorporated	in	Quantum	Key	Distribution	(QKD)	systems.	Earlier	in	this
chapter	it	was	mentioned	how	a	key	might	be	transferred	using	asymmetric	key	encryption	for
subsequent	use	in	symmetric	key	encryption.	QKD	offers	an	alternative	for	the	key	transfer.	The	key	is
still	to	be	used	in	the	normal	way.	The	advantage	of	QKD	is	that	the	transfer	does	not	involve	defined
values	just	photons.	Anyone	trying	to	intercept	the	flow	of	photons	in	an	attempt	to	discover	their
polarisation	will	by	the	laws	of	quantum	mechanics	destroy	the	photons.	A	photon	cannot	be	detected
and	measured	then	sent	on	again.	The	main	drawback	of	quantum	cryptography	is	that	it	cannot	be
implemented	using	standard	communication	media.	It	requires	a	dedicated,	special	purpose	‘quantum
channel’	between	sender	and	receiver.	The	costs	of	providing	this	are	very	high	so	routine	use	is
unlikely.

There	are	ambitious	hopes	for	the	future	of	quantum	computing	but	progress	is	slow.	QKD	is	one	of	the
few	examples	where	there	has	been	significant	success	evidenced.

TASK	21.01
The	concept	of	a	‘shared	secret’	has	been	used	in	traditional	encryption	schemes.	An	example	is
the	Diffie–Hellman	key	agreement	method.	Investigate	the	principles	behind	how	this	works.

Reflection	Point:
Chapter	21:	Security	has	some	difficult	concepts.	Have	you	made	sure	that	you	understand	the
overriding	principles	and	definitions	used?

Summary
Encryption	converts	plaintext	to	ciphertext;	decryption	reverses	the	process.
The	five	main	security	concerns	when	transmitting	messages	are:	confidentiality,	authenticity,
integrity,	non-repudiation	and	availability.
Alternatives	for	encryption	are	symmetric,	using	one	key,	or	asymmetric,	using	two	different	keys.
Authentication	can	be	achieved	using	a	digital	signature	and	a	digital	certificate.
A	digital	certificate	is	provided	by	a	certification	authority	within	a	public	key	infrastructure.
DES	and	AES	are	examples	of	symmetric	key	encryption.
RAS	is	an	important	asymmetric	key	method.
Secure	Socket	Layer	(SSL)	which	became	Transport	Layer	Security	(TLS)	provides	security	when
accessing	a	website.
Quantum	Key	Distribution	systems	use	polarised	photons.

■
■

■
■
■
■
■
■

■

Exam-style	Questions

[4]

[6]

[5]

[3]

[4]

[3]

[5]

[3]

[6]

[1]

[2]

When	transmitting	data	across	a	network	three	concerns	relate	to:	confidentiality,	authenticity
and	integrity.

Explain	each	of	these	terms.

Encryption	and	decryption	can	be	carried	out	using	a	symmetric	or	an	asymmetric	key	method.

Explain	how	keys	are	used	in	each	of	these	methods.	You	are	not	required	to	describe	the
algorithms	used.	Your	account	must	include	reference	to	a	public	key,	a	private	key	and	a	secret
key.

Digital	signatures	and	digital	certificates	are	used	in	message	transmission.

Give	an	explanation	of	their	use.

Secure	socket	layer	(SSL)	and	its	upgraded	version	named	Transport	Layer	Security	(TLS)	is
described	as	a	protocol	suite.

Explain	the	meaning	of	the	description	‘protocol	suite’.

Describe	the	type	of	activity	where	SSL	or	TLS	would	be	used.

Explain	how	digital	certificates	are	used	in	the	protocol	suite.

Explain	how	encryption	keys	are	used	in	the	protocol	suite.

Digital	certificates	are	used	in	Internet	communications.	A	Certificate	Authority	(CA)	is	responsible
for	issuing	digital	certificates.

Name	three	data	items	present	in	a	digital	certificate.

The	method	of	issuing	a	digital	certificate	is	as	follows.

A	user	starts	an	application	for	a	digital	certificate	using	their	computer.	On	this	computer	a
key	pair	is	generated.	This	key	pair	consists	of	a	public	key	and	an	associated	private	key.

The	user	submits	the	application	to	the	CA.	The	generated	     	(i)	     	key	and
other	application	data	are	sent.	The	key	and	data	are	encrypted	using	the	CA’s	     	(ii)
     	key.

The	CA	creates	a	digital	document	containing	all	necessary	data	items	and	signs	it	using	the
CA’s	     	(iii)	     	key.

The	CA	sends	the	digital	certificate	to	the	individual.

In	the	above	method	there	are	three	missing	words.	Each	missing	word	is	either	‘public’	or
‘private’.

State	the	correct	word.	Justify	your	choice.

Alexa	sends	an	email	to	Beena.

Alexa’s	email	program:

produces	a	message	digest	(hash)

uses	Alexa’s	private	key	to	encrypt	the	message	digest

adds	the	encrypted	message	digest	to	the	plain	text	of	her	message

encrypts	the	whole	message	with	Beena’s	public	key

sends	the	encrypted	message	with	a	copy	of	Alexa’s	digital	certificate.

Beena’s	email	program	decrypts	the	encrypted	message	using	her	private	key.

State	the	name	given	to	the	encrypted	message	digest.

Explain	how	Beena	can	be	sure	that	she	has	received	a	message	that	is	authentic	(not
corrupted	or	tampered	with)	and	that	it	came	from	Alexa.

1 a

b

c

2

a

b

c

d

3

a

b

i

ii

iii

iv

c

i

ii

[2]

[2]

[1]

[1]

[2]

[4]

[2]

Name	two	uses	where	encrypted	message	digests	are	advisable.

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	31	Q2	June	2016

Both	clients	and	servers	use	the	Secure	Socket	Layer	(SSL)	protocol	and	its	successor,	the	Transport
Layer	Security	(TLS)	protocol.

What	is	a	protocol?

Name	the	client	application	used	in	this	context.

Name	the	server	used	in	this	context.

Identify	two	problems	that	the	SSL	and	TLS	protocols	can	help	to	overcome.

Before	any	application	data	is	transferred	between	the	client	and	the	server,	a	handshake	process
takes	place.	Part	of	this	process	is	to	agree	the	security	parameters	to	be	used.

Describe	two	of	these	security	parameters.

Name	two	applications	of	computer	systems	where	it	would	be	appropriate	to	use	the	SSL	of	TLS
protocol.	These	applications	should	be	different	from	the	ones	you	named	in	part	(a)(ii)	and	part
(a)(iii).

Cambridge	international	AS	&	A	Level	Computer	Science	9608	paper	32	Q4	November	2016

iii

4

a i

ii

iii

iv

b

c

Chapter	22:
Artificial	Intelligence	(AI)

22.01	An	overview
It	is	not	easy	to	define	‘Artificial	Intelligence’.	A	key	issue	is	the	definition	of	intelligence.	For	example,
you	could	argue	that	a	person	needs	intelligence	to	do	mental	arithmetic,	such	as	43	×	13.	You	could
use	a	calculator	to	get	the	answer,	though,	and	would	not	describe	the	calculator	as	having	artificial
intelligence.	This	means	that	a	definition	such	as:

Artificial	intelligence	involves	the	automation	of	intelligent	behaviour.

is	not	entirely	satisfactory.

There	is	agreement	that	AI	is	a	part	of	computer	science.	It	is	also	clear	that	the	subject	has	many
distinct	sub-sections	some	of	which	will	be	considered	in	this	chapter.	The	conclusion	is	that	a	vague
definition	is	best.	For	example:

Artificial	Intelligence	is	concerned	with	“how	to	make	computers	do	things	at	which,	at	the
moment,	people	are	better.”

(E.	Rich.	Artificial	Intelligence.	McGraw-Hill,	1983)

22.02	How	graphs	can	be	used	in	AI
A	graph	is	a	collection	of	nodes	or	vertices	between	which	there	can	be	edges.	Each	node	has	a	name.
An	edge	can	have	an	associated	label	which	is	a	numerical	value.	An	example	is	presented	in	Figure
22.01.

Figure	22.01	An	example	of	a	graph	with	labelled	edges

A	graph	can	be	used	to	represent	a	variety	of	scenarios.	One	common	representation	is	that	the	nodes
represent	places	and	the	edge	labels	represent	the	distances	between	those	places.	Edges	are	only
included	in	the	graph	when	there	is	a	route	available	for	direct	travel	between	the	pair	of	nodes.	Such
graphs	can,	for	example,	find	the	shortest	route	between	two	nodes	that	are	not	adjacent	to	each	other.

We	could	use	our	intelligence	to	find	the	shortest	route	between	node	A	and	node	D	by	considering	all
of	the	possible	routes	and	calculating	the	overall	distance	for	each	route.	Using	Figure	20.01,	we	would
calculate	the	following	values:

 

For	A	to	B	to	C	to	D overall	distance	is	40	+	10	+	40	=	90

For	A	to	B	to	F	to	E	to	D overall	distance	is	40	+	15	+	20	+	5	=	80,	which	is
the	shortest

For	A	to	F	to	E	to	D overall	distance	is	60	+	20	+	5	=	85

For	A	to	F	to	B	to	C	to	D overall	distance	is	60	+	15	+	10	+	40	=	125

For	a	graph	containing	100	nodes	this	could	be	quite	time	consuming.	Fortunately,	a	number	of	artificial
intelligence	algorithms	have	been	developed	to	solve	this	type	of	problem.

Question	22.01
Can	you	think	of	two	alternatives	for	what	the	graph	in	Figure	22.01	might	represent?	For	each	of
these,	state	what	the	values	shown	as	edge	labels	would	represent.

Dijkstra’s	algorithm
This	algorithm	finds	the	shortest	path	to	each	of	the	other	nodes	starting	from	one	of	the	nodes.

The	following	is	a	Structured	English	design	for	a	simplified	version	of	the	algorithm:

Identify	the	source	node	(S)	where	the	path	starts.

Create	an	empty	set	called	the	ShortestPath	set.

Create	another	set	called	RemainingNodes	and	put	all	of	the	nodes	into	this	including	the	source	node
(S).

Create	a	record	that	stores:

node	names

calculated	values	for	the	distance	to	the	node	from	the	source	node

the	sequence	of	nodes	in	the	route	to	the	node.

Set	the	distance	value	for	the	source	node	S	to	be	0.

Set	the	distance	value	for	all	other	nodes	to	be	INFINITY	where	this	is	to	be	set	as	a	large	value	greater
than	any	value	that	will	be	calculated.

While	the	ShortestPath	set	does	not	include	all	of	the	nodes	do	the	following:

Pick	the	node	(N)	from	the	RemainingNodes	set	that	has	the	lowest	distance	value.

Move	this	node	into	the	ShortestPath	set.

For	each	node	in	the	RemainingNodes	set	that	is	adjacent	to	N:

Calculate	a	new	distance	value	by	adding	the	value	given	by	the	label	of	the	edge
connecting	the	two	nodes	to	the	already	stored	distance	for	N.

If	this	value	is	less	than	the	value	currently	stored	replace	this	stored	value	by	the	new
one	that	has	been	calculated.

If	a	new	value	has	been	stored	enter	the	sequence	of	nodes	used	to	obtain	this	value.

Table	22.01	shows	how	the	algorithm	progresses	for	the	graph	shown	in	Figure	22.01.	The	node	names
are	presented	in	red	when	they	are	still	in	the	RemainingNodes	set.	At	each	stage	the	node	N	is
represented	in	black.	The	distance	and	route	data	is	presented	in	grey	when	it	is	no	longer	changeable
because	the	node	has	been	moved	to	the	ShortestPath	set.

Content	of	the
ShortestPath	set Content	of	the	record

{}

A B C D E F

0 ∞ ∞ ∞ ∞ ∞

	 	 	 	 	 	

{A}

A B C D E F

0 40 ∞ ∞ ∞ 60

A A-B 	 	 	 A-F

{A,B}

A B C D E F

0 40 50 ∞ ∞ 55

A A-B A-B-C 	 	 A-B-F

{A,B,C}

A B C D E F

0 40 50 90 ∞ 55

A A-B A-B-C A-B-C-D 	 A-B-F

{A,B,C,F}

A B C D E F

0 40 50 90 75 55

A A-B A-B-C A-B-C-D A-B-F-E A-B-F

{A,B,C,E,F}

A B C D E F

0 40 50 80 75 55

A A-B A-B-C A-B-F-E-D A-B-F-E A-B-F

{A,B,C,D,E,F}

A B C D E F

0 40 50 80 75 55

A A-B A-B-C A-B-F-E-D A-B-F-E A-B-F

Table	22.01	Dijkstra’s	algorithm	applied	to	the	graph	in	Figure	22.01

Note	the	general	feature	that	some	data	don’t	change	once	defined	as	is	the	case	for	nodes	C	and	E,	but
in	other	cases	such	as	for	nodes	D	and	F	the	data	has	to	be	changed	at	a	later	stage.

A*	algorithm
Dijkstra’s	algorithm	finds	the	best	route	from	one	node	to	all	of	the	remaining	nodes.	In	many	cases	the
only	requirement	is	to	find	the	best	route	from	one	node	to	just	one	other	node.	It	would	be	possible	to
modify	the	Dijkstra	algorithm	to	make	it	stop	once	the	optimum	route	to	the	target	destination	node	had
been	established.	However,	the	modified	algorithm	would	still	be	likely	to	carry	out	far	more
calculations	than	were	necessary.	In	particular,	the	algorithm	could	initially	be	exploring	routes	that
were	not	in	the	right	direction.

The	A*	algorithm	is	a	modification	of	the	Dijkstra	algorithm	designed	to	improve	matters.	The	design	of
the	A*	algorithm	is	different	in	that	the	following	step:

Calculate	a	new	distance	value	by	adding	the	value	given	by	the	label	of	the	edge
connecting	the	two	nodes	to	the	already	stored	distance	for	N.

is	expanded	to	the	following:

Calculate	a	new	distance	value	by	adding	the	value	given	by	the	label	of	the	edge
connecting	the	two	nodes	to	the	already	stored	distance	for	N.

Calculate	an	estimated	value	for	the	distance	of	N	from	the	destination	node	and	add	this
to	the	new	distance	value.

The	extra	calculation	of	the	distance	still	to	be	travelled	requires	the	use	of	a	heuristic	function.	When
this	function	is	chosen	it	must	guarantee	that	any	estimated	value	will	be	lower	than	the	actual	value.

As	an	example	of	the	use	of	the	A*	algorithm	we	can	consider	a	simple	example	of	finding	the	shortest
route	between	two	towns	using	the	existing	roads.	Figure	22.02	shows	a	basic	map	showing	the
locations	of	seven	towns	identified	as	A	–	G.

Figure	22.02	A	simple	map	showing	the	positions	of	seven	towns.

This	map	is	included	because	it	has	been	drawn	by	using	a	pair	of	x-y	coordinates	defining	the	position
of	each	town.	These	coordinates	are	the	basis	of	the	heuristic	function	to	be	used.

Pythagoras’s	theorem	can	be	used	to	calculate	the	direct	distance	between	two	positions	as	follows:

Direct	distance=((difference	in	×	coordinates)2+(difference	in	y	coordinates)2)

This	calculated	distance	must	be	less	than	any	actual	distance	travelled	using	existing	roads.	The
coordinates	used	are	shown	in	Table	22.02.

A B C D E F G

40,20 30,30 80,35 130,30 120,20 45,5 100,30

Table	22.02	The	x-y	coordinates	for	the	towns	A	–	G

The	graph	for	this	problem	is	shown	in	Figure	22.03.	This	is	drawn	as	before	using	edges	to	define
which	towns	have	an	existing	road	linking	the	town	to	another	town.	The	label	for	each	edge	shows	the
distance	of	travel	along	that	road.

Figure	22.03	The	graph	used	to	illustrate	the	A*	algorithm.

It	must	be	understood	that	there	are	a	variety	of	versions	of	the	A*	algorithm.	The	application	of	the
algorithm	demonstrated	here	does	not	match	any	specific	version	found	in	the	literature.

The	algorithm	is	documented	by	the	following	Structured	English.

Create	three	lists:	the	initial	list,	the	open	list	and	the	closed	list.
Insert	an	empty	record	for	each	node	in	the	graph	into	the	initial	list.
Store	the	x	and	y	coordinates	of	the	node	in	each	record	of	the	initial	list.
Initialise	the	value	for	distance	travelled	to	zero	in	each	record	of	the	initial	list.
Create	a	look-up	table	that	includes	an	entry	for	each	pair	of	nodes	that	have	a	direct	connecting	road.
Store	the	distance	of	travel	along	that	road	for	each	pair	of	nodes	in	the	table.
Identify	the	target	node	for	the	travel.
Identify	the	starting	node	for	the	travel	and	copy	the	record	for	this	node	into	the	open	list.
Delete	the	record	for	the	starting	node	from	the	initial	list.

Now	recursively	apply	the	following	algorithm	until	all	possibilities	have	been	examined:

For	the	parent	node	in	the	open	list	identify	all	adjacent	nodes	in	the	initial	list.
Copy	the	record	for	each	of	the	adjacent	nodes	into	the	open	list.
Delete	the	records	for	the	adjacent	nodes	from	the	initial	list.
Check	if	the	target	node	is	now	in	the	open	list.

If	the	target	node	is	not	in	the	open	list	continue	with	the	following:

For	each	adjacent	node	now	added	to	the	open	list	use	the	value	in	the	look-up	table	to
determine	the	distance	of	travel	from	the	parent	node.
If	options	exist	calculate	a	value	for	each	route	and	choose	the	smallest	value.
For	each	adjacent	node	update	the	value	stored	for	distance	travelled	in	the	record.
For	each	adjacent	node	update	the	path	sequence	stored	in	the	record.
For	each	adjacent	node	use	the	heuristic	function	to	calculate	a	value	for	estimated	distance	to
travel.
For	each	adjacent	node	calculate	a	value	for	estimated	total	distance	from	start	node	to	target
node	by	adding	the	value	for	distance	travelled	to	the	value	for	estimated	distance	to	travel.
Identify	the	adjacent	node	with	the	lowest	value	for	total	distance	from	start	mode	to	target
node.	Leave	the	record	for	this	node	in	the	open	list	as	a	parent	node.	Copy	the	records	for	the
remaining	nodes	into	the	closed	list.	Delete	these	records	from	the	open	list.
Continue	with	the	next	iteration	of	the	recursion.

If	the	target	node	is	in	the	open	list,	do	the	following	for	this	node	only:

Use	the	value	in	the	look-up	table	to	find	the	actual	distance	from	the	parent	node	to	the	target
node.
Calculate	the	total	distance	travelled.
If	the	record	for	the	target	node	has	zero	for	the	value	for	distance	travelled	enter	the	value	now
calculated	and	enter	the	path	sequence	into	the	record.
If	the	record	already	has	a	value	for	distance	travelled	compare	the	new	value	and	if	this
indicates	a	shorter	route	update	the	value	in	the	record	for	distance	travelled	and	enter	the	new
path	sequence.

Copy	the	record	for	the	target	node	into	the	initial	list.
Delete	the	record	for	the	target	node	from	the	open	list.
If	there	is	another	adjacent	node	in	the	open	list	continue	with	the	actions	listed	above	for	when
the	target	node	is	not	in	the	open	list.
If	the	open	list	is	now	empty	rewind	to	check	nodes	in	the	closed	list	that	have	not	been	included
in	previous	path	sequences.	For	each	of	these	calculate	a	value	for	estimated	total	distance	from
start	node	to	target	node.	If	this	estimate	is	greater	than	the	value	stored	for	distance	travelled
in	the	target	mode	record	continue	to	rewind.	If	the	estimate	is	less	than	this	stored	value	copy
the	record	for	the	node	into	the	open	list	as	a	parent	node	and	continue	with	the	actions	listed
above	for	when	the	target	node	is	not	in	the	open	list.

We	can	consider	how	the	algorithm	will	progress	if	the	start	node	is	chosen	to	be	town	A	and	the	target
node	to	be	town	D.

With	A	the	parent	node,	B,	C	and	F	become	the	adjacent	nodes	whose	records	are	brought	into	the	open
list.	The	calculations	are:
For	B	distance	travelled	=	13,	estimated	further	distance	is	100,	total	is	113
For	C	distance	travelled	=	45,	estimated	further	distance	is	51,	total	96
For	F	distance	travelled	=	20,	estimated	further	distance	is	89,	total	109
(Note	that	there	are	two	calculations	that	have	to	be	made	for	C	and	F	but	in	each	case	the	direct	route
is	the	shortest.)
B	and	F	are	now	moved	to	the	closed	list	and	C	becomes	the	new	parent.	The	only	adjacent	node	in	the
initial	list	is	G	which	is	brought	into	the	open	list.
G	becomes	the	parent	for	the	adjacent	nodes	D	and	E.
D	is	identified	as	the	target	node.	The	actual	distance	of	travel	from	A	to	D	using	this	route	is	calculated
as	110.	When	the	data	has	been	stored	in	the	record	for	D	this	is	moved	to	the	initial	list.

E	is	the	only	adjacent	node	left	in	the	open	list	so	this	automatically	becomes	the	new	parent	node.	The
only	node	in	the	initial	list	is	D	which	is	again	brought	into	the	open	list	as	an	adjacent	node.	The	actual
distance	of	travel	from	A	to	D	is	now	calculated	as	105.	This	is	a	lower	vale	than	the	one	previously
calculated	so	this	data	is	stored	in	the	record	for	node	D.	This	record	is	then	moved	once	again	into	the
initial	list.

The	rewinding	will	now	consider	nodes	B	and	F.	The	calculations	for	these	were	carried	out	earlier.	The
estimated	distances	for	A	to	D	via	B	and	for	A	to	D	via	F	were	found	to	be	109	and	113	respectively.
Both	of	these	values	are	greater	than	the	actual	distance	found	for	a	different	route	so	these	nodes	can
be	ignored.	The	problem	has	been	solved.	The	shortest	route	has	been	found	to	be	A-C-G-E-D	with	a
total	distance	of	105.

Discussion	Point:
Do	you	know	what	a	heuristic	function	is?

Discussion	Point:
The	techniques	discussed	here	can	be	used	for	path-finding	when	there	are	obstacles.	Can	you	find
some	information	about	how	this	is	approached?

22.03	Machine	learning
The	requirements	for	machine	learning	can	be	summarised	as:

a	computer-based	system	has	a	defined	task	or	tasks	to	perform

knowledge	is	acquired	through	the	experience	of	performing	the	tasks

as	a	result	of	this	experience	and	the	knowledge	gained	the	performance	of	future	tasks	is
improved.

The	ability	to	learn	from	experience	is	an	indication	of	intelligence.	Machine	learning	is	therefore	one	of
the	many	individual	approaches	defined	under	the	umbrella	of	artificial	intelligence.

There	are	a	number	of	ways	to	describe	how	the	learning	can	take	place.	Three	of	these	will	be
considered	here.

In	unsupervised	learning	the	system	has	to	draw	its	own	conclusions	from	its	experience	of	the
results	of	the	tasks	it	has	performed.	For	this,	algorithms	are	needed	that	can	organise	or	categorise
the	knowledge	acquired.	An	example	is	where	‘conceptual	clusters’	are	identified	which	are	based	on	a
hierarchical	framework.	In	this	approach	the	knowledge	is	initially	all	placed	in	the	root	of	a	tree
structure.	Then,	depending	on	attributes	of	the	knowledge,	selected	groups	are	moved	into	branches	of
the	tree.

Nowadays	unsupervised	learning	is	a	dominant	activity.	Powerful	computer	systems	having	access	to
massive	data	banks	are	regularly	used	to	make	decisions	based	on	previous	actions	recorded.	We	all
have	our	activity	on	the	world	wide	web	recorded	and	stored.	This	stored	data	is	then	used	to	make
decisions	about	what	products	or	services	should	be	recommended	to	us	in	future	Internet	use.	There	is
no	theoretical	framework	for	this;	it	is	rather	as	though	the	intelligence	is	built-in	to	the	data.

In	supervised	learning	the	system	is	fed	knowledge	with	associated	classification.	For	example,	an	AI
program	might	be	under	development	for	marking	exam	paper	questions.	In	the	supervised	learning,
answers	to	examination	questions	could	be	provided	together	with	a	grade	for	each	one	or	with
categorised	comments.

A	special	case	of	supervised	learning	is	where	an	expert	system	is	being	developed.	An	expert	system
always	has	a	focus	on	a	narrowly	defined	domain	of	knowledge.	In	this	case	human	experts	are	given
samples	of	data	requiring	analysis.	The	experts	provide	the	conclusions	to	be	drawn	from	the	data.	The
data	and	conclusions	are	input	to	the	knowledge	base.	The	effectiveness	of	the	system	can	be	tested	by
a	human	expert	providing	sample	data	and	checking	the	accuracy	of	the	conclusions	provided	by	the
expert	system.	If	performance	is	poor,	then	further	data	and	conclusions	are	input	to	the	system.
Although	an	expert	system	is	an	example	of	AI	it	is	not	an	example	of	machine	learning	because	there	is
no	expectation	that	the	system	will	improve	its	performance	unaided.

Reinforcement	learning	has	some	features	similar	to	unsupervised	learning	and	other	features
similar	to	supervised	learning.	The	method	has	its	own	specific	vocabulary.	The	following	statements
use	this	vocabulary	in	describing	aspects	of	how	a	reinforcement	learning	algorithm	works.

An	agent	is	learning	how	best	to	perform	in	an	environment.

The	environment	has	many	defined	states.

At	each	step	the	agent	takes	an	action.

An	agent	has	a	policy	that	guides	its	actions.

The	policy	is	influenced	by	the	recorded	history	and	the	knowledge	of	the	current	state	of	the
environment.

An	action	changes	the	environment	to	a	new	state.

The	agent	receives	a	reward	following	an	action	which	is	a	measure	of	how	effective	the	action	was
in	relation	to	the	achievement	of	the	overall	goal.

The	policy	will	guide	the	agent	in	deciding	whether	the	next	action	should	be	exploiting	knowledge
already	known	or	exploring	a	new	avenue.

In	summary,	the	aim	is	to	maximise	the	reward	values	by	improving	the	quality	of	the	policy.	It	is	a	trial-
and-error	search	for	optimum	performance.	It	requires	many	repeated	attempts	at	the	same	problem.

This	description	is	an	abstraction.	The	concept	becomes	clearer	if	some	instances	of	the	application	of
the	approach	are	considered.	One	area	of	application	is	playing	logic	games	such	as	backgammon.
Another	is	robotics	where	a	robot	has	to	learn	how	to	become	effective	at	a	task.	Another	option	is
where	the	machine	has	to	learn	how	to	navigate	a	maze.	In	this	last	case	when	the	agent	chooses	a	left
turn	which	will	eventually	lead	to	the	destination	the	reward	is	given	a	positive	numeric	value.	If
instead	it	chooses	a	right	turn	the	reward	is	given	a	negative	value.

Regression	analysis	methods
In	some	applications	the	aim	of	the	AI	is	to	predict	and	provide,	as	output	numerical	values	for	some
defined	quantity,	on	the	basis	of	data	values	for	different	quantities	that	have	been	input	to	the	AI
algorithm.	If	regression	analysis	is	to	be	used,	the	first	step	is	for	the	system	to	be	provided	with
some	actual	values	for	both	the	input	data	and	for	what	will	become	output	data	when	the	AI	system	is
operational.	This	data	can	be	used	to	investigate	if	there	is	any	correlation	between	these	sets	of	values.
If	a	correlation	is	established	which	can	be	represented	by	a	mathematical	formula,	then	this	formula
can	be	used	to	output	predicted	values	when	new	data	is	input.

The	simplest	application	of	regression	analysis	is	when	values	for	only	one	quantity	are	to	be	input	and
when	a	linear	relationship	is	expected	between	these	values	and	the	values	to	be	predicted.	An	example
could	be	an	AI	system	being	used	to	predict	marks	for	candidates	in	an	A	Level	Computer	Science
exam.	There	may	be	an	expectation	that	there	would	be	a	correlation	between	a	candidate’s	marks	in
an	A	level	Computer	Science	exam	and	their	marks	in	an	IGCSE	Mathematics	exam.	Figure	22.04
shows	what	might	be	found	when	some	historic	data	is	input	and	analysed.

Figure	22.04	An	example	of	a	linear	regression	analysis

There	is	good	correlation	between	the	two	sets	of	marks.	The	straight	line	in	Figure	22.04	is	the	one
that	has	been	calculated	as	the	best	fit	to	the	data.	The	formula	for	the	line	can	sensibly	be	used	to
predict	future	marks	for	the	A	level	Computer	Science	paper	from	the	marks	scored	in	an	IGCSE
Mathematics	paper.

The	regression	analysis	could	be	more	complicated.	For	example,	a	similar	fitting	to	a	mathematical
formula	can	be	carried	out	if	marks	for	three	different	exams	are	used	as	input.	In	other	cases,	a	non-
linear	relationship	might	be	appropriate	as	might	happen	when	a	prediction	of	future	sales	of	a	new
product	was	needed	where	the	growth	in	sales	was	expected	to	be	exponential.

22.04	Artificial	neural	networks
The	neural	networks	in	our	brains	provide	our	intelligence.	It	therefore	seems	obvious	that	artificial
neural	networks	should	be	considered	as	a	foundation	for	artificial	intelligence	systems.	Figure	22.05
shows	a	representation	of	two	nerve	cells.

Figure	22.05	Two	nerve	cells	showing	how	a	signal	is	transmitted

At	the	one	end	of	a	nerve	cell	there	are	many	dendrites	which	can	receive	signals.	At	the	other	end	of
the	cell	there	are	many	axon	terminal	buttons	that	can	transmit	signals.	The	synapse	is	the	region
between	an	axon	terminal	button	and	a	dendrite	which	contains	neurotransmitters.	When	a	nerve	cell
receives	input	signals	the	voltage	in	the	axon	increases.	At	some	threshold	value	of	this	voltage
neurotransmitters	are	activated	and	signals	are	sent	to	the	dendrites	of	adjacent	cells.

Figure	22.06	A	schematic	representation	of	a	simple	artificial	neural	network

An	artificial	neural	network	could	be	created	in	software	or	hardware.	The	components	of	the	network
can	be	represented	by	a	diagram	as	illustrated	in	Figure	22.06.	The	triangles	are	the	nodes	in	the
network	which	represent	artificial	neurons.	(Sometimes	these	are	represented	as	circles).	In	general,	a
node	can	receive	one	or	more	inputs	and	can	provide	an	output	to	one	or	more	of	the	other	nodes.	The
modelling	of	the	action	of	the	node	involves	applying	a	weighting	factor	to	each	input.	The	weighted
input	values	are	summed	and	then	an	activation	function	is	used	to	compute	a	value	for	the	output	of
the	node.	If	the	input	is	not	a	numerical	value	it	must	be	converted	to	one	so	that	the	weighted	values
can	be	summed.

Figure	22.06	shows	a	very	simple	network	structure	consisting	of	three	layers.	The	column	of	three
nodes	on	the	left	receive	input.	The	column	on	the	right	provides	output.	The	two	nodes	in	between
form	what	is	referred	to	as	a	hidden	layer.	Some	artificial	neural	networks	will	contain	several	hidden
layers.

An	example	of	an	AI	system	using	an	artificial	neural	network	is	one	which	estimates	the	cost-
effectiveness	of	batteries	based	on	the	initial	price	paid	and	the	lifetime	of	use.	Each	input	node	would
represent	one	example	of	a	battery.	The	inputs	would	be	specific	data	that	identified	the	battery	and	the
price.	One	of	the	nodes	in	the	hidden	layer	could	be	concerned	with	the	type	of	device	the	battery	was
to	be	used	in.	The	other	node	in	the	hidden	layer	could	relate	to	the	type	of	user	of	the	device.	Each
node	in	the	output	layer	would	compute	an	estimated	value	for	the	cost	per	unit	of	time	for	a	specific
battery.

In	this	system	there	are	adjustable	factors	for	each	node.	These	are	the	weighting	factors	for	each	input
and	the	activation	function.	When	the	initial	learning	is	taking	place,	these	adjustable	factors	need	to	be
tuned	to	achieve	the	optimum	predictive	capability	of	the	system.	The	method	that	can	be	used	for	this

is	back	propagation	of	errors.	There	is	a	need	for	some	battery	lifetime	data	from	some	real	use	of
the	batteries.	The	AI	system	is	created	with	a	set	of	trial	values	for	all	of	the	adjustable	factors.	The
system	is	run	with	the	input	data	that	matches	the	real	use.	There	will	then	be	an	error	identified	for
each	output	node.	The	error	is	the	difference	between	the	output	value	and	the	real-use	value	for	the
battery	lifetime.	The	system	is	then	re-run	with	different	values	for	the	weighting	factors	and	activation
functions	applying	to	the	output	nodes.	This	will	determine	the	dependency	of	the	accuracy	of	the
output	value	on	the	adjustable	factors	associated	with	the	performance	of	the	nodes	in	the	output	layer.

The	next	step	is	to	carry	out	a	similar	investigation	for	the	nodes	in	the	hidden	layer.	Finally,	the
adjustable	factors	for	the	nodes	in	the	input	layer	are	tackled.	This	process	of	learning	should	now	be
sufficient	for	the	system	to	be	applied	to	some	new	input	data	to	predict	the	cost-effectiveness	of	some
different	batteries.	When	more	real-use	data	becomes	available	then	the	back	propagation	of	errors
learning	can	be	applied	again	to	achieve	improved	performance	of	the	system.

Extension	Question	22.01
An	early	successful	application	of	an	artificial	neural	network	was	NETtalk.	This	was	able	to	take	a	text
as	input	and	output	a	synthesised	sound	reading	of	the	text.	The	network	had	7	times	29	input	nodes
and	26	output	nodes.	Can	you	investigate	why	that	number	of	input	nodes	was	chosen	and	what	was	the
function	of	some	of	the	80	nodes	in	the	hidden	layer?

Deep	Learning
It	is	understood	that	in	the	brain	there	is	a	layer	structure	of	neurons	where	lower	layers	have	readily
understandable	functions	but	where	higher	layers	are	concerned	with	more	abstract	processing	of
information.	With	the	increasing	computing	power	now	available,	artificial	neural	networks	are	being
introduced	with	large	numbers	of	hidden	layers	which	are	attempting	to	achieve	something	similar.
These	are	known	as	Deep	Learning	systems.

Reflection	Point:
Could	you	create	a	hierarchical	chart	to	show	how	the	various	approaches	discussed	in	this	chapter	are
related	to	each	other?

Summary
A	graph	can	be	constructed	from	nodes	and	edges	where	the	edges	carry	numerical	value	labels.
Algorithms	are	available	to	find	the	shortest	path	between	two	nodes	in	a	graph.
Machine	learning	can	be	supervised	or	unsupervised.
Regression	analysis	involves	finding	a	mathematical	equation	which	is	a	best	fit	to	sample	data.
Artificial	neural	networks	are	modelled	using	nodes	which	receive	input	and	provide	output.
Back	propagation	of	errors	can	be	used	for	machine	learning	using	artificial	neural	networks.

■
■
■
■
■
■

Exam-style	Questions

[7]

The	diagram	below	shows	a	graph	representing	the	cost	of	journeys	between	railway	stations
identified	by	A,	B,	C,	D,	E	and	F.

Dijkstra’s	algorithm	is	to	be	used	to	find	the	total	cost	for	journeys	from	station	A	to	each	of	the
other	stations.	A	record	structure	is	to	be	used	to	store	for	each	station	the	cost	for	the	travel	so	far
and	the	list	of	stations	so	far	visited	in	the	order	visited.	Complete	the	table	below	to	record	the
progress	of	the	algorithm	by	identifying	which	nodes	are	in	the	ShortestPath	set	and	what	would	be
stored	in	the	record	at	each	step	of	the	algorithm.

The	first	two	rows	of	the	table	have	been	completed	for	you.

Content	of	the
ShortestPath

set
Content	of	the	record

{} A B C D E F

0 ∞ ∞ ∞ ∞ ∞

	 	 	 	 	 	

{A} A B C D E F

0 10 ∞ ∞ ∞ 25

A A-B 	 	 	 A-F

	

A B C D E F

	 	 	 	 	 	

	 	 	 	 	 	

	

A B C D E F

	 	 	 	 	 	

	 	 	 	 	 	

	

A B C D E F

	 	 	 	 	 	

	 	 	 	 	 	

	

A B C D E F

	 	 	 	 	 	

	 	 	 	 	 	

	

A B C D E F

	 	 	 	 	 	

	 	 	 	 	 	

The	diagram	below	represents	an	artificial	neural	network.

1

2

[5]

[4]

[9]

[2]

Give	as	full	a	description	as	you	can	of	what	the	parts	of	the	diagram	represent.	If	you	wish	you
can	label	the	diagram	then	use	the	labels	in	your	answer.

Identify	the	steps	involved	when	a	backward	propagation	of	errors	algorithm	is	used.

Give	a	brief	explanation	of	each	of	the	following	terms:

Machine	learning

Artificial	neural	network

Deep	learning

Explain	which	approach	uses	back	propagation	of	errors.

a

b

3 a

b

Part	4
Further	problem-solving	and	programming	skills

Chapter	23:
Algorithms

23.01	Linear	search
In	Chapter	13,	we	developed	the	algorithm	for	a	linear	search	(Worked	Example	13.02).

Discussion	Point:
What	were	the	essential	features	of	a	linear	search?

TASK	23.01
Write	program	code	for	the	linear	search	algorithm.	Assume	that	the	items	to	be	searched	are
stored	in	a	1D	array	with	n	elements.

23.02	Bubble	sort
In	Chapter	13,	we	developed	the	algorithm	for	a	bubble	sort	(Worked	Example	13.03).

Discussion	Point:
What	were	the	essential	features	of	a	bubble	sort?

TASK	23.02
Write	program	code	for	the	most	efficient	bubble	sort	algorithm.	Assume	that	the	items	to	be
sorted	are	stored	in	a	1D	array	with	n	elements.

23.03	Insertion	sort
Imagine	you	have	a	number	of	cards	with	a	different	value	printed	on	each	card.	How	would	you	sort
these	cards	into	order	of	increasing	value?

You	can	consider	the	pile	of	cards	as	consisting	of	a	sorted	part	and	an	unsorted	part.	Place	the
unsorted	cards	in	a	pile	on	the	table.	Hold	the	sorted	cards	as	a	pack	in	your	hand.	To	start	with	only
the	first	(top)	card	is	sorted.	The	card	on	the	top	of	the	pile	on	the	table	is	the	next	card	to	be	inserted.
The	last	(bottom)	card	in	your	hand	is	your	current	card.

Figure	23.01	shows	the	sorted	cards	in	your	hand	as	blue	and	the	pile	of	unsorted	cards	as	white.	The
next	card	to	be	inserted	is	shown	in	red.	Each	column	shows	the	state	of	the	pile	as	the	cards	are
sorted.

Figure	23.01	Sorting	cards

Repeat	the	following	steps	until	all	cards	in	the	unsorted	pile	have	been	inserted	into	the	correct
position.

1 Repeat	until	the	card	to	be	inserted	has	been	placed	in	its	correct	position.

1.1 Compare	the	current	card	with	the	card	to	be	inserted.

1.2 If	the	card	to	be	inserted	is	greater	than	the	current	card,	insert	it	below	the	current	card.

1.3 Otherwise,	if	there	is	a	card	above	the	current	card	in	your	hand,	make	this	your	new	current
card.

1.4 If	there	is	no	new	current	card,	place	the	card	to	be	inserted	at	the	top	of	the	sorted	pile.

What	happens	when	you	work	through	the	sorted	cards	to	find	the	correct	position	for	the	card	to	be
inserted?	In	effect,	as	you	consider	the	cards	in	your	hand,	you	move	the	current	card	down	a	position.
If	the	value	of	the	card	to	be	inserted	is	smaller	than	the	last	card	you	considered,	then	the	card	is
inserted	at	the	top	of	the	pile	(position	1).

This	method	is	known	as	an	insertion	sort.	It	is	a	standard	sort	method.

We	can	write	this	algorithm	using	pseudocode.	Assume	the	values	to	be	sorted	are	stored	in	a	1D	array,
List:

		FOR	Pointer	←	1	TO	NumberOfitems	–	1

						ItemToBeInserted	←	List[Pointer]

						CurrentItem	←	Pointer	–	1	//	pointer	to	last	item	in	sorted	part	of	list

						WHILE	(List[CurrentItem]	>	ItemToBeInserted)	AND	(CurrentItem	>	–1)	DO

										List[CurrentItem	+	1]	←	List[CurrentItem]	//	move	current	item	down

										CurrentItem	←	CurrentItem	–	1	//	look	at	the	item	above

						ENDWHILE

						List[CurrentItem	+	1]	←	ItemToBeInserted	//	insert	item

		NEXT	Pointer

TASK	23.03

Dry-run	the	insertion	sort	algorithm	using	a	trace	table.	Assume	the	list	consists	of	the
following	six	items	in	the	order	given:	53,	21,	60,	18,	42,	19.

Write	program	code	for	the	insertion	sort	algorithm.	Assume	that	the	items	to	be	sorted	are

1

2

Extension	Question	23.01
Investigate	the	performances	of	the	insertion	sort	and	the	bubble	sort	by:

varying	the	initial	order	of	the	items

increasing	the	number	of	items	to	be	sorted.

stored	in	a	1D	array	with	n	elements.

23.04	Binary	search
In	Section	23.01	we	considered	the	algorithm	for	a	linear	search.	This	is	the	only	way	we	can
systematically	search	an	unordered	list.	However,	if	the	list	is	ordered,	then	we	can	use	a	different
technique.

Consider	the	following	real-world	example.

If	you	want	to	look	up	a	word	in	a	dictionary,	you	are	unlikely	to	start	searching	for	the	word	from	the
beginning	of	the	dictionary.	Suppose	you	are	looking	for	the	word	‘quicksort’.	You	look	at	the	middle
entry	of	the	dictionary	(approximately)	and	find	the	word	‘magnetic’.	‘quicksort’	comes	after	‘magnetic’,
so	you	look	in	the	second	half	of	the	dictionary.	Again,	you	look	at	the	entry	in	the	middle	of	this	second
half	of	the	dictionary	(approximately)	and	find	the	word	‘report’.	‘quicksort’	comes	before	‘report’,	so
you	look	in	the	third	quarter.	You	can	keep	looking	at	the	middle	entry	of	the	part	which	must	contain
your	word,	until	you	find	the	word.	If	the	word	does	not	exist	in	the	dictionary,	you	will	have	no	entries
in	the	dictionary	left	to	find	the	middle	of.

This	method	is	known	as	a	binary	search.	It	is	a	standard	method.

We	can	write	this	algorithm	using	pseudocode.	Assume	the	values	are	sorted	in	ascending	order	and
stored	in	a	1D	array,	List	of	size	MaxItems.
		Found	←	FALSE

		SearchFailed	←	FALSE

		First	←	0

		Last	←	MaxItems	–	1	//	set	boundaries	of	search	area

		WHILE	NOT	Found	AND	NOT	SearchFailed	DO

						Middle	←	(First	+	Last)	DIV	2	//	find	middle	of	current	search	area

						IF	List[Middle]	=	SearchItem

								THEN

										Found	←	TRUE

								ELSE

										IF	First	>=	Last	//	no	search	area	left

												THEN

														SearchFailed	←	TRUE

												ELSE

														IF	List[Middle]	>	SearchItem

																THEN		//	must	be	in	first	half

																		Last	←	Middle	-	1		//	move	upper	boundary

																ELSE		//	must	be	in	second	half

																		First	←	Middle	+	1		//	move	lower	boundary

														ENDIF

										ENDIF

						ENDIF

		ENDWHILE

		IF	Found	=	TRUE

				THEN

						OUTPUT	Middle	//	output	position	where	item	was	found

				ELSE

						OUTPUT	"Item	not	present	in	array"

		ENDIF

TASK	23.04

Dry-run	the	binary	search	algorithm	using	a	trace	table.	Assume	the	list	consists	of	the
following	20	items	in	the	order	given:	7,	12,	19,	23,	27,	33,	37,	41,	45,	56,	59,	60,	62,	71,	75,

1

Discussion	Point:
Compare	the	binary-search	algorithm	with	the	linear-search	algorithm.	If	the	array	contains	n	items,
how	many	times	on	average	do	you	need	to	test	a	value	when	using	a	binary	search	and	how	many
times	on	average	do	you	need	to	test	a	value	when	using	a	linear	search?	Can	you	describe	how	the
search	time	varies	with	increasing	n?

80,	84,	88,	92,	99.

Search	for	the	value	60.	How	many	times	did	you	have	to	execute	the	While	loop?

Dry-run	the	algorithm	again,	this	time	searching	for	the	value	34.	How	many	times	did	you
have	to	execute	the	While	loop?

2

3

23.05	Abstract	Data	Types	(ADTs)
In	Chapter	13	(Section	13.07	to	13.10),	we	introduced	ADTs	using	conceptual	diagrams	and	how	ADTs
can	be	implemented	using	arrays.

23.06	Linked	lists
Look	back	at	Chapter	13	Section	13.10.	Figure	13.25	shows	an	empty	linked	list.	The	StartPointer
variable	contains	the	Null	pointer.	The	free	list	links	all	empty	nodes.

We	now	code	the	basic	operations	discussed	using	the	conceptual	diagrams	in	Figures	13.11	to	13.16.

Create	a	new	linked	list
		//	NullPointer	should	be	set	to	-1	if	using	array	element	with	index	0

		CONSTANT	NullPointer	=	–1

		//	Declare	record	type	to	store	data	and	pointer

		TYPE	ListNode

						DECLARE	Data				:	STRING

						DECLARE	Pointer	:	INTEGER

		ENDTYPE

		DECLARE	StartPointer	:	INTEGER

		DECLARE	FreeListPtr		:	INTEGER

		DECLARE	List	:	ARRAY[0	:	6]	OF	ListNode

		PROCEDURE	InitialiseList

						StartPointer	←	NullPointer							//	set	start	pointer

						FreeListPtr	←	0																	//	set	starting	position	of	free	list

						FOR	Index	←	0	TO	5														//	link	all	nodes	to	make	free	list

										List[Index].Pointer	←	Index	+	1

						NEXT	Index

						List	[6].Pointer	←	NullPointer			//	last	node	of	free	list

		ENDPROCEDURE

Insert	a	new	node	into	an	ordered	linked	list
		PROCEDURE	InsertNode(NewItem)

						IF	FreeListPtr	<>	NullPointer

								THEN		//	there	is	space	in	the	array

										//	take	node	from	free	list	and	store	data	item

										NewNodePtr	←	FreeListPtr

										List[NewNodePtr].Data	←	NewItem

										FreeListPtr	←	List[FreeListPtr].Pointer

										//	find	insertion	point

										ThisNodePtr	←	StartPointer		//	start	at	beginning	of	list

										PreviousNodePtr	←	NullPointer

										WHILE	ThisNodePtr	<>	NullPointer		//	while	not	end	of	list

												AND	List[ThisNodePtr].Data	<	NewItem	DO

														PreviousNodePtr	←	ThisNodePtr		//	remember	this	node

														//	follow	the	pointer	to	the	next	node

														ThisNodePtr	←	List[ThisNodePtr].Pointer

										ENDWHILE

										IF	PreviousNodePtr	=	StartPointer

												THEN		//	insert	new	node	at	start	of	list

														List[NewNodePtr].Pointer	←	StartPointer

														StartPointer	←	NewNodePtr

												ELSE		//	insert	new	node	between	previous	node	and	this	node

														List[NewNodePtr].Pointer	←	List[PreviousNodePtr].Pointer

														List[PreviousNodePtr].Pointer	←	NewNodePtr

										ENDIF

						ENDIF

		ENDPROCEDURE

After	three	data	items	have	been	added	to	the	linked	list,	the	array	contents	are	as	shown	in	Figure
23.02.

Figure	23.02	Linked	list	of	three	nodes	and	free	list	of	four	nodes

Find	an	element	in	an	ordered	linked	list
		FUNCTION	FindNode(DataItem)	RETURNS	INTEGER		//	returns	pointer	to	node

						CurrentNodePtr	←	StartPointer		//	start	at	beginning	of	list

						WHILE	CurrentNodePtr	<>	NullPointer		//	not	end	of	list

								AND	List[CurrentNodePtr].Data	<>	DataItem	DO	//	item	not	found

										//	follow	the	pointer	to	the	next	node

										CurrentNodePtr	←	List[CurrentNodePtr].Pointer

						ENDWHILE

						RETURN	CurrentNodePtr		//	returns	NullPointer	if	item	not	found

		ENDFUNCTION

Delete	a	node	from	an	ordered	linked	list
		PROCEDURE	DeleteNode(DataItem)

						ThisNodePtr	←	StartPointer													//	start	at	beginning	of	list

						WHILE	ThisNodePtr	<>	NullPointer							//	while	not	end	of	list

								AND	List[ThisNodePtr].Data	<>	DataItem	DO	//	and	item	not	found

										PreviousNodePtr	←	ThisNodePtr		//	remember	this	node

										//	follow	the	pointer	to	the	next	node

										ThisNodePtr	←	List[ThisNodePtr].Pointer

						ENDWHILE

						IF	ThisNodePtr	<>	NullPointer		//	node	exists	in	list

								THEN

										IF	ThisNodePtr	=	StartPointer	//	first	node	to	be	deleted

												THEN

														//	move	start	pointer	to	the	next	node	in	list

														StartPointer	←	List[StartPointer].Pointer

												ELSE

														//	it	is	not	the	start	node;

														//	so	make	the	previous	node’s	pointer	point	to

														//	the	current	node’s	'next'	pointer;	thereby	removing	all

														//	references	to	the	current	pointer	from	the	list

														List[PreviousNodePtr].Pointer	←	List[ThisNodePtr].Pointer

										ENDIF

										List[ThisNodePtr].Pointer	←	FreeListPtr

										FreeListPtr	←	ThisNodePtr

						ENDIF

		ENDPROCEDURE

Access	all	nodes	stored	in	the	linked	list
		PROCEDURE	OutputAllNodes

						CurrentNodePtr	←	StartPointer	//	start	at	beginning	of	list

						WHILE	CurrentNodePtr	<>	NullPointer	DO	//	while	not	end	of	list

										OUTPUT	List[CurrentNodePtr].Data

										//	follow	the	pointer	to	the	next	node

										CurrentNodePtr	←	List[CurrentNodePtr].Pointer

						ENDWHILE

		ENDPROCEDURE

TASK	23.05
Convert	the	pseudocode	for	the	linked-list	handling	subroutines	to	program	code.	Incorporate	the
subroutines	into	a	program	and	test	them.

Note	that	a	stack	ADT	and	a	queue	ADT	can	be	treated	as	special	cases	of	linked	lists.	The	linked	list
stack	only	needs	to	add	and	remove	nodes	from	the	front	of	the	linked	list	(see	Section	23.08).	The
linked	list	queue	only	needs	to	add	nodes	to	the	end	of	the	linked	list	and	remove	nodes	from	the	front
of	the	linked	list	(see	Section	23.09).

23.07	Binary	trees
In	the	real	world,	we	draw	tree	structures	to	represent	hierarchies.	For	example,	we	can	draw	a	family
tree	showing	ancestors	and	their	children.	A	binary	tree	is	different	to	a	family	tree	because	each	node
can	have	at	most	two	‘children’.

In	computer	science	binary	trees	are	used	for	different	purposes.	In	Chapter	20	(Section	20.06),	you
saw	the	use	of	a	binary	tree	as	a	syntax	tree.	In	this	chapter,	you	will	use	an	ordered	binary	tree	ADT
(such	as	the	one	shown	in	Figure	23.03)	as	a	binary	search	tree.

Figure	23.03	Conceptual	diagram	of	an	ordered	binary	tree

Nodes	are	added	to	an	ordered	binary	tree	in	a	specific	way:

Start	at	the	root	node	as	the	current	node.

Repeat

If	the	data	value	is	greater	than	the	current	node’s	data	value,	follow	the	right	branch.

If	the	data	value	is	smaller	than	the	current	node’s	data	value,	follow	the	left	branch.

Until	the	current	node	has	no	branch	to	follow.

Add	the	new	node	in	this	position.

For	example,	if	we	want	to	add	a	new	node	with	data	value	D	to	the	binary	tree	in	Figure	23.03,	we
execute	the	following	steps.

This	type	of	tree	has	a	special	use	as	a	search	tree.	Just	like	the	binary	search	applied	to	an	ordered
linear	list,	the	binary	search	tree	gives	the	benefit	of	a	faster	search	than	a	linear	search	or	searching	a
linked	list.	The	ordered	binary	tree	also	has	a	benefit	when	adding	a	new	node:	other	nodes	do	not	need
to	be	moved,	only	a	left	or	right	pointer	needs	to	be	added	to	link	the	new	node	into	the	existing	tree.

Start	at	the	root	node.

D	is	smaller	than	F,	so	turn	left.

D	is	greater	than	C,	so	turn	right.

D	is	smaller	than	E,	so	turn	left.

There	is	no	branch	going	left	from	E,	so	we	add	D	as	a	left	child	from	E	(see	Figure	23.04).

1

2

3

4

5

Figure	23.04	Conceptual	diagram	of	adding	a	node	to	an	ordered	binary	tree

We	can	store	the	binary	tree	in	an	array	of	records	(see	Figure	23.05).	One	record	represents	a	node
and	consists	of	the	data	and	a	left	pointer	and	a	right	pointer.	Unused	nodes	are	linked	together	to	form
a	free	list.

Figure	23.05	Binary	tree	before	any	nodes	are	inserted

Create	a	new	binary	tree
		//	NullPointer	should	be	set	to	-1	if	using	array	element	with	index	0

		CONSTANT	NullPointer	=	–1

		//	Declare	record	type	to	store	data	and	pointers

		TYPE	TreeNode

						DECLARE	Data	:	STRING

						DECLARE	LeftPointer	:	INTEGER

						DECLARE	RightPointer	:	INTEGER

		ENDTYPE

		DECLARE	RootPointer	:	INTEGER

		DECLARE	FreePtr	:	INTEGER

		DECLARE	Tree	:	ARRAY[0	:	6]	OF	TreeNode

		PROCEDURE	InitialiseTree

						RootPointer	←	NullPointer		//	set	start	pointer

						FreePtr	←	0																//	set	starting	position	of	free	list

						FOR	Index	←	0	TO	5									//	link	all	nodes	to	make	free	list

										Tree[Index].LeftPointer	←	Index	+	1

						NEXT	Index

						Tree	[6].LeftPointer	←	NullPointer	//	last	node	of	free	list

		ENDPROCEDURE

Insert	a	new	node	into	a	binary	tree
		PROCEDURE	InsertNode(NewItem)

						IF	FreePtr	<>	NullPointer

								THEN		//	there	is	space	in	the	array

										//	take	node	from	free	list,	store	data	item,	set	null	pointers

										NewNodePtr	←	FreePtr

										FreePtr	←	Tree[FreePtr].LeftPointer

										Tree[NewNodePtr].Data	←	NewItem

										Tree[NewNodePtr].LeftPointer	←	NullPointer

										Tree[NewNodePtr].RightPointer	←	NullPointer

										//	check	if	empty	tree

										IF	RootPointer	=	NullPointer

												THEN		//	insert	new	node	at	root

														RootPointer	←	NewNodePtr

												ELSE		//	find	insertion	point

														ThisNodePtr	←	RootPointer			//	start	at	the	root	of	the	tree

														WHILE	ThisNodePtr	<>	NullPointer	DO		//	while	not	a	leaf	node

																		PreviousNodePtr	←	ThisNodePtr		//	remember	this	node

																		IF	Tree[ThisNodePtr].Data	>	NewItem

																				THEN		//	follow	left	pointer

																						TurnedLeft	←	TRUE

																						ThisNodePtr	←	Tree[ThisNodePtr].LeftPointer

																				ELSE	//	follow	right	pointer

																						TurnedLeft	←	FALSE

																						ThisNodePtr	←	Tree[ThisNodePtr].RightPointer

																		ENDIF

														ENDWHILE

														IF	TurnedLeft	=	TRUE

																THEN

																		Tree[PreviousNodePtr].LeftPointer	←	NewNodePtr

																ELSE

																		Tree[PreviousNodePtr].RightPointer	←	NewNodePtr

														ENDIF

										ENDIF

						ENDIF

		ENDPROCEDURE

Find	a	node	in	a	binary	tree
		FUNCTION	FindNode(SearchItem)	RETURNS	INTEGER		//	returns	pointer	to	node

						ThisNodePtr	←	RootPointer					//	start	at	the	root	of	the	tree

						WHILE	ThisNodePtr	<>	NullPointer			//	while	a	pointer	to	follow

								AND	Tree[ThisNodePtr].Data	<>	SearchItem	DO	//	and	search	item	not	found

										IF	Tree[ThisNodePtr].Data	>	SearchItem

												THEN		//	follow	left	pointer

														ThisNodePtr	←	Tree[ThisNodePtr].LeftPointer

												ELSE	//	follow	right	pointer

														ThisNodePtr	←	Tree[ThisNodePtr].RightPointer

										ENDIF

						ENDWHILE

						RETURN	ThisNodePtr	//	will	return	null	pointer	if	search	item	not	found

		ENDFUNCTION

TASK	23.06
Write	program	code	to	implement	a	binary	search	tree.

23.08	Stacks
In	Chapter	13	(Section	13.08)	we	looked	at	the	conceptual	data	structure	of	a	stack.	A	stack	can	be
implemented	using	a	1D	array.	Figure	23.06	shows	a	stack	containing	four	data	items.	For	conceptual
reasons	the	array	elements	are	numbered	from	the	bottom	up.

Note	that	BaseOfStackPointer	will	always	point	to	element	0	of	the	array.	TopOfStackPointer	will	vary.	It	will
increase	when	an	item	is	pushed	onto	the	stack	and	it	will	decrease	when	an	item	is	popped	off	the
stack.	When	the	stack	is	empty,	TopOfStackPointer	will	have	the	value–1.

Figure	23.06	A	stack

Create	a	new	stack
		//	NullPointer	should	be	set	to	-1	if	using	array	element	with	index	0

		CONSTANT	EMPTYSTRING	=	""

		CONSTANT	NullPointer	=	–1

		CONSTANT	MaxStackSize	=	8

		DECLARE	BaseOfStackPointer	:	INTEGER

		DECLARE	TopOfStackPointer	:	INTEGER

		DECLARE	Stack	:	ARRAY[1	:	MaxStackSize	–	1]	OF	STRING

		PROCEDURE	InitialiseStack

						BaseOfStackPointer	←	0													//	set	base	of	stack	pointer

						TopOfStackPointer	←	NullPointer				//	set	top	of	stack	pointer

		ENDPROCEDURE

Push	an	item	onto	the	stack
		PROCEDURE	Push(NewItem)

						IF	TopOfStackPointer	<	MaxStackSize	–	1

								THEN					//	there	is	space	on	the	stack

																	//	increment	top	of	stack	pointer

										TopOfStackPointer	←	TopOfStackPointer	+	1

																	//	add	item	to	top	of	stack

										Stack[TopOfStackPointer]	←	NewItem

						ENDIF

		ENDPROCEDURE

Pop	an	item	off	the	stack
		FUNCTION	Pop()

						DECLARE	Item	:	STRING

						Item	←	EMPTYSTRING

						IF	TopOfStackPointer	>	NullPointer

								THEN					//	there	is	at	least	one	item	on	the	stack

																	//	pop	item	off	the	top	of	the	stack

										Item	←	Stack[TopOfStackPointer]

																	//	decrement	top	of	stack	pointer

										TopOfStackPointer	←	TopOfStackPointer	–	1

						ENDIF

						RETURN	Item

		ENDFUNCTION

TASK	23.07

Write	a	program	to	implement	the	above	pseudocode	subroutines.	Add	a	menu	to	test	the
subroutines.

Write	a	program	to	implement	a	stack	as	a	linked	list.	Note	that	the	adding	and	removing	of
nodes	is	much	simpler	than	for	an	ordered	linked	list.

1

2

23.09	Queues
In	Chapter	13	(Section	13.09)	we	looked	at	the	conceptual	data	structure	of	a	queue.	A	queue	can	be
implemented	using	a	1D	array.	Figure	23.07	shows	a	queue	containing	five	data	items.

FrontOfQueuePointer	always	points	to	the	first	element	in	the	queue,	that	is	the	next	element	to	be	taken
from	the	queue.	EndOfQueuePointer	always	points	to	the	last	element	in	the	queue.	Before	another	element
joins	the	queue,	the	EndOfQueuePointer	is	incremented.	Note	that	when	adjusting	either	pointer	the
possibility	of	wrap-round	has	to	be	tested.

To	make	it	easier	to	test	whether	the	queue	is	empty	or	full,	a	counter	variable	can	be	used.

Figure	23.07	A	queue	before	wrap-round

Figure	23.08	A	queue	with	wrap-round

Create	a	new	queue
		//	NullPointer	should	be	set	to	-1	if	using	array	element	with	index	0

		CONSTANT	EMPTYSTRING	=	""

		CONSTANT	NullPointer	=	-1

		CONSTANT	MaxQueueSize	=	8

		DECLARE	FrontOfQueuePointer	:	INTEGER

		DECLARE	EndOfQueuePointer	:	INTEGER

		DECLARE	NumberInQueue	:	INTEGER

		DECLARE	Queue	:	ARRAY[0	:	MaxQueueSize	–	1]	OF	STRING

		PROCEDURE	InitialiseQueue

						FrontOfQueuePointer	←	NullPointer			//	set	front	of	queue	pointer

						EndOfQueuePointer	←	NullPointer					//	set	end	of	queue	pointer

						NumberInQueue	←	0																			//	no	elements	in	queue

		ENDPROCEDURE

Add	an	item	to	the	queue
		PROCEDURE	AddToQueue(NewItem)

						IF	NumberInQueue	<	MaxQueueSize

								THEN					//	there	is	space	in	the	queue

																	//	increment	end	of	queue	pointer

										EndOfQueuePointer	←	EndOfQueuePointer	+	1

																	//	check	for	wrap-round

										IF	EndOfQueuePointer	>	MaxQueueSize	–	1

												THEN					//	wrap	to	beginning	of	array

														EndOfQueuePointer	←	0

																						//	add	item	to	end	of	queue

										ENDIF

										Queue[EndOfQueuePointer]	←	NewItem

											//	increment	counter

											NumberInQueue	←	NumberInQueue	+	1

						ENDIF

		ENDPROCEDURE

Remove	an	item	from	the	queue
		FUNCTION	RemoveFromQueue()

						DECLARE	Item	:	STRING

						Item	←	EMPTYSTRING

						IF	NumberInQueue	>	0

								THEN	//	there	is	at	least	one	item	in	the	queue

													//	remove	item	from	the	front	of	the	queue

										Item	←	Queue[FrontOfQueuePointer]

										NumberInQueue	←	NumberInQueue	–	1

										IF	NumberInQueue	=	0

												THEN	//	if	queue	empty,	reset	pointers

														CALL	InitialiseQueue

												ELSE

														//	increment	front	of	queue	pointer

														FrontOfQueuePointer	←	FrontOfQueuePointer	+	1

														//	check	for	wrap-round

														IF	FrontOfQueuePointer	>	MaxQueueSize	–	1

																THEN	//	wrap	to	beginning	of	array

																FrontOfQueuePointer	←	0

														ENDIF

										ENDIF

						ENDIF

						RETURN	Item

		ENDFUNCTION

TASK	23.08

Write	a	program	to	implement	the	above	pseudocode	subroutines.	Add	a	menu	to	test	the
subroutines.

Write	program	code	to	implement	a	queue	as	a	linked	list.	You	may	find	it	helpful	to	introduce
another	pointer	that	always	points	to	the	end	of	the	queue.	You	will	need	to	update	it	when	you
add	a	new	node	to	the	queue.

1

2

23.10	Graphs
In	Computer	Science	a	graph	is	an	ADT	consisting	of	vertices	(nodes)	and	edges.	Graphs	are	used	to
record	relationships	between	things.	For	uses	of	graphs	in	AI	see	Chapter	22	Section	22.02.	A	simple
graph	is	shown	in	Figure	23.09.	It	represents	a	small	part	of	the	London	Underground	map	shown	in
Figure	12.02	in	Chapter	12.

Figure	23.09	Graph	showing	part	of	the	London	Underground	map

The	vertices	labelled	A	to	F	are	the	underground	stations	and	the	edges	represent	train	lines
connecting	the	stations.	For	example,	you	can	take	a	train	directly	from	B	to	D.	To	get	from	B	to	F,	you
have	to	travel	via	C	or	E.	Two	vertices	connected	by	an	edge	are	known	as	neighbours.

A	labelled	(weighted)	graph	has	edges	with	values	representing	something.	In	our	example,	we	can	add
weights	to	Figure	23.10	to	show	the	time	it	takes	to	travel	between	stations:

Figure	23.10	Weighted	graph	showing	travelling	times	between	stations

Graphs	can	be	directed	or	undirected	(as	in	Figure	23.10).	Travel	times	may	vary	depending	on	the
direction	of	travel.	This	can	be	shown	in	a	directed	graph	(see	Figure	23.11).

Figure	23.11	Directed	graph

Sometimes	one	direction	may	not	be	available.	For	example,	if	the	line	from	B	to	D	is	blocked,	this	could
be	represented	as	shown	in	Figure	23.12.

Figure	23.12	Directed	graph

We	can	use	a	graph	to	plan	a	journey.	Using	Figure	23.12,	we	want	to	travel	from	C	to	D,	so	we	can
either	use	the	route	C	B	A	D	(11	minutes)	or	the	route	C	F	E	D	(9	minutes).	For	the	return	journey	we
can	use	D	B	C	(7	minutes).

TASK	23.09
Draw	the	labelled	edges	for	a	directed	graph	of	a	road	system	where:

A	to	B	is	2	km,	and	it	is	a	one-way	system

D	to	A	is	1	km,	and	is	one-way

B	to	D	is	3	km	and	is	one-way

B	to	C	is	4	km

C	to	E	is	7	km

D	to	E	is	5	km.

To	implement	a	graph,	we	can	use	an	adjacency	matrix	or	an	adjacency	list.

An	adjacency	matrix	stores	the	relationship	between	every	vertex	to	all	other	vertices.	For	an
unweighted	graph,	a	1	represents	an	edge,	a	0	no	edge.	When	weights	are	to	be	recorded,	the	weight
replaces	the	1.	Instead	of	a	0,	we	use	the	infinity	symbol	∞.

	 A B C D E F

A 0 1 0 1 0 0

B 1 0 1 1 1 0

C 0 1 0 0 0 1

D 1 1 0 0 1 0

E 0 1 0 1 0 1

F 0 0 1 0 1 0

Table	23.01

Adjacency	matrix	for	Figure	23.09

	 A B C D E F

A ∞ 3 ∞ 5 ∞ ∞

B 3 ∞ 3 ∞ 4 ∞

C ∞ 3 ∞ ∞ ∞ 2

D 5 4 ∞ ∞ 2 ∞

E ∞ 4 ∞ 4 ∞ 2

F ∞ ∞ 3 ∞ 3 ∞

Table	23.02

Adjacency	matrix	for	Figure	23.12

An	adjacency	list	stores	the	relationship	between	every	vertex	to	all	relevant	vertices.	An	entry	is	made
only	when	there	is	an	edge	between	two	vertices.	For	a	weighted	graph,	the	connection	as	well	as	the

weight	is	stored	in	the	list.

	 connected	to

A B,	D

B A,	C,	D,	E

C B,	F

D A,	B,	E

E B,	D,	F

F C,	E

Table	23.03

Adjacency	list	for	Figure	23.09

	 connected	to

A B,	3;	D,	5

B A,	3;	C,	3;	E,	4

C B,	3;	F,	2

D A,	5;	B,	4;	E,	2

E B,	4;	D,	4;	F,	2

F C,	3;	E,	3

Table	23.04

Adjacency	list	for	Figure	23.12

TASK	23.10
Construct	an	adjacency	matrix	and	an	adjacency	list	to	represent	your	graph	from	Task	23.09.

23.11	Hash	tables
If	we	want	to	store	records	in	an	array	and	have	direct	access	to	records,	we	can	use	the	concept	of	a
hash	table.

The	idea	behind	a	hash	table	is	that	we	calculate	an	address	(the	array	index)	from	the	key	value	of	the
record	and	store	the	record	at	this	address.	When	we	search	for	a	record,	we	calculate	the	address
from	the	key	and	go	to	the	calculated	address	to	find	the	record.	Calculating	an	address	from	a	key	is
called	‘hashing’.

Finding	a	hashing	function	that	will	give	a	unique	address	from	a	unique	key	value	is	very	difficult.	If
two	different	key	values	hash	to	the	same	address	this	is	called	a	‘collision’.	There	are	different	ways	to
handle	collisions:

chaining:	create	a	linked	list	for	collisions	with	start	pointer	at	the	hashed	address

using	overflow	areas:	all	collisions	are	stored	in	a	separate	overflow	area,	known	as	‘closed	hashing’

using	neighbouring	slots:	perform	a	linear	search	from	the	hashed	address	to	find	an	empty	slot,
known	as	‘open	hashing’.

WORKED	EXAMPLE	23.01

Calculating	addresses	in	a	hash	table

Assume	we	want	to	store	customer	records	in	a	1D	array	HashTable[0	:	n].	Each	customer	has	a
unique	customer	ID,	an	integer	in	the	range	10001	to	99999.

We	need	to	design	a	suitable	hashing	function.	The	result	of	the	hashing	function	should	be	such
that	every	index	of	the	array	can	be	addressed	directly.	The	simplest	hashing	function	gives	us
addresses	between	0	and	n:
FUNCTION	Hash(Key)	RETURNS	INTEGER

				Address	←	Key	MOD(n	+	1)

				RETURN	Address

ENDFUNCTION

For	illustrative	purposes,	we	choose	n	to	be	9.	Our	hashing	function	is:

Index	←	CustomerID	MOD	10

We	want	to	store	records	with	customer	IDs:	45876,	32390,	95312,	64636,	23467.	We	can	store	the
first	three	records	in	their	correct	slots,	as	shown	in	Figure	23.13.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
32390     95312             45876            

Figure	23.13	A	hash	table	without	collisions

The	fourth	record	key	(64636)	also	hashes	to	index	6.	This	slot	is	already	taken;	we	have	a
collision.	If	we	store	our	record	here,	we	lose	the	previous	record.	To	resolve	the	collision,	we	can
choose	to	store	our	record	in	the	next	available	space,	as	shown	in	Figure	23.14.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
32390     95312             45876 64636        

Figure	23.14	A	hash	table	with	a	collision	resolved	by	open	hashing

The	fifth	record	key	(23467)	hashes	to	index	7.	This	slot	has	been	taken	up	by	the	previous	record,
so	again	we	need	to	use	the	next	available	space	(Figure	23.15).

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
32390     95312             45876 64636 23467    

Figure	23.15	A	hash	table	with	two	collisions	resolved	by	open	hashing

When	searching	for	a	record,	we	need	to	allow	for	these	out-of-place	records.	We	know	if	the
record	we	are	searching	for	does	not	exist	in	the	hash	table	when	we	come	across	an	unoccupied
slot.

We	will	now	develop	algorithms	to	insert	a	record	into	a	hash	table	and	to	search	for	a	record	in
the	hash	table	using	its	record	key.

The	hash	table	is	a	1D	array	HashTable[0	:	Max]	OF	Record.

The	records	stored	in	the	hash	table	have	a	unique	key	stored	in	field	Key.

Insert	a	record	into	a	hash	table
		PROCEDURE	Insert(NewRecord)

						Index	←	Hash(NewRecord.Key)

						WHILE	HashTable[Index]	NOT	empty	DO

										Index	←	Index	+	1	//	go	to	next	slot	to	check	if	empty

										IF	Index	>	Max	//	beyond	table	boundary?

												THEN	//	wrap	around	to	beginning	of	table

														Index	←	0

										ENDIF

						ENDWHILE

						HashTable[Index]	←	NewRecord

		ENDPROCEDURE

Find	a	record	in	a	hash	table
		FUNCTION	FindRecord(SearchKey)	RETURNS	Record

						Index	←	Hash(SearchKey)

						WHILE	(HashTable[Index].Key	<>	SearchKey)

								AND	(HashTable[Index]	NOT	empty)	DO

										Index	←	Index	+	1	//	go	to	next	slot

										IF	Index	>	Max	//	beyond	table	boundary?

												THEN	//	wrap	around	to	beginning	of	table

														Index	←	0

										ENDIF

						ENDWHILE

						IF	HashTable[Index]	NOT	empty	//	if	record	found

								THEN

										RETURN	HashTable[Index]	//	return	the	record

						ENDIF

		ENDFUNCTION

23.12	Dictionaries
A	real-world	dictionary	is	a	collection	of	key–value	pairs.	The	key	is	the	term	you	use	to	look	up	the
required	value.	For	example,	if	you	use	an	English–French	dictionary	to	look	up	the	English	word
‘book’,	you	will	find	the	French	equivalent	word	‘livre’.	A	real-world	dictionary	is	organised	in
alphabetical	order	of	keys.

An	ADT	dictionary	in	computer	science	is	implemented	using	a	hash	table	(see	Section	23.11),	so	that	a
value	can	be	looked	up	using	a	direct-access	method.

Python,	VB.NET	and	Java	have	a	built-in	ADT	dictionary	class.

Here	are	some	examples	of	Python	dictionaries:
				EnglishFrench	=	{}	#	empty	dictionary

				EnglishFrench["book"]	=	"livre"	#	add	a	key-value	pair	to	the	dictionary

				EnglishFrench["pen"]	=	"stylo"

				print(EnglishFrench["book"])	#	access	a	value	in	the	dictionary

				#	alternative	method	of	setting	up	a	dictionary

				ComputingTerms	=	{"Boolean"	:	"can	be	TRUE	or	FALSE",	"Bit"	:	"0	or	1"}

				print(ComputingTerms["Bit"])

Here	are	some	examples	of	VB	dictionaries:
				Dim	EnglishFrench	As	New	Dictionary(Of	String,	String)

				EnglishFrench.Add("book",	"livre")

				EnglishFrench.Add("pen",	"stylo")

				Console.WriteLine(EnglishFrench.Item("book"))

				Dim	ComputingTerms	As	New	Dictionary(Of	String,	String)

				ComputingTerms.Add("Boolean",	"can	be	TRUE	or	FALSE")

				ComputingTerms.Add("Bit",	"0	or	1")

				Console.WriteLine(ComputingTerms.Item("Bit"))

				Console.ReadLine()

Here	are	some	examples	of	Java	dictionaries	(the	Dictionary	class	is	obsolete,	use	HashMap	instead):
		import	java.util.Map;

		import	java.util.HashMap;

						Map<String,	String>	englishFrench	=	new	HashMap<String,	String>();

						englishFrench.put("book",	"livre");

						englishFrench.put("pen",	"stylo");

						System.out.println(englishFrench.get("book"));

						Map<String,	String>		computingTerms	=	new	HashMap<String,	String>();

						computingTerms.put("Boolean",	"can	be	TRUE	or	FALSE");

						computingTerms.put("Bit",	"0	or	1");

						System.out.println(computingTerms.get("Bit"));

There	are	many	built-in	functions	for	Python,	VB	and	Java	dictionaries.	These	are	beyond	the	scope	of
this	book.	However,	we	need	to	understand	how	dictionaries	are	implemented.	The	following
pseudocode	shows	how	to	create	a	new	dictionary.
		TYPE	DictionaryEntry

						DECLARE	Key			:	STRING

						DECLARE	Value	:	STRING

		ENDTYPE

		DECLARE	EnglishFrench	:	ARRAY[0	:	999]	OF	DictionaryEntry		//	empty	dictionary

TASK	23.11
Write	pseudocode	to:

insert	a	key–value	pair	into	a	dictionary

look	up	a	value	in	a	dictionary.

Use	the	hashing	function	from	Worked	Example	23.01.

23.13	Big	O	notation
A	problem	can	be	solved	in	different	ways,	with	different	algorithms.	Clearly,	we	want	to	use	time	and
memory	efficiently.	A	way	of	comparing	the	efficiency	of	algorithms	has	been	devised	using	order	of
growth	as	a	function	of	the	size	of	the	input.	Big	O	notation	is	used	to	classify	algorithms	according	to
how	their	running	time	(or	space	requirements)	grows	as	the	input	size	grows.	The	letter	O	is	used
because	the	growth	rate	of	a	function	is	also	referred	to	as	‘order	of	the	function’.	The	worst-case
scenario	is	used	when	calculating	the	order	of	growth	for	very	large	data	sets.

Consider	the	linear	search	algorithm	in	Chapter	13,	Worked	Example	13.02.	The	worst	case	scenario	is
that	the	item	searched	for	is	the	last	item	in	the	list.	The	longer	the	list,	the	more	comparisons	have	to
be	made.	If	the	list	is	twice	as	long,	twice	as	many	comparisons	have	to	be	made.	Generally,	we	can	say
the	order	of	growth	is	linear.	We	write	this	as	O(n),	where	n	is	the	size	of	the	data	set.

Consider	the	bubble	sort	algorithm	for	the	worst	case	scenario.
		Unsorted	←	n	–	1

		FOR	i	←	0	TO	n	–	2

						FOR	j	←	0	TO	Unsorted	-	1

										IF	MyList[j]	>	MyList[j	+	1]

												THEN

														Temp	←	MyList[j]

														MyList[j]	←	MyList[j	+	1]

														MyList[j	+	1]	←	Temp

										ENDIF

						NEXT	j

						Unsorted	←	Unsorted	-	1

		NEXT	i

The	basic	operation	for	this	algorithm	is	the	comparison	IF	MyList[j]	>	MyList[j	+	1]

n Number	of	comparisons

1 0 	

2 1 	

3 3 =	1	+	2

4 6 =	1	+	2	+	3

5 10 =	1	+	2	+	3	+	4

6 15 =	1	+	2	+	3	+	4	+	5

Table	23.05	Number	of	comparisons	in	bubble	sort

We	can	see	that	the	total	number	of	comparisons	is	the	sum	of	the	first	(n	–	1)	whole	numbers.	This
leads	us	to	the	formula:

½	*	n	*	(n	–	1)	=	½	*	(n2	–	n)

For	very	large	n	we	can	disregard	all	factors	except	the	largest	and	we	get	n2.	So	the	order	of	growth	is
n2.

Consider	the	binary	search	algorithm	in	Section	23.04.	With	each	iteration	this	algorithm	halves	the
number	of	values	in	the	data	set.	This	iterative	halving	of	data	sets	produces	a	growth	curve	that	peaks
at	the	beginning	and	slowly	flattens	out	as	the	size	of	the	data	sets	increase.	This	type	of	algorithm	is
described	as	O(log2n)

Table	23.06	shows	a	summary	of	standard	algorithms	and	their	order	of	growth	(time	complexity).

Order	of	growth Example Explanation

O(1) FUNCTION

GetFirstItem(List	:

ARRAY)

RETURN	List[1]

The	complexity	of	the	algorithm	does	not	change
regardless	of	data	set	size

O(n) Linear	search
Bubble	sort	performed
on	an	already	sorted	list

Linear	growth

O(log2n) Binary	search The	total	time	taken	increases	as	the	data	set	size
increases,	but	each	comparison	halves	the	data
set.	So	the	time	taken	increases	by	smaller
amounts	and	approaches	constant	time.

O(n2) Bubble	sort
Insertion	sort

Polynomial	growth
Common	with	algorithms	that	involve	nested
iterations	over	the	data	set

O(n3)
	

Polynomial	growth
Deeper	nested	iterations	will	result	in	O(n3),
O(n4),	…

O(2n) Recursive	calculation	of
Fibonacci	numbers

Exponential	growth

Table	23.06	Order	of	growth	(time	complexity)	for	data	input	set	of	size	n

Space	complexity	refers	to	the	amount	of	memory	required	for	a	growing	number	of	values	n	in	the
dataset.

The	ADT	operations	discussed	in	this	chapter	have	space	complexity	O(n).	This	means	that	they	only
take	the	space	required	for	the	data	set.	Bubble	sort	and	insertion	sort	have	space	complexity	of	O(1).
This	means	they	do	not	require	extra	memory	for	sorting	larger	lists.

Reflection	Point:
List	the	standard	algorithms	you	have	met	in	this	chapter.	Can	you	give	the	essential	features	of	each	of
these?

Summary
Standard	algorithms	include	bubble	sort,	insertion	sort,	linear	search	and	binary	search.
Abstract	data	types	(ADTs)	include	stacks,	queues,	linked	lists,	binary	trees,	hash	tables,
dictionaries	and	graphs.
Basic	operations	required	for	an	ADT	include	creating	an	ADT	and	inserting,	finding	or	deleting
an	element	of	an	ADT.
Time	taken	and	space	used	can	be	measured	using	Big	O	notation.

■
■

■

■

Exam-style	Questions

[3]

[1]

[2]

[5]

Complete	the	algorithm	for	a	binary	search	function	FindName.

The	data	being	searched	is	stored	in	the	array	Names[0	:	50].

The	name	to	be	searched	for	is	passed	as	a	parameter.
FUNCTION	FindName(s	:	STRING)	RETURNS	INTEGER

				Index	←	-1

				First	←	0

				Last	←	50

				WHILE	(Last	>=	First)	AND	                      	DO

								Middle	←	(First	+	Last)	DIV	2

								IF	Names[Middle]	=	s

										THEN

												Index	←	Middle

										ELSE

												IF	                             

													THEN

															Last	←	Middle	+	1

													ELSE

																                           

												ENDIF

								ENDIF

				ENDWHILE

ENDFUNCTION

The	binary	search	does	not	work	if	the	data	in	the	array	being	searched	is	          

What	does	the	function	FindName	return	when:

the	name	searched	for	exists	in	the	array?

the	name	searched	for	does	not	exist	in	the	array?

A	queue	Abstract	Data	Type	(ADT)	is	to	be	implemented	as	a	linked	list	of	nodes.	Each	node	is	a
record,	consisting	of	a	data	field	and	a	pointer	field.	The	queue	ADT	also	has	a	FrontOfQueue	pointer
and	an	EndOfQueue	pointer	associated	with	it.	The	possible	queue	operations	are:	JoinQueue	and
LeaveQueue.

Add	labels	to	the	diagram	to	show	the	state	of	the	queue	after	three	data	items	have	been
added	to	the	queue	in	the	given	order:	Apple,	Pear,	Banana.

Add	labels	to	the	diagram	to	show	how	the	unused	nodes	are	linked	to	form	a	list	of	free

1 a

b

c

i

ii

2

a i

ii

[2]

[3]

[7]

[7]

[6]

[3]

nodes.	This	list	has	a	StartOfFreeList	pointer	associated	with	it.

Write	program	code	to	declare	the	record	type	Node.

Write	program	code	to	create	an	array	Queue	with	50	records	of	type	Node.	Your	solution	should
link	all	nodes	and	initialise	the	pointers	FrontOfQueue,	EndOfQueue	and	StartOfFreeList.

The	pseudocode	algorithm	for	the	queue	operation	JoinQueue	is	written	as	a	procedure	with	the
header:

PROCEDURE	JoinQueue(NewItem)

where	NewItem	is	the	new	value	to	be	added	to	the	queue.	The	procedure	uses	the	variables	shown
in	the	following	identifier	table:

Identifier Data	type Description

NullPointer INTEGER Constant	set	to	–1

	 	 Array	to	store	queue	data

	 STRING Value	to	be	added

	 	 Pointer	to	next	free	node	in	array

	 	 Pointer	to	first	node	in	queue

	 	 Pointer	to	last	node	in	queue

	 	 Pointer	to	node	to	be	added

Complete	the	identifier	table.

Complete	the	pseudocode	using	the	identifiers	from	the	table	in	part	(c)	(i).
PROCEDURE	JoinQueue(NewItem	:	STRING)

				//	Report	error	if	no	free	nodes	remaining

				IF	StartOfFreeList	=

						THEN

								Report	Error

						ELSE

								//	new	data	item	placed	in	node	at	start	of	free	list

								NewNodePointer	←	StartOfFreeList

								Queue[NewNodePointer].Data	←	NewItem

								//	adjust	free	list	pointer

								StartOfFreeList	←	Queue[NewNodePointer].Pointer

								Queue[NewNodePointer].Pointer	←	NullPointer

								//	if	first	item	in	queue	then	adjust	front	of	queue	pointer

								IF	FrontOfQueue	=	NullPointer

										THEN

											

											

								ENDIF

								//	new	node	is	new	end	of	queue

								Queue[.....................].Pointer	←

								EndOfQueue	←	...

				ENDIF

ENDPROCEDURE

A	program	is	required	that	sorts	a	list	of	words	into	alphabetical	order.	The	list	of	words	is	supplied
as	a	text	file.

Write	a	program	to	declare	a	string	array,	WordList,	that	can	hold	500	elements.	Initialise	the	array
so	all	elements	contain	the	empty	string.

b i

ii

c

i

ii

3

a

[3]

[7]

[7]

[3]

[2]

Write	a	procedure,	OutputList,	to	output	all	elements	in	index	order.

Write	a	procedure,	LoadWords,	that	asks	the	user	for	a	filename	and	reads	the	contents	of	the	text
file,	storing	each	line	of	text	(word)	in	a	separate	array	element.	The	procedure	should	output	a
relevant	error	message	if:

the	file	doesn’t	exist

the	array	is	full.

Write	a	procedure,	SortWords,	to	perform	a	bubble	sort	on	all	non-empty	array	elements,	so	that
the	words	are	in	alphabetical	order.

Write	program	code	to	call	LoadWords,	then	OutputList,	followed	by	SortWords	and	then	OutputList
again.

Test	your	program	by	running	it	first	with	a	non-existing	file,	and	then	with	a	text	file	containing
20	words	in	random	order.

Make	screenshots	of	your	test	runs	that	show	your	code	works	correctly.

b

c

d

e

f

Chapter	24:
Recursion

24.01	Concept	of	recursion
In	mathematical	logic	and	computer	science,	a	function	or	procedure	is	said	to	be	a	recursive	routine
if	it	is	defined	in	terms	of	itself.

The	classic	mathematical	example	is	the	factorial	function,	n!,	which	is	defined	in	Figure	24.01.	This
definition	holds	for	all	positive	whole	numbers.

Figure	24.01	Mathematical	definition	of	the	factorial	function

Figure	24.02	shows	expressions	of	the	factorial	function	for	the	first	four	numbers.

Figure	24.02	Expressions	of	the	factorial	function

Because	0!	=	1:

4!	=	4	×	3	×	2	×	1	×	1	=	24

Recursive	solutions	have	a	base	case	and	a	general	case.	The	base	case	gives	a	result	without
involving	the	general	case.	The	general	case	is	defined	in	terms	of	the	definition	itself.	It	is	very
important	that	the	general	case	must	come	closer	to	the	base	case	with	each	recursion,	for	any	starting
point.

24.02	Programming	a	recursive	subroutine

WORKED	EXAMPLE	24.01

Coding	the	factorial	function

We	could	program	the	function	Factorial	iteratively,	using	a	loop:
FUNCTION	Factorial(n	:	INTEGER)	RETURNS	INTEGER

				Result	←	1

				FOR	i	←	1	TO	n

								Result	←	Result	*	i

				NEXT	i

				RETURN	Result

ENDFUNCTION

Alternatively,	we	can	define	the	function	Factorial	recursively	(Figure	24.03).
FUNCTION	Factorial(n	:	INTEGER)	RETURNS	INTEGER

Figure	24.03	The	factorial	function	defined	recursively

The	recursive	pseudocode	resembles	the	original	mathematical	definition	of	the	factorial	function.
The	dry	run	in	Figure	24.05	(Section	24.03)	shows	how	this	works.

Discussion	Point:
Carefully	examine	the	two	solutions	to	the	factorial	function.	What	happens	if	the	iterative	function	is
called	with	parameter	0?	What	happens	if	the	recursive	function	is	called	with	parameter	0?	What
changes	would	need	to	be	made	so	the	mathematical	definition	holds	for	all	values	of	n?

When	writing	a	recursive	subroutine,	there	are	three	rules	you	must	observe.	A	recursive	subroutine
must:

have	a	base	case

have	a	general	case

reach	the	base	case	after	a	finite	(limited)	number	of	calls	to	itself.

TASK	24.01
Write	program	code	to	implement	the	recursive	algorithm	for	the	factorial	function.

Question	24.01
What	happens	when	the	function	is	called	with	Factorial(-2)?	Which	rule	is	not	satisfied?

WORKED	EXAMPLE	24.02

Coding	a	recursive	procedure

Consider	a	procedure	to	count	down	from	a	given	integer.	We	can	write	the	solution	as	an	iterative
algorithm:
PROCEDURE	CountDownFrom(n	:	INTEGER)

			FOR	i	←	n	DOWNTO	0

							OUTPUT	i

			NEXT	i

ENDPROCEDURE

We	can	also	write	the	solution	as	a	recursive	algorithm.	Consider	what	happens	after	the	first	value
has	been	output.	The	remaining	numbers	follow	the	same	pattern	of	counting	down	from	the	next
smaller	value.	The	base	case	is	when	n	reaches	0.	0	will	be	output	but	no	further	numbers.	The
general	case	is	outputting	n	and	then	counting	down	from	(n	–	1).	This	can	be	written	using
pseudocode:
PROCEDURE	CountDownFrom(n	:	INTEGER)

				OUTPUT	n

				IF	n	>	0

						THEN

								CALL	CountDownFrom(n	–	1)

				ENDIF

ENDPROCEDURE

24.03	Tracing	a	recursive	subroutine
Tracing	a	recursive	procedure
Dry-running	the	recursive	procedure	from	Worked	Example	24.02,	we	can	complete	a	trace	table	as
shown	in	Table	24.01.

Call	number Procedure	call OUTPUT n	>	0

1 CountDownFrom(3) 3 TRUE

2 CountDownFrom(2) 2 TRUE

3 CountDownFrom(1) 1 TRUE

4 CountDownFrom(0) 0 FALSE

Table	24.01	Trace	table	for	CALL	CountDownFrom(3)

It	is	more	complex	to	trace	a	subroutine	that	contains	statements	to	execute	after	the	recursive	call.
Look	at	the	slightly	modified	algorithm:
PROCEDURE	CountUpTo(n	:	INTEGER)

				IF	n	>	0

						THEN

								CALL	CountUpTo(n	–	1)

				ENDIF

				OUTPUT	n

ENDPROCEDURE

Note	that	the	statements	after	CALL	CountUpTo(n	–	1)	are	not	executed	until	control	returns	to	this
statement	as	the	recursive	calls	unwind.

What	is	the	effect	of	moving	the	OUTPUT	statement	to	the	end	of	the	procedure?	Figure	24.04	traces	the
execution	of	CALL	CountUpTo(3)

Figure	24.04	Trace	table	for	CALL	CountUpTo(3)

When	the	base	case	is	reached,	the	fourth	call	of	the	procedure	is	complete	and	the	procedure	is	exited.
Control	then	passes	back	to	the	third	call	and	so	on.	Note	how	we	show	the	trace	as	the	recursive	calls
unwind.	Don’t	go	back	up	the	table	and	fill	in	the	OUTPUT	column	as	this	will	not	make	it	clear	enough
when	the	output	occurred.

Tracing	a	recursive	function
A	recursive	function	has	a	statement	after	the	recursive	call	to	itself:	the	RETURN	statement.	Again	we
show	what	happens	when	the	recursive	calls	unwind	by	filling	in	more	rows	in	the	trace	table.	Let’s
consider	the	factorial	function	again.
FUNCTION	Factorial(n	:	INTEGER)	RETURNS	INTEGER

			IF	n	=	0

					THEN

							Result	←	1

					ELSE

							Result	←	n	*	Factorial(n	–	1)

			ENDIF

			RETURN	Result

ENDFUNCTION

Figure	24.05	Trace	table	for	Trace	table	for	CALL	Factorial(4)

Another	way	to	illustrate	how	the	function	calls	unwind	is	by	framing	each	call	with	a	box	(see	Figure
24.06).	When	the	innermost	box	is	completed	the	result	is	fed	to	the	next	one	out.	And	so	on	until	the
outermost	box	has	been	completed.

Figure	24.06	Diagrammatic	view	of	recursive	calls	of	Factorial

TASK	24.02
Consider	the	following	recursive	algorithm:
PROCEDURE	X(n	:	INTEGER)

				IF	(n	=	0)	OR	(n	=	1)

						THEN

								OUTPUT	n

						ELSE

								CALL	X(n	DIV	2)

								OUTPUT(n	MOD	2)

				ENDIF

ENDPROCEDURE

Dry-run	the	procedure	call	X(19)	by	completing	a	trace	table.	What	is	the	purpose	of	this
algorithm?

24.04	Running	a	recursive	subroutine
Recursive	subroutines	can	only	be	executed	if	the	compiler	produces	object	code	that	uses	a	stack	to
push	return	addresses	and	local	variables	when	calling	a	subroutine	repeatedly.

WORKED	EXAMPLE	24.03

Running	the	factorial	function

Consider	the	following	program,	written	in	pseudocode:
010		PROGRAM

020

030		FUNCTION	Factorial(n	:	INTEGER)	RETURNS	INTEGER

040						IF	n	=	0

050								THEN

060										Result	←	1

070								ELSE

080										Result	←	n	*	Factorial(n	-	1)

090						ENDIF

100						RETURN	Result

110		ENDFUNCTION

120

130		//	main	program

140

150		DECLARE	Answer	:	INTEGER

160		Answer	←	Factorial(3)

170		OUTPUT	Answer

180

190		ENDPROGRAM

The	first	program	statement	to	be	executed	is	line	160.	The	actual	parameter	n	has	the	value	3.	The
function	call	causes	the	return	address	to	be	put	on	the	stack,	as	shown	in	Figure	24.07.	Program
execution	jumps	to	line	30.

When	line	80	is	reached,	the	function	call	causes	the	return	address	to	be	stored	on	the	stack,
together	with	the	current	contents	of	the	local	variables.	The	locations	used	to	store	these	values
are	referred	to	as	a	stack	frame	(represented	by	the	blue	borders	in	Figure	24.07).	Each	recursive
call	will	add	another	stack	frame	to	the	stack	until	the	base	case	is	reached.

When	the	base	case	is	reached,	the	result	of	the	function	call	Factorial(0)	is	returned	by	pushing	it
onto	the	stack.	The	result	is	popped	off	the	stack	by	the	previous	call	of	the	function.	With	each
return	from	a	function	call,	the	corresponding	stack	frame	is	taken	off	and	the	values	of	the	local
variables	are	restored.	Eventually,	control	is	returned	to	line	160	with	the	result	of	the	function	call
on	the	top	of	the	stack.	The	value	of	Answer	is	output	in	line	170.

Figure	24.07	Stack	contents	during	recursive	calls	of	Factorial

TASK	24.03
Use	your	program	code	from	Task	24.01	and	add	the	main	program	as	shown	in	Worked	Example
24.03.

Amend	your	code	in	the	following	ways	(line	numbers	are	relative	to	the	pseudocode	in	Worked
Example	24.03):

Add	a	global	integer	variable	CallNumber

Initialise	CallNumber	to	zero	(line	155).

Increment	CallNumber	(line	35).

Add	a	statement	to	output	the	values	of	CallNumber	and	n	(line	36).

Add	a	statement	to	output	the	value	of	Result	(line	95).

Run	the	program	and	study	the	output.

24.05	Benefits	and	drawbacks	of	recursion
Recursion	is	an	important	technique	in	different	programming	paradigms	(See	Chapter	29,	Section
29.08).	When	designing	a	solution	to	a	mathematical	problem	that	is	recursive	by	nature,	the	easiest
way	to	write	a	solution	is	to	implement	the	recursive	definition.	Some	optimising	compilers	will	change
a	recursive	subroutine	to	an	iterative	one	when	producing	object	code.

Recursive	solutions	are	often	more	elegant	and	use	less	program	code	than	iterative	solutions.
However,	repeated	recursive	calls	can	carry	large	amounts	of	memory	usage	and	processor	time	(see
Section	24.04).	For	example,	the	procedure	call	CountDownFrom(100)	will	require	100	stack	frames	before
it	completes.

Reflection	Point:
How	can	you	tell	from	a	function	or	procedure	definition	whether	or	not	it	is	recursive?

Summary
A	recursive	subroutine	is	defined	in	terms	of	itself.
A	recursive	subroutine	must	have	a	base	case	and	a	general	case.
A	recursive	subroutine	must	reach	the	base	case	after	a	finite	number	of	calls	to	itself.
Each	time	a	subroutine	is	called,	a	stack	frame	is	pushed	onto	the	stack.
A	stack	frame	consists	of	the	return	address	and	the	values	of	the	local	variables.
When	a	subroutine	completes,	the	corresponding	stack	frame	is	popped	off	the	stack.

■
■
■
■
■
■

Exam-style	Questions
[2]

[2]

[1]

[6]

[3]

[6]

[1]

[1]

[1]

[1]

[7]

Outline	the	differences	between	iteration	and	recursion.

Give	one	advantage	and	one	disadvantage	of	using	recursive	subroutines.

The	following	is	a	recursively	defined	function	which	calculates	the	result	of	BaseExponent.	For
example,	23	is	8.
FUNCTION	Power(Base:	INTEGER,	Exponent	:	INTEGER)	RETURNS	INTEGER

				IF	Exponent	=	0

						THEN

								Result	←	1

						ELSE

								Result	←	Base	*	Power(Base,	Exponent	–	1)

				ENDIF

				RETURN	Result

ENDFUNCTION

What	is	meant	by	‘recursively	defined’?

Trace	the	execution	of	the	function	call	Power(2,4)	showing	for	each	re-entry	into	the	Power
function,	the	values	passed	to	the	function	and	the	results	returned.

Explain	the	role	of	the	stack	in	the	execution	of	the	Power	function.

Write	a	pseudocode	non-recursive	(iterative)	version	of	the	Power	function.

Give	one	reason	why	a	non-recursive	Power	function	may	be	preferred	to	a	recursive	one.

Give	one	reason	why	a	recursive	Power	function	may	be	preferred	to	a	non-recursive	one.

The	following	is	a	recursively	defined	function	which	calculates	the	nth	integer	in	the	sequence	of
Fibonacci	numbers.
01		FUNCTION	Fibonacci(n	:	INTEGER)	RETURNS	INTEGER

02						IF	(n	=	0)	OR	(n	=	1)

03								THEN

04										Result	←	1

05								ELSE

06										Result	←	Fibonacci(n	–	1)	+	Fibonacci(n	–	2)

07						ENDIF

08						RETURN	Result

09		ENDFUNCTION

Which	line	is	the	base	case?

Which	line	is	the	general	case?

Dry-run	the	function	call	Fibonacci(4).

1 a

b

2

a

b

c

d

e i

ii

3

a i

ii

b

Chapter	25:
Programming	paradigms

25.01	Programming	paradigms
A	programming	paradigm	is	a	fundamental	style	of	programming.	Each	paradigm	will	support	a
different	way	of	thinking	and	problem	solving.	Paradigms	are	supported	by	programming	language
features.	Some	programming	languages	support	more	than	one	paradigm.	There	are	many	different
paradigms,	and	some	overlap.	Here	are	just	a	few	different	paradigms.

Low-level	programming	paradigm
The	features	of	low-level	programming	languages	give	us	the	ability	to	manipulate	the	contents	of
memory	addresses	and	registers	directly	and	exploit	the	architecture	of	a	given	processor.	We	solve
problems	in	a	very	different	way	when	we	use	the	low-level	programming	paradigm	than	if	we	use	a
high-level	paradigm.	See	Chapter	6	and	Chapter	28	for	low-level	programming	examples.	Note	that
each	different	type	of	processor	has	its	own	programming	language.	There	are	‘families’	of	processors
that	are	designed	with	similar	architectures	and	therefore	use	similar	programming	languages.	For
example,	the	Intel	processor	family	(present	in	many	PC-type	computers)	uses	the	x86	instruction	set.

Imperative	programming	paradigm
Imperative	programming	involves	writing	a	program	as	a	sequence	of	explicit	steps	that	are	executed
by	the	processor.	Most	of	the	programs	in	this	book	use	imperative	programming	(Chapters	12	to	15
and	Chapters	23,	24	and	26).	An	imperative	program	tells	the	computer	how	to	get	a	desired	result,	in
contrast	to	declarative	programming	where	a	program	describes	what	the	desired	result	should	be.
Note	that	the	procedural	programming	paradigm	belongs	to	the	imperative	programming	paradigm.
There	are	many	imperative	programming	languages,	Pascal,	C	and	Basic	to	name	just	a	few.

Object-oriented	programming	paradigm
The	object-oriented	paradigm	is	based	on	objects	interacting	with	one	another.	These	objects	are	data
structures	with	associated	methods	(see	Chapter	27).	Many	programming	languages	that	were
originally	imperative	have	been	developed	further	to	support	the	object-oriented	paradigm.	Examples
include	Pascal	(under	the	name	Delphi	or	Object	Pascal)	and	Visual	Basic	(the	.NET	version	being	the
first	fully	object-oriented	version).	Newer	languages,	such	as	Python	and	Java,	were	designed	to	be
object-oriented	from	the	beginning.

Declarative	programming	paradigm
Programming	languages	such	as	Pascal,	VB	and	Python	are	referred	to	as	‘imperative	programming
languages’	because	the	programmer	writes	sequences	of	statements	that	reflect	how	to	solve	the
problem.	When	a	programmer	uses	a	declarative	programming	language,	the	programmer	writes	down
(in	the	language	of	logic)	a	declarative	specification	that	describes	the	situation	of	interest:	what	the
problem	is.	The	programmer	doesn’t	tell	the	computer	what	to	do.	To	get	information,	the	programmer
poses	a	query	(sets	a	goal).	It’s	up	to	the	logic	programming	system	to	work	out	how	to	get	the	answer.

Declarative	programs	are	expressed	as	formal	logic	and	computations	are	deductions	from	the	formal
logic	statements	(see	Chapter	29).	Declarative	programming	languages	include	SQL	(see	Chapter	11)
and	Prolog	(Chapter	29).

Reflection	Point:
Why	are	there	different	paradigms?

After	you	have	studied	Chapters	26	to	29	do	Tasks	25.01	and	25.02

TASK	25.01
Draw	a	line	between	a	statement	on	the	left	and	its	matching	programming	paradigm	on	the
right.

TASK	25.02
For	each	of	the	four	programming	paradigms	in	this	chapter,	give	one	programming	statement
example	that	is	characteristic	for	this	paradigm.	State	the	programming	language	you	used	for
each	example.

Chapter	26:
File	processing	and	exception	handling

26.01	Records
Records	are	user-defined	types	(discussed	in	Chapter	16,	Section	16.01).	See	also	Section	13.02.

WORKED	EXAMPLE	26.01

Using	records

A	car	manufacturer	and	seller	wants	to	store	details	about	cars.	These	details	can	be	stored	in	a
record	structure:
TYPE	CarRecord

DECLARE	VehicleID : STRING		//	unique	identifier	and	record	key

DECLARE	Registration : STRING

DECLARE	DateOfRegistration		 : DATE

DECLARE	EngineSize :	 INTEGER

DECLARE	PurchasePrice : CURRENCY

ENDTYPE

To	declare	a	variable	of	that	type	we	write:
DECLARE	ThisCar	:	CarRecord

Note	that	we	can	declare	arrays	of	records.	If	we	want	to	store	the	details	of	100	cars,	we	declare	an
array	of	type	CarRecord
DECLARE	Car	:	ARRAY[1:100]	OF	CarRecord

Python Python	does	not	have	a	record	type.	However,	we	can	use	a	class	definition	with	only	a
constructor	to	assign	initial	values.	(See	Chapter	27	for	more	about	classes).
The	pseudocode	example	of	a	car	record	described	in	Worked	Example	26.01	can	be
programmed	as	follows:
class	CarRecord: #	declaring	a	class	without	other	methods

		def	__init__(self): #	constructor

						self.VehicleID	=	""
						self.Registration	=	""
						self.DateOfRegistration	=	None
						self.EngineSize	=	0
						self.PurchasePrice	=	0.00
ThisCar	=	CarRecord()	#	instantiates	a	car	record

ThisCar.EngineSize	=	2500	#	assign	a	value	to	a	field
Car	=	[CarRecord()	for	i	in	range(100)]	#	make	a	list	of	100	car	records
Car[1].EngineSize	=	2500	#	assign	value	to	a	field	of	the	2nd	car	in	list

VB.NET Structure	CarRecord
			Dim	VehicleID	As	String
			Dim	Registration	As	String
			Dim	DateOfRegistration	As	Date
			Dim	EngineSize	As	Integer
			Dim	PurchasePrice	As	Decimal
End	Structure

Dim	ThisCar	As	CarRecord			'	declare	a	variable	of	CarRecord	type
Dim	Car(100)	As	CarRecord		'	declare	an	array	of	CarRecord	type
ThisCar.EngineSize	=	2500	'	assign	value	to	a	field

Car(2).EngineSize	=	2500		'	assign	value	to	a	field	of	2nd	car	in	array

Java Java	does	not	have	a	record	type.	However,	we	can	use	a	data	structure.	A	class	definition
without	methods	is	a	data	structure	that	can	be	used	like	a	record.	(See	Chapter	27	for	more

about	classes).
The	pseudocode	example	of	a	car	record	described	in	Worked	Example	26.01	can	be
programmed	as	follows:
class	CarRecord

{
			String	vehicleID;
			String	registration;
			String	dateOfRegistration;
			int	engineSize;
			double	purchasePrice;

public	CarRecord()	 	//	declare	a	constructor	without	other	methods
			{
						vehicleID	=	"XX";
						registration	=	"";
						dateOfRegistration	=	"01/01/2010";
						engineSize	=	0;
						purchasePrice	=	0.00;
			}
}

CarRecord	thisCar	=	new	CarRecord();	//	instantiates	a	car	record
thisCar.engineSize	=	2500;	//	assign	a	value	to	a	field

CarRecord[]	car	=	new	CarRecord[100];	//	declare	an	array	of	car	record	type

car[2]	=	new	CarRecord();	//	instantiate	a	car
car[2].engineSize	=	2500;	//	assign	a	value	to	a	field	of	2nd	car	in	array

26.02	File	processing
In	Chapter	13	(Section	13.06)	we	used	text	files	to	store	and	read	lines	of	text.	Text	files	only	allow	us	to
write	strings	in	a	serial	or	sequential	manner.	We	can	append	strings	to	the	end	of	the	file.

When	we	want	to	store	records	in	a	file,	we	create	a	binary	file	(see	Chapter	16,	Section	16.02).	We	can
store	records	serially	or	sequentially.	We	can	also	store	records	using	direct	access	to	a	random	file.
Table	26.01	lists	the	operations	we	use	for	processing	files.

Structured	English Pseudocode

Create	a	file	and	open	it	for	writing OPENFILE	<filename>	FOR	WRITE

Open	a	file	in	append	mode OPENFILE	<filename>	FOR	APPEND

Open	a	file	for	reading OPENFILE	<filename>	FOR	READ

Open	a	file	for	random	access OPENFILE	<filename>	FOR	RANDOM

Close	a	file CLOSEFILE	<filename>

Write	a	record	to	a	file PUTRECORD	<filename>,	<identifier>

Read	a	record	from	a	file GETRECORD	<filename>,	<identifier>

Move	to	a	specific	disk	address	within	the	file SEEK	<filename>,	<address>

Test	for	end	of	file EOF(<filename>)

Table	26.01	Operations	for	file	processing

Sequential	file	processing
If	we	have	an	array	of	records,	we	may	want	to	store	the	records	on	disk	before	the	program	quits,	so
that	we	don’t	lose	the	data.	We	can	open	a	binary	file	and	write	one	record	after	another	to	the	file.	We
can	then	read	the	records	back	into	the	array	when	the	program	is	run	again.

WORKED	EXAMPLE	26.02

Processing	records	in	a	sequential	file

Table	26.02	shows	the	pseudocode	for	storing	the	car	records	from	Worked	Example	26.01	in	a
sequential	file	and	accessing	them.

Saving	contents	of	array Restoring	contents	of	array
OPENFILE	CarFile	FOR	WRITE
FOR	i	←	1	TO	MaxRecords
    PUTRECORD	CarFile,	Car[i]
NEXT	i
CLOSEFILE	CarFile

OPENFILE	CarFile	FOR	READ
FOR	i	←	1	TO	MaxRecords
    GETRECORD	CarFile,	Car[i]
NEXT	i
CLOSEFILE	CarFile

Table	26.02	Pseudocode	for	processing	records

Processing	records	sequentially	in	Python,	VB.NET	and	Java

Python import	pickle	#	this	library	is	required	to	create	binary	files
Car	=	[CarRecord()	for	i	in	range(100)]

CarFile	=	open('CarFile.DAT',	'wb')	#	open	file	for	binary	write

for	i	in	range(100):		#	loop	for	each	array	element
			pickle.dump(Car[i],	CarFile)	#	write	a	whole	record	to	the	binary	file

CarFile.close()	#	close	file

CarFile	=	open('CarFile.DAT',	'rb')	#	open	file	for	binary	read

Car	=	[]	#	start	with	empty	list
while	True:	#	check	for	end	of	file
			Car.append(pickle.load(CarFile))	#	append	record	from	file	to	end	of	list

CarFile.close()

VB.NET Option	Explicit	On
Imports	System.IO

Dim	CarFileWriter	As	BinaryWriter
Dim	CarFileReader	As	BinaryReader
Dim	CarFile	As	FileStream
Dim	Car(100)	As	CarRecord	'	declare	an	array	of	CarRecord	type
Dim	i	As	Integer

'link	file	to	the	filename
CarFile	=	New	FileStream("CarFile.DAT",	FileMode.Create)
'	create	a	new	file	and	open	it	for	writing
CarFileWriter	=	New	BinaryWriter(CarFile)
For	i	=	1	To	100	'	loop	for	each	array	element
			CarFileWriter.Write(Car(i).VehicleID)	'	write	a	field	to	the	binary	file
			CarFileWriter.Write(Car(i).Registration)
			CarFileWriter.Write(Car(i).DateOfRegistration)
			CarFileWriter.Write(Car(i).EngineSize)
			CarFileWriter.Write(Car(i).PurchasePrice)
Next

CarFileWriter.Close()	 	'	close	file	channel
CarFile.Close()

'link	file	to	the	filename
CarFile	=	New	FileStream("CarFile.DAT",	FileMode.Open)
'	create	a	new	file	and	open	it	for	reading
CarFileReader	=	New	BinaryReader(CarFile)
i	=	0

'	loop	until	end	of	binary	file	reached
i	=	0
Do	While	CarFile.Position	<	CarFile.Length
			'	read	fields	from	the	binary	file
			Car(i).VehicleID	=	CarFileReader.ReadString()
			Car(i).Registration	=	CarFileReader.ReadString()
			Car(i).DateOfRegistration	=	CarFileReader.ReadString()
			Car(i).EngineSize	=	CarFileReader.ReadInt32()
			Car(i).PurchasePrice	=	CarFileReader.ReadDecimal()
			i	=	i	+	1
Loop

CarFileReader.Close()			'close	file	channel

CarFile.Close()

Java writing	records	to	a	file:
import	java.io.DataOutputStream;
import	java.io.FileOutputStream;
import	java.io.EOFException;
import	java.io.FileInputStream;
import	java.io.FileOutputStream;
			try
			{		//	set	up	file	stream	and	link	to	file	name

FileOutputStream	fos	=	new	FileOutputStream("CarFile.DAT");
//	link	file	stream	to	data	stream
DataOutputStream	dos	=	new	DataOutputStream(fos);
for	(int	i	=	1;	i	<	100;	i++)	//	loop	for	each	array	element
{

dos.writeUTF(car[i].vehicleID);	//	write	a	field	to	the	file
dos.writeUTF(car[i].registration);
dos.writeInt(car[i].engineSize);
dos.writeUTF(car[i].dateOfRegistration);
dos.writeDouble(car[i].purchasePrice);

}
dos.close();	//	close	data	stream

			}
			catch	(Exception	x)
			{

System.out.println("IO	error");
			}
reading	records	back	into	array:

			CarRecord[]	car	=	new	CarRecord[100];
			try
			{		//	set	up	file	stream	and	link	to	file	name

FileInputStream	fis	=	new	FileInputStream("CarFile.DAT");
//	link	file	stream	to	data	stream
DataInputStream	dis	=	new	DataInputStream(fis);
int	i	=	1;
while	(true)	//	loop	for	each	array	element
{

thisCar	=	new	CarRecord();
thisCar.vehicleID	=	dis.readUTF();	//	read	fields	from	the	file
thisCar.registration	=	dis.readUTF();
thisCar.engineSize	=	dis.readInt();
thisCar.dateOfRegistration	=	dis.readUTF();
thisCar.purchasePrice	=	dis.readDouble();
car[i]	=	thisCar;	//	assign	record	to	next	array	element
i	+=	1;

}
			}
			catch	(EOFException	x)
			{

System.out.println("End	of	File	reached");
			}
			catch	(Exception	x)
			{

System.out.println(x);		//	output	error	message
			}

Alternative	method	using	Date	data	type	(which	is	an	object	in	Java):
write	to	file
import	java.io.*;
import	java.util.Date;

class	CarRecord	implements	java.io.Serializable	//	to	allow	writing	and	reading
																																							//	objects

{
			String	vehicleID;
			String	registration;
			Date	dateOfRegistration;
			int	engineSize;
			double	purchasePrice;

			public	CarRecord()	//	declare	constructor
			{

vehicleID	=	"XX";
registration	=	"";
dateOfRegistration	=	new	Date();
engineSize	=	0;
purchasePrice	=	0.00;

			}
}

class	Program
{
public	static	void	main(String[]	args)
{
			CarRecord[]	car	=	new	CarRecord[100];
			CarRecord	thisCar;

			try
			{		//Write	array	to	file.

FileOutputStream	fos	=	new	FileOutputStream("cars.ser");
ObjectOutputStream	oos	=	new	ObjectOutputStream(fos);
for	(int	i	=	1;	i	<	100;	i++)		//	loop	for	each	array	element
{

oos.writeObject(car[i].vehicleID);	//	write	a	field	to	the	file
oos.writeObject(car[i].registration);
oos.writeObject(car[i].engineSize);
oos.writeObject(car[i].dateOfRegistration);

oos.writeObject(car[i].purchasePrice);
}
oos.close();

			}
			catch	(EOFException	x)
			{

System.out.println("End	of	File	reached");
			}

catch	(Exception	x)
			{

System.out.println(x);
			}
}
}

reading	file	into	array:
CarRecord[]	car	=	new	CarRecord[100];
try
{
			//Read	array	from	file.
			FileInputStream	fis	=	new	FileInputStream("cars.ser");
			ObjectInputStream	ois	=	new	ObjectInputStream(fis);
			int	i	=	1;
			while	(true)
			{

car[i].vehicleID	=	(String)	ois.readObject();	//	read	the	first	item	from	the
																														//	file	to	the	field

car[i].registration=	(String)	ois.readObject();
car[i].engineSize	=	(int)	ois.readObject();
car[i].dateOfRegistration	=	(Date)	ois.readObject();
car[i].purchasePrice	=	(double)	ois.readObject();
i	+=	1;

			}
}
catch	(EOFException	x)
{
			System.out.println("End	of	File	reached");
}
catch	(Exception	x)
{
			System.out.println(x);
}

TASK	26.01

Random-access	file	processing
Instead	of	storing	records	in	an	array,	we	may	want	to	store	each	record	in	a	binary	file	as	the	record	is
created.	We	can	then	update	the	record	in	situ	(read	it,	change	it	and	save	it	back	in	the	same	place).
Note	that	this	only	works	for	fixed-length	records.	We	can	use	a	hashing	function	to	calculate	an
address	from	the	record	key	and	store	the	record	at	the	calculated	address	in	the	file	(this	is	similar	to
using	a	hash	table,	see	Chapter	23,	Section	23.11).	Just	as	with	a	hash	table,	collisions	may	occur	and
records	need	to	be	stored	in	the	next	free	record	space.

WORKED	EXAMPLE	26.03

Processing	records	in	a	random-access	file

Write	a	complete	program	to	save	several	car	records	to	a	sequential	file.

Write	another	program	to	read	the	file	and	display	the	contents	on	screen.

1

2

Table	26.03	shows	the	pseudocode	for	storing	a	car	record	from	Worked	Example	26.01	in	a
random-access	file	and	accessing	it.

Saving	a	record Retrieving	a	record
OPENFILE	CarFile	FOR	RANDOM
Address	←	Hash(ThisCar.VehicleID)
SEEK	CarFile,	Address
PUTRECORD	CarFile,	ThisCar
CLOSEFILE	CarFile

OPENFILE	CarFile	FOR	RANDOM
Address	←	Hash(ThisCar.VehicleID)
SEEK	CarFile,	Address
GETRECORD	CarFile,	ThisCar
CLOSEFILE	CarFile

Table	26.03	Pseudocode	for	random-access	file	operations

SEEK	moves	a	pointer	to	the	given	record	address.	The	PUTRECORD	and	GETRECORD	commands	access	the
record	at	that	address.	After	the	command	has	been	executed	the	pointer	points	to	the	next	record
in	the	file.

Processing	random-access	records	in	Python,	VB.NET	and	Java

Python import	pickle		#	this	library	is	required	to	create	binary	files
ThisCar	=	CarRecord()

CarFile	=	open('CarFile.DAT','rb+')		#	open	file	for	binary	read	and	write
Address	=	hash(ThisCar.VehicleID)
CarFile.seek(Address)
pickle.dump(ThisCar,	CarFile)		#	write	a	whole	record	to	the	binary	file
CarFile.close()		#	close	file

to	find	a	record	from	a	given	VehicleID:
CarFile	=	open('CarFile.DAT','rb')		#	open	file	for	binary	read
Address	=	hash(VehicleID)
CarFile.seek(Address)
ThisCar	=	pickle.load(CarFile)		#	load	record	from	file
CarFile.close()

In	Python,	the	hash	function	needs	to	allow	for	the	record	size	in	bytes.	For	example,
if	the	record	size	is	58	bytes,	then	the	second	record	slot	starts	at	position	59.	The
nth	record	slot	starts	at	position	(n	–	1)	×	58	+	1.

VB.NET Dim	CarFileWriter	As	BinaryWriter
Dim	CarFileReader	As	BinaryReader
Dim	CarFile	As	FileStream
Dim	ThisCar,	MyCar	As	CarRecord
'	link	the	file	to	the	filename
CarFile	=	New	FileStream("CarFile.DAT",	FileMode.Open)

'	create	a	new	file	and	open	it	for	writing
CarFileWriter	=	New	BinaryWriter(CarFile)
'	get	starting	address	for	record
CarFile.Position	=	Hash(ThisCar.VehicleID)

'	write	fields	to	the	binary	file

CarFileWriter.Write(ThisCar.VehicleID)
CarFileWriter.Write(ThisCar.Registration)
CarFileWriter.Write(ThisCar.DateOfRegistration)
CarFileWriter.Write(ThisCar.EngineSize)
CarFileWriter.Write(ThisCar.PurchasePrice)

CarFileWriter.Close()	'close	file	channel
CarFile.Close()

to	find	a	record	from	a	given	VehicleID:
CarFile	=	New	FileStream("CarFile.DAT",	FileMode.Open)
CarFileReader	=	New	BinaryReader(CarFile)
'	get	starting	address	for	record
CarFile.Position	=	Hash(VehicleID)

'	read	fields	from	the	binary	file
MyCar.VehicleID	=	CarFileReader.ReadString()
MyCar.Registration	=	CarFileReader.ReadString()
MyCar.DateOfRegistration	=	CarFileReader.ReadString()

MyCar.EngineSize	=	CarFileReader.ReadInt32()
MyCar.PurchasePrice	=	CarFileReader.ReadDecimal()

CarFileReader.Close()	'close	file	channel
CarFile.Close()

In	VB.NET,	the	hash	function	needs	to	allow	for	the	record	size	in	bytes.	For	example,
if	the	record	size	is	58	bytes,	then	the	second	record	slot	starts	at	position	59.	The
nth	record	slot	starts	at	position	(n	−	1)	×	58	+	1.

Java CarRecord	thisCar;
int	recordSize	=	50;
try	//	set	up	a	file	with	100	dummy	records
{

RandomAccessFile	writer	=	new	RandomAccessFile("CarFile.DAT",	"rw");
for	(int	i	=	1;	i	<	100;	i++)	//	loop	for	each	array	element
{
thisCar	=	new	CarRecord();
thisCar.vehicleID	=	"A"	+	i;
writer.seek(i	*	recordSize);
writer.writeUTF(thisCar.vehicleID);
writer.writeUTF(thisCar.registration);
writer.writeUTF(thisCar.dateOfRegistration);
writer.writeInt(thisCar.engineSize);
writer.writeDouble(thisCar.purchasePrice);
}
writer.close();

}
catch	(IOException	x)
{
}

to	find	a	record	from	a	given	VehicleID:
try
{

RandomAccessFile	writer	=	new	RandomAccessFile("CarFile.DAT",	"rw");
RandomAccessFile	reader	=	new	RandomAccessFile("CarFile.DAT",	"r");
reader.seek(hash(vehicleID));
thisCar	=	new	CarRecord();
thisCar.vehicleID	=	reader.readUTF();
thisCar.registration	=	reader.readUTF();
thisCar.engineSize	=	reader.readInt();
thisCar.dateOfRegistration	=	reader.readUTF();
thisCar.purchasePrice	=	reader.readDouble();
reader.close();

}
catch	(IOException	x)
{
}

TASK	26.02
Write	a	complete	program	to	save	several	car	records	to	a	random-access	file.	Write	another
program	to	find	a	record	in	the	random-access	file	using	the	record	key.	Display	the	record	data
on	screen.

26.03	Exception	handling
Run-time	errors	can	occur	for	many	reasons.	Some	examples	are	division	by	zero,	invalid	array	index	or
trying	to	open	a	non-existent	file.	Run-time	errors	are	called	‘exceptions’.	They	can	be	handled
(resolved)	with	an	error	subroutine	(known	as	an	‘exception	handler’),	rather	than	let	the	program
crash.

Using	pseudocode,	the	error-handling	structure	is:
TRY
			<statementsA>
EXCEPT
			<statementsB>
ENDTRY

Any	run-time	error	that	occurs	during	the	execution	of	<statementsA>	is	caught	and	handled	by	executing
<statementsB>.	There	can	be	more	than	one	EXCEPT	block,	each	handling	a	different	type	of	exception.
Sometimes	a	FINALLY	block	follows	the	exception	handlers.	The	statements	in	this	block	will	be	executed
regardless	of	whether	there	was	an	exception	or	not.

VB.NET	is	designed	to	treat	exceptions	as	abnormal	and	unpredictable	erroneous	situations.	Python	is
designed	to	use	exception	handling	as	flow-control	structures.	You	may	find	you	need	to	include
exception	handling	in	the	code	for	Worked	Example	26.02.	Otherwise	the	end	of	file	is	encountered	and
the	program	crashes.

Python	distinguishes	between	different	types	of	exception,	such	as:

IOError:	for	example,	a	file	cannot	be	opened

ImportError:	Python	cannot	find	the	module

ValueError:	an	argument	has	an	inappropriate	value

KeyboardInterrupt:	the	user	presses	Ctrl+C	or	Ctrl+Del

EOFError:	a	file-read	meets	an	end-of-file	condition

ZeroDivisionError:	a	division	by	zero	has	been	attempted

Java	distinguishes	between	different	types	of	exception,	such	as:

IOException:	for	example,	a	file	cannot	be	opened

ArithmeticException:	an	arithmetic	error	occurred,	such	as	division	by	zero

ArrayIndexOutOfBoundsException:	the	program	tries	to	access	an	array	element	outside	the	boundary

WORKED	EXAMPLE	26.04

Here	is	a	simple	example	of	exception	handling.	Asking	the	user	to	key	in	an	integer	could	result	in
a	non-integer	input.	This	should	not	crash	the	program.

Python NumberString	=	input("Enter	an	integer:	")
try:
			n	=	int(NumberString)
			print(n)
except:
			print("This	was	not	an	integer")

VB.NET Dim	NumberString	As	String
Dim	n	As	Integer
Console.WriteLine("Enter	an	integer")

NumberString	=	Console.ReadLine()
Try

			n	=	Int(NumberString)
			Console.WriteLine(n)
Catch
			Console.WriteLine("This	was	not	an	integer")
End	Try

Java import	java.util.Scanner;

{
			public	static	void	main(String[]	args)
			{
						Scanner	console	=	new	Scanner(System.in);
						try
						{
									System.out.print("Enter	an	integer:	");
									int	n	=	console.nextInt();
									System.out.println(n);
						}
						catch(Exception	e)	//	catches	any	exception
						{
									System.out.println("This	was	not	an	integer");
						}
			}
}

TASK	26.03
Add	exception-handling	code	to	your	programs	for	Task	26.01	or	Task	26.02.	Test	your	code
handles	exceptions	without	the	program	crashing.

Reflection	Point:
Can	you	explain	the	difference	between	serial,	sequential	and	random	access	files?	Give	an	example	of
when	each	is	appropriate.

Summary
Records	are	user-defined	types.
Records	can	be	stored	in	files	in	a	serial,	sequential	or	random	(direct	access)	manner.
Exception	handling	is	advisable	to	avoid	program	crashes	due	to	run-time	errors.

■
■
■

Exam-style	Questions

[6]

[3]

[7]

[7]

[6]

[6]

[2]

[5]

A	company	stores	details	about	their	customers	in	a	binary	file	of	records.

The	key	field	of	a	customer	record	is	the	customer	ID	(a	number	between	100001	and	999999).

The	name	of	the	customer	is	stored	in	a	30-character	field.

The	customer’s	telephone	number	is	stored	in	a	14-character	field.

The	total	value	of	orders	so	far	is	stored	in	a	currency	(decimal)	field.

Write	the	declaration	statement	for	the	record	data	type	CustomerRecord	required	to	store	the
data.	Write	program	code.

Write	the	declaration	statement	for	an	array	CustomerData[0	:	999]	to	store	customer	records.

The	array	CustomerData	is	to	be	used	as	a	hash	table	to	store	customer	records.	The	function	Hash
is	used	to	calculate	the	address	where	a	record	is	to	be	stored.
FUNCTION	Hash(CustomerID	:	INTEGER)	RETURNS	INTEGER

    Address	←	CustomerID	MOD	1000

    RETURN	Address

ENDFUNCTION

Write	program	code	to	implement	the	function	Hash.

Write	a	procedure	AddRecord(Customer	:	CustomerRecord)	to	add	a	customer	record	to	the	hash
table	CustomerData.	Your	solution	should	handle	collisions	by	using	the	next	available	slot	in	the
hash	table.

Write	a	function	FindRecord(CustomerID	:	INTEGER)	that	returns	the	index	of	the	hash	table	slot
where	the	record	for	the	customer	with	CustomerID	is	stored.

Before	the	program	stops,	the	hash	table	records	must	be	stored	in	a	sequential	file,	so	that	the
records	can	be	restored	to	the	array	when	the	program	is	re-entered.

Write	program	code	to	store	the	records	of	the	array	CustomerData	sequentially	into	a	binary	file
CustomerData.DAT

Instead	of	using	a	hash	table,	the	company	decide	they	want	to	store	customer	records	in	a	direct-
access	binary	file.

Explain	what	changes	need	to	be	made	to	your	program	to	do	this.

A	program	allows	a	user	to	enter	a	filename	for	accessing	a	data	file.	If	the	user	types	in	a	filename
that	does	not	exist,	the	program	crashes.	Write	program	code	that	includes	exception	handling	to
replace	the	following	pseudocode:
OUTPUT	"Which	file	do	you	want	to	use?	"

INPUT	FileName

OPENFILE	FileName	FOR	RANDOM

1

a i

ii

b

i

ii

iii

c

d

2

Chapter	27:
Object-Oriented	Programming	(OOP)

27.01	Concept	of	OOP
Chapters	14	and	26	covered	programming	using	the	procedural	aspect	of	our	programming	languages.
Procedural	programming	groups	related	programming	statements	into	subroutines.	Related	data	items
are	grouped	together	into	record	data	structures.	To	use	a	record	variable,	we	first	define	a	record
type.	Then	we	declare	variables	of	that	record	type.

Example	of	using	a	record
A	car	manufacturer	and	seller	wants	to	store	details	about	cars.	These	details	can	be	stored	in	a	record
structure	(see	Chapter	16,	Section	16.01	and	Chapter	26,	Section	26.02):

 TYPE	CarRecord

						DECLARE	VehicleID 			:	STRING

						DECLARE	Registration 			:	STRING

						DECLARE	DateOfRegistration 			:	DATE

						DECLARE	EngineSize 			:	INTEGER

						DECLARE	PurchasePrice 			:	CURRENCY

 ENDTYPE 	

We	can	write	program	code	to	access	and	assign	values	to	the	fields	of	this	record.	For	example:
PROCEDURE	UpdateRegistration(BYREF	ThisCar	:	CarRecord,	BYVALUE	NewRegistration)
				ThisCar.Registration	←	NewRegistratio
ENDPROCEDURE

We	can	call	this	procedure	from	anywhere	in	our	program.	This	seems	a	well-regulated	way	of
operating	on	the	data	record.	However,	we	can	also	access	the	record	fields	directly	from	anywhere
within	the	scope	of	ThisCar:

ThisCar.EngineSize	←	2500

Classes	in	OOP
OOP	goes	one	step	further	and	groups	together	the	data	structure	and	the	subroutines	that	operate	on
the	data	items	in	this	data	structure.	Such	a	group	is	called	an	object.	The	data	of	an	object	are	called
attributes	and	the	subroutines	acting	on	the	attributes	are	called	methods.	The	idea	behind	OOP	is
that	attributes	can	only	be	accessed	through	methods.	The	direct	path	to	the	data	is	unavailable.
Attributes	are	referred	to	as	‘private’.	The	methods	to	access	the	data	are	made	available	to
programmers,	so	these	are	‘public’.	The	feature	of	data	being	combined	with	the	subroutines	acting	on
this	data	is	known	as	encapsulation.	To	use	an	object,	we	first	define	an	object	type.	An	object	type	is
called	a	class.

Classes	are	templates	for	objects.	When	a	class	type	has	been	defined	it	can	be	used	to	create	one	or
more	objects	of	this	class	type.	Therefore,	an	object	is	an	instance	of	a	class.

The	first	stage	of	writing	an	object-oriented	program	to	solve	a	problem	is	to	design	the	classes.	This	is
part	of	object-oriented	design.	From	this	design,	a	program	can	be	written	using	an	object-oriented
programming	(OOP)	language.

The	programming	languages	the	syllabus	prescribes	can	be	used	for	OOP:	Python	3,	VB.NET	and	Java.

Advantages	of	OOP	over	procedural	languages
The	advantage	of	OOP	is	that	it	produces	robust,	more	reliable	code.	The	attributes	can	only	be
manipulated	using	methods	provided	by	the	class	definition.	This	means	the	attributes	are	protected
from	accidental	changes.	Classes	provided	in	module	libraries	are	thoroughly	tested.	If	you	use	tried
and	tested	building	blocks	to	construct	your	program,	you	are	less	likely	to	introduce	bugs	than	when
you	write	code	from	scratch.

27.02	Designing	classes	and	objects
When	designing	a	class,	we	need	to	think	about	the	attributes	we	want	to	store.	We	also	need	to	think
about	the	methods	we	need	to	access	the	data	and	assign	values	to	the	data	of	an	object.	A	data	type	is
a	blueprint	when	declaring	a	variable	of	that	data	type.	A	class	definition	is	a	blueprint	when	declaring
an	object	of	that	class.	Creating	a	new	object	is	known	as	‘instantiation’.

Any	data	that	is	held	about	an	object	must	be	accessible,	otherwise	there	is	no	point	in	storing	it.	We
therefore	need	methods	to	access	each	one	of	these	attributes.	These	methods	are	usually	referred	to
as	getters.	They	get	an	attribute	of	the	object.

When	we	first	set	up	an	object	of	a	particular	class,	we	use	a	constructor.	A	constructor	instantiates
the	object	and	assigns	initial	values	to	the	attributes.

Any	attributes	that	might	be	updated	after	instantiation	will	need	subroutines	to	update	their	values.
These	are	referred	to	as	setters.	Some	attributes	get	set	only	at	instantiation.	These	don’t	need	setters.
This	makes	an	object	more	robust,	because	you	cannot	change	attributes	that	were	not	designed	to	be
changed.

Python	and	VB.NET	allow	properties	to	be	declared.	A	property	combines	the	attribute	with	its
associated	setter	and/or	getter	(see	Figures	27.03	and	27.05).

WORKED	EXAMPLE	27.01

Creating	a	class

Consider	the	car	data	from	Section	27.01.

When	a	car	is	manufactured	it	is	given	a	unique	vehicle	ID	that	will	remain	the	same	throughout
the	car’s	existence.	The	engine	size	of	the	car	is	fixed	at	the	time	of	manufacture.	The	registration
ID	will	be	given	to	the	car	when	the	car	is	sold.

In	our	program,	when	a	car	is	manufactured,	we	want	to	create	a	new	car	object.	We	need	to
instantiate	it	using	the	constructor.	Any	attributes	that	are	already	known	at	the	time	of
instantiation	can	be	set	with	the	constructor.	In	our	example,	VehicleID	and	EngineSize	can	be	set	by
the	constructor.	The	other	attributes	are	assigned	values	at	the	time	of	purchase	and	registration.
So,	we	need	setters	for	them.	The	identifier	table	for	the	Car	class	is	shown	in	Table	27.01.

Identifier Data
Type

Description

Car Class Class	identifier

VehicleID STRING Unique	ID	assigned	at	time	of	manufacture

Registration STRING Unique	ID	assigned	after	time	of	purchase

DateOfRegistration DATE Date	of	registration

EngineSize INTEGER Engine	size	assigned	at	time	of	manufacture

PurchasePrice CURRENCY Purchase	price	assigned	at	time	of	purchase

Constructor() Method	to	create	a	Car	object	and	set	properties	assigned	at
manufacture

SetPurchasePrice() Method	to	assign	purchase	price	at	time	of	purchase

SetRegistration() Method	to	assign	registration	ID

SetDateOfRegistration() Method	to	assign	date	of	registration

GetVehicleID() Method	to	access	vehicle	ID

GetRegistration() Method	to	access	registration	ID

GetDateOfRegistration() Method	to	access	date	of	registration

GetEngineSize() Method	to	access	engine	size

GetPurchasePrice() Method	to	access	purchase	price

Table	27.01	Identifier	table	for	Car	class

We	can	represent	this	information	as	a	class	diagram	in	Figure	27.01.

Figure	27.01	Car	class	diagram

27.03	Writing	object-oriented	code
Declaring	a	class
Attributes	should	always	be	declared	as	‘Private’.	This	means	they	can	only	be	accessed	through	the
class	methods.	So	that	the	methods	can	be	called	from	the	main	program,	they	have	to	be	declared	as
‘Public’.	There	are	other	modifiers	(such	as	‘Protected’),	but	they	are	beyond	the	scope	of	this	book.

The	syntax	for	declaring	classes	is	quite	different	for	the	different	programming	languages.	We	will	look
at	the	three	chosen	languages.	You	are	expected	to	write	programs	in	one	of	these.

Declaring	a	class	in	Python
The	code	below	shows	how	a	constructor,	getters	and	setters	can	be	declared	in	Python.

Python	also	supports	properties:

Python	using
properties

class	Car:
def	__init__(self,	n,	e):	   #	constructor

self.__VehicleID	=	n
self.__Registration	=	""
self.__DateOfRegistration	=	None
self.__EngineSize	=	e
self.__PurchasePrice	=	0.00

@property
def	VehicleID(self):

return(self.__VehicleID)

@property
def	EngineSize(self):

return(self.__EngineSize)

@property

def	Registration(self):
return(self.__Registration)

@Registration.setter
def	Registration(self,	r):

self.__Registration	=	r

@property
def	DateOfRegistration(self):

return(self.__DateOfRegistration)

@DataOfRegistration.setter
def	DateOfRegistration(self,	d):

self.__DateOfRegistration	=	d

@property
def	PurchasePrice(self):

return(self.__PurchasePrice)

@PurchasePrice.setter
def	PurchasePrice(self,	p):

self.__PurchasePrice	=	p

Note	that	not	all	properties	provide	a	setter,	only	where	attribute	values	are	to
be	changed.

Declaring	a	class	in	VB.NET
The	code	below	shows	how	attributes,	the	constructor,	getters	and	setters	can	be	declared	in	VB.NET.

VB.NET	also	supports	properties:

VB	using
properties

Module	Module1

Class	Car
Public	Property	VehicleID()	As	String
Public	Property	Registration()	As	String	=	""
Public	Property	Date0fRegistration()	As	Date	=	#1/1/1900#

Public	Property	EngineSize()	As	Integer
Public	Property	PurchasePrice()	As	Decimal	=	0.0

Public	Sub	New(ByVal	n	As	String,	ByVal	e	As	String)
VehicleID	=	n
EngineSize	=	e

End	Sub

End	Class

Note	that	getters	and	setters	are	automatically	available	for	any	property.
If	some	properties	should	be	read-only,	getters	and	setters	have	to	be	declared
explicitly:

Class	Car
Private	_VehicleID	As	String
Public	ReadOnly	Property	VehicleID()	As	String

Get
Return	_VehicleID

End	Get
End	Property

Public	Property	Registration()	As	String
Public	Property	DateOfRegistration()	As	Date

Private	_EngineSize	As	Integer
Public	ReadOnly	Property	EngineSize()	As	Integer

Get
Return	_EngineSize

End	Get
End	Property

Public	Property	PurchasePrice()	As	Decimal
Public	Sub	New(ByVal	n	As	String,	ByVal	e	As	String)

_VehicleID	=	n
_Registration	=	""
_DateOfRegistration	=	#1/1/1900#
_EngineSize	=	e
_PurchasePrice	=	0.0

End	Sub

End	Class

Declaring	a	class	in	Java
The	code	below	shows	how	attributes,	the	constructor	and	methods	are	declared	in	Java.

Java import	java.util.Date;

class	Car

{
private	String	vehicleID;
private	String	registration;
private	Date	dateOfRegistration;
private	int	engineSize;
private	float	purchasePrice;
	
public	Car(String	n,	int	e)  //	constructor
{

vehicleID	=	n;
registration	=	"";
dateOfRegistration	=	new	Date();
engineSize	=	e;
purchasePrice	=	0;

}
public	void	setPurchasePrice(float	p)
{

purchasePrice	=	p;
}
public	void	setRegistration(String	r)

{
registration	=	r;

}
public	void	setDateOfRegistration(Date	d)
{

dateOfRegistration	=	d;
}
public	String	getVehicleID()
{

return(vehicleID);
}
public	String	getRegistration()
{

return(registration);
}
public	Date	getDateOfRegistration()
{

return(dateOfRegistration);
}
public	int	getEngineSize()
{

return(engineSize);
}
public	float	getPurchasePrice()
{

return(purchasePrice);
}

}

Instantiating	a	class
To	use	an	object	of	a	class	type	in	a	program	the	object	must	first	be	instantiated.	This	means	the
memory	space	must	be	reserved	to	store	the	attributes.

The	following	code	instantiates	an	object	ThisCar	of	class	Car.

Python ThisCar	=	Car("ABC1234",	2500)

VB.NET Dim	ThisCar	As	New	Car("ABC1234",	2500)

Java Car	thisCar	=	new	Car("ABC1234",	2500);

Using	a	method
To	call	a	method	in	program	code,	the	object	identifier	is	followed	by	the	method	identifier	and	the
parameter	list.

The	following	code	sets	the	purchase	price	for	an	object	ThisCar	of	class	Car.

Python ThisCar.SetPurchasePrice(12000)

ThisCar.PurchasePrice	=	12000	#	using	properties

VB.NET ThisCar.SetPurchasePrice(12000)

ThisCar.PurchasePrice	=	12000	'	using	properties

Java thisCar.setPurchasePrice(12000);

The	following	code	gets	and	prints	the	vehicle	ID	for	an	object	ThisCar	of	class	Car.

Python print(ThisCar.GetVehicleID())

print(ThisCar.VehicleID)	#	using	properties

VB.NET Console.WriteLine(ThisCar.GetVehicleID())

Console.WriteLine(ThisCar.VehicleID)	'using	properties

Java System.out.print(thisCar.getVehicleID());

TASK	27.01

Copy	the	Car	class	definition	into	your	program	editor	and	write	a	simple	program	to	test	that
each	method	works.

A	business	wants	to	store	data	about	companies	they	supply.	The	data	to	be	stored	includes:
company	name,	email	address,	date	of	last	contact.

Design	a	class	Company	and	draw	a	class	diagram.

Write	program	code	to	declare	the	class.	Company	name	and	email	address	are	to	be	set	by
the	constructor	and	will	never	be	changed.

Instantiate	one	object	of	this	class	and	test	your	class	code	works.

1

2

a

b

c

27.04	Inheritance
The	advantage	of	OOP	is	that	we	can	design	a	class	(a	base	class	or	a	superclass)	and	then	derive
further	classes	(subclasses)	from	this	base	class.	This	means	that	we	write	the	code	for	the	base	class
only	once	and	the	subclasses	make	use	of	the	attributes	and	methods	of	the	base	class,	as	well	as
having	their	own	attributes	and	methods.	This	is	known	as	inheritance	and	can	be	represented	by	an
inheritance	diagram	(Figure	27.02).

Figure	27.02	Inheritance	diagram	(a)	standard	and	(b)	alternative

WORKED	EXAMPLE	27.02

Implementing	a	library	system

Consider	the	following	problem.

A	college	library	has	items	for	loan.

The	items	are	currently	books	and	CDs.

Items	can	be	borrowed	for	three	weeks.

If	a	book	is	on	loan,	it	can	be	requested	by	another	borrower.

Table	27.02	shows	the	information	to	be	stored.

Library	item

Book CD

Title	of	book* Title	of	CD*

Author	of	book* Artist	of	CD*

Unique	library	reference	number* Unique	library	reference	number*

Whether	it	is	on	loan* Whether	it	is	on	loan*

The	date	the	book	is	due	for	return* The	date	the	CD	is	due	for	return*

Whether	the	book	is	requested	by	another
borrower

The	type	of	music	on	the	CD	(genre)

Table	27.02	Library	system	information

The	information	to	be	stored	about	books	and	CDs	needs	further	analysis.	Note	that	we	could	have
a	variable	Title,	which	stores	the	book	title	or	the	CD	title,	depending	on	which	type	of	library	item
we	are	working	with.	There	are	further	similarities	(marked	*	in	Table	27.02).

There	are	some	items	of	data	that	are	different	for	books	and	CDs.	Books	can	be	requested	by	a
borrower.	For	CDs,	the	genre	is	to	be	stored.

We	can	define	a	class	LibraryItem	and	derive	a	Book	class	and	a	CD	class	from	it.	We	can	draw	the
inheritance	diagrams	for	the	LibraryItem,	Book	and	CD	classes	as	in	Figure	27.03.

Figure	27.03	Inheritance	diagram	for	LibraryItem,	Book	and	CD	classes

Analysing	the	attributes	and	methods	required	for	all	library	items	and	those	only	required	for
books	and	only	for	CDs,	we	arrive	at	the	class	diagram	in	Figure	27.04.

Figure	27.04	Class	diagram	for	LibraryItem,	Book	and	CD

A	base	class	that	is	never	used	to	create	objects	directly	is	known	as	an	abstract	class.	LibraryItem
is	an	abstract	class.

Declaring	a	base	class	and	derived	classes	(subclasses)	in	Python
The	code	below	shows	how	a	base	class	and	its	subclasses	are	declared	in	Python.

Python	using	properties class	LibraryItem:

def	__init__(self,	t,	a,	i):    #	constructor	/	initialiser	method
self.__Title	=	t
self.__Author__Artist	=	a
self.__ItemID	=	i
self.__OnLoan	=	False
self.__DueDate	=	datetime.date.today()

@property
def	Title(self):

return(self.__Title)

#	other	getters	go	here

def	Borrowing(self):
self.__OnLoan	=	True
self.__DueDate	=	self.__DueDate	+	datetime.timedelta(weeks=3)

def	Returning(self):
self.__OnLoan	=	False

def	PrintDetails(self):
print(self.__Title,';	',	self.__Author__Artist,';	',	end='')
print(self.__ItemID,';	',	self.__OnLoan,';	',	self.__DueDate)

class	Book(LibraryItem):
def	__init__(self,	t,	a,	i):    #	initialiser	method

LibraryItem.__init__(self,	t,	a,	i)
self.__IsRequested	=	False
self.__RequestedBy	=	0

@property
def	IsRequested(self):

return(self.__IsRequested)

@IsRequested.setter
def	IsRequested(self,	b):

self.__IsRequested	=	b

#	print	details	method	for	Book

def	PrintDetails(self):
print("Book	Details")
LibraryItem.PrintDetails(self)
print(self.__IsRequested)

class	CD(LibraryItem):

def	__init	__(self,	t,	a,	i):    #	initialiser	method
LibraryItem.__init__(self,	t,	a,	i)
self.__Genre	=	""

@property
def	Genre(self):

return(self.__Genre)

@Genre.setter
def	Genre(self,	g):

self.__Genre	=	g

Declaring	a	base	class	and	derived	classes	(subclasses)	in	VB.NET
The	code	below	shows	how	a	base	class	and	its	subclasses	are	declared	in	VB.NET.

VB.NET	using
properties

class	LibraryItem
Public	Property	Title()

Public	Property	Author_Artist	As	String
Public	Property	ItemID	As	Integer
Public	Property	OnLoan	As	Boolean	=	False
Public	Property	DueDate	As	Date	=	Today

Sub	Create	(ByVal	t	As	String,	ByVal	a	As	String,	ByVal	i	As	Integer)
Title	=	t
Author_Artist	=	a
ItemID	=	i

End	Sub

Public	Sub	Borrowing()
OnLoan	=	True
DueDate	=	DateAdd(DateInterval.Day,	21,	Today())	'3	weeks	from	today

End	Sub

Public	Sub	Returning()
_OnLoan	=	False

End	Sub

Public	Sub	PrintDetails()
Console.WriteLine(Title	&	";	"	&	ItemID	&	";	"	&	OnLoan	&	";	"	&
DueDate)

End	Sub
End	Class

Class	Book
Inherits	LibraryItem
Public	Property	IsRequested()	=	False

End	Class

Class	CD
Inherits	LibraryItem
Public	Property	Genre()	As	String

End	Class

Declaring	a	base	class	and	derived	classes	(subclasses)	in	Java
The	code	below	shows	how	a	base	class	and	its	subclasses	are	declared	in	Java.

Java import	java.util.Date;

class	LibraryItem

{
private	String	title;
private	String	author_Artist;
private	int	itemID;
private	Boolean	onLoan;
private	Date	dueDate;
public	LibraryItem(String	t,	String	a,	int	i)  //	constructor
{

title	=	t;
author_Artist	=	a;
itemID	=	i;
onLoan	=	false;
dueDate	=	new	Date();

}
public	String	GetTitle()
{

return(title);
}

//	other	Get	methods	go	here
public	void	borrowing()
{

onLoan	=	true;
//dueDate	=	dueDate	+	21;

}
public	void	returning()
{

onLoan	=	false;
}

public	void	printDetails()
{

System.out.print(title	+	"	;	"	+	author_Artist	+	"	;	");
System.out.println(itemID	+	"	;	"	+	onLoan	+	"	;	"	+	dueDate);

}
}

class	Book	extends	LibraryItem

{
private	Boolean	isRequested;
private	int	requestedBy;

public	Book(String	t,	String	a,	int	i)  //	constructor
{

super(t,	a,	i);
isRequested	=	false;
requestedBy	=	0;

}

public	Boolean	getIsRequested()
{

return(isRequested);
}
public	void	setIsRequested()
{

isRequested	=	true;
}

}

class	CD	extends	LibraryItem

{
private	String	genre;

public	CD(String	t,	String	a,	int	i)  //	constructor
{

super(t,	a,	i);
genre	=	"";

}

public	String	getGenre()
{

return(genre);
}

public	void	setGenre(String	g)
{

genre	=	g;
}

}

Instantiating	a	subclass
Creating	an	object	of	a	subclass	is	done	in	the	same	way	as	with	any	class	(See	Section	27.03).

Python ThisBook	=	Book(Title,	Author,	ItemID)

ThisCD	=	CD(Title,	Artist,	ItemID)

VB.NET Dim	ThisBook	As	New	Book()
Dim	ThisCD	As	New	CD()
ThisBook.Create(Title,	Author,	ItemID)

ThisCD.Create(Title,	Artist,	ItemID)

Java Book	thisBook	=	new	Book("Computing",	"Sylvia",	1234);

CD	thisCD	=	new	CD("Let	it	be",	"Beatles",	2345);

Using	a	method
Using	an	object	created	from	a	subclass	is	exactly	the	same	as	an	object	created	from	any	class.

TASK	27.02
Copy	the	class	definitions	for	LibraryItem,	Book	and	CD	into	your	program	editor.	Write	the
additional	get	methods.	Write	a	simple	program	to	test	that	each	method	works.

TASK	27.03
Write	code	to	define	a	Borrower	class	as	shown	in	the	class	diagram	in	Figure	27.05.

Borrower

BorrowerName  :	STRING

EmailAddress  :	STRING

BorrowerID    :	INTEGER

ItemsOnLoan   :	INTEGER

Constructor()

GetBorrowerName()

GetEmailAddress()

GetBorrowerID()

GetItemsOnLoan()

UpdateItemsOnLoan()

PrintDetails()

Figure	27.05	Borrower	class	diagram

The	constructor	should	initialise	ItemsOnLoan	to	0.

UpdateItemsOnLoan()	should	increment	ItemsOnLoan	by	an	integer	passed	as	parameter.

Write	a	simple	program	to	test	the	methods.

27.05	Polymorphism
Look	at	Worked	Example	27.02	and	the	code	that	implements	it	in	Section	27.04.	The	constructor
method	of	the	base	class	is	redefined	in	the	subclasses.	The	constructor	for	the	Book	class	calls	the
constructor	of	the	LibraryItem	class	and	also	initialises	the	IsRequested	attribute.	The	constructor	for	the
CD	class	calls	the	constructor	of	the	LibraryItem	class	and	also	initialises	the	Genre	attribute.

The	PrintDetails	method	is	currently	only	defined	in	the	base	class.	This	means	we	can	only	get
information	on	the	attributes	that	are	part	of	the	base	class.	To	include	the	additional	attributes	from
the	subclass,	we	need	to	declare	the	method	again.	Although	the	method	in	the	subclass	will	have	the
same	identifier	as	in	the	base	class,	the	method	will	actually	behave	differently.	This	is	known	as
polymorphism.

The	way	the	programming	languages	re-define	a	method	varies.

The	code	shown	here	includes	a	call	to	the	base	class	method	with	the	same	name.	You	can	completely
re-write	the	method	if	required.

TASK	27.04
Use	your	program	code	from	Task	27.02.	Re-define	the	PrintDetail	methods	for	the	Book	class	and
the	CD	class.	Test	your	code.

TASK	27.05
Use	your	program	code	from	Task	27.03.	Add	another	attribute,	BorrowerID,	to	the	LibraryItem	class
so	that	the	item	being	loaned	can	have	the	borrower	recorded.

Change	the	LibraryItem.Borrowing	and	LibraryItem.Returning	methods,	so	that	LoanItem.BorrowerID	and
Borrower.ItemsOnLoan	are	updated	when	a	library	item	is	borrowed	or	returned.

TASK	27.06
Use	your	code	from	Task	27.02	or	Task	27.04.	Add	another	attribute,	RequestedBy,	to	the	Book	class
so	that	the	borrower	making	the	request	can	be	recorded.

Change	the	method	Book.SetIsRequested,	so	that	Book.RequestedBy	is	updated	when	a	book	is
requested.

TASK	27.07
Use	your	code	from	Task	27.06	to	write	the	complete	program	to	implement	a	simplified	library
system.

Write	code	to	provide	the	user	with	a	menu	to	choose	an	option.	An	example	of	a	menu	that	would
be	suitable	is	shown	in	Figure	27.06.

1	–	Add	a	new	borrower

2	–	Add	a	new	book

3	–	Add	a	new	CD

4	–	Borrow	a	book

5	–	Return	a	book

6	–	Borrow	a	CD

7	–	Return	a	CD

8	–	Request	book

9	–	Print	all	details

99	–	Exit	program

Enter	your	menu	choice:

Figure	27.06	Library	system	menu

27.06	Garbage	collection
When	objects	are	created	they	occupy	memory.	When	they	are	no	longer	needed,	they	should	be	made
to	release	that	memory,	so	it	can	be	re-used.	If	objects	do	not	let	go	of	memory,	we	eventually	end	up
with	no	free	memory	when	we	try	and	run	a	program.	This	is	known	as	‘memory	leakage’.

How	do	our	programming	languages	handle	this?

Python Memory	management	involves	a	private	heap	containing	all	Python	objects	and	data
structures.	The	management	of	the	Python	heap	is	performed	by	the	interpreter	itself.	The
programmer	does	not	need	to	do	any	housekeeping.

VB.NET A	garbage	collector	automatically	reclaims	memory	from	objects	that	are	no	longer	referred
to	by	the	running	program.

Java The	Java	runtime	environment	deletes	objects	when	it	determines	that	they	are	no	longer
being	used.

Table	27.03	Garbage	collection	strategies

27.07	Containment	(aggregation)
In	Section	27.04	we	covered	how	a	subclass	inherits	from	a	base	class.	This	can	be	seen	as
generalisation	and	specialisation.	The	base	class	is	the	most	general	class,	subclasses	derived	from	this
base	class	are	more	specialised.

We	have	other	kinds	of	relationships	between	classes.	Containment	means	that	one	class	contains
other	classes.	For	example,	a	car	is	made	up	of	different	parts	and	each	part	will	be	an	object	based	on
a	class.	The	wheels	are	objects	of	a	different	class	to	the	engine	object.	The	engine	is	also	made	up	of
different	parts.	Together,	all	these	parts	make	up	one	big	object.

The	containment	relationship	is	shown	in	Figure	27.07.

Figure	27.07	Containment	(aggregation)	class	diagram

WORKED	EXAMPLE	27.03

Using	containment

A	college	runs	courses	of	up	to	50	lessons.	A	course	may	end	with	an	assessment.	Object-oriented
programming	is	to	be	used	to	set	up	courses.	The	classes	required	are	shown	in	Figure	27.08.

Figure	27.08	Containment	class	diagram

Assuming	that	all	attributes	for	the	Lesson	and	Assessment	classes	are	set	by	values	passed	as
parameters	to	the	constructor,	the	code	for	declaring	the	Lesson	and	Assessment	classes	is
straightforward.

The	code	below	shows	how	the	Course	class	is	declared.

Python	Course	class	declaration
class	Course:

def	__init__(self,	t,	m):	#	sets	up	a	new	course

self.__CourseTitle	=	t

self.__MaxStudents	=	m

self.__NumberOfLessons	=	0

self.__CourseLesson	=	[]

self.__CourseAssessment	=	Assessment

def	AddLesson(self,	t,	d,	r):

self.__NumberOfLessons	=	self.__NumberOfLessons	+	1

self.__CourseLesson.append(Lesson(t,	d,	r))

def	AddAssessment(self,	t,	m):

self.__CourseAssessment	=	Assessment(t,	m)

def	OutputCourseDetails(self):

print(self.__CourseTitle,	"Maximum	number:	",	self.__MaxStudents)

for	i	in	range(self.__NumberOfLessons):

print(self.__CourseLesson[i].OutputLessonDetails())

VB.NET	Course	class	declaration
Class	Course

Private	CourseTitle	As	String

Private	MaxStudents	As	Integer

Private	NumberOfLessons	As	Integer	=	0

Private	CourseLesson(50)	As	Lesson

Private	CourseAssessment	As	Assessment

Public	Sub	Create(ByVal	t	As	String,	ByVal	m	As	Integer)

CourseTitle	=	t

MaxStudents	=	m

End	Sub

Sub	AddLesson(ByVal	t	As	String,	ByVal	d	As	Integer,	ByVal	r	As	Boolean)

NumberOfLessons	=	NumberOfLessons	+	1

CourseLesson(NumberOfLessons)	=	New	Lesson

CourseLesson(NumberOfLessons).Create(t,	d,	r)

End	Sub

Public	Sub	AddAssessment(ByVal	t	As	String,	ByVal	m	As	Integer)

CourseAssessment	=	New	Assessment

CourseAssessment.Create(t,	m)

End	Sub

Public	Sub	OutputCourseDetails()

Console.WriteLine(CourseTitle	&	"Maximum	number:	"	&	MaxStudents)

For	i	=	1	To	NumberOfLessons

CourseLesson(i).OutputLessonDetails()

Next

End	Sub

End	Class

Java	Course	class	declaration
class	Course

{

private	String	courseTitle;

private	int	maxStudents;

private	int	numberOfLessons;

private	Lesson[]	courseLesson;

private	Assessment	courseAssessment;

public	Course(String	t,	int	m)   //	sets	up	a	new	course

{

courseTitle	=	t;

maxStudents	=	m;

numberOfLessons	=	0;

courseLesson	=	new	Lesson[50];

//courseAssessment	=	new	Assessment();

}

public	void	addLesson(String	t,	int	d,	Boolean	r)

{

numberOfLessons	=	numberOfLessons	+	1;

courseLesson[numberOfLessons]	=	new	Lesson(t,	d,	r);

}

public	void	addAssessment(String	t,	int	m)

{

courseAssessment	=	new	Assessment(t,	m);

}

public	void	outputCourseDetails()

{

System.out.println(courseTitle	+	"	-	Maximum	number	of	students:	"	+	maxStudents);

for	(int	i	=	1;	i	<	numberOfLessons;	i++)

{

courseLesson[i].outputLessonDetails();

}

}

}

Here	are	simple	test	programs	to	check	it	works.

Python	test	program
def	Main():

MyCourse	=	Course("Computing",	10)	#	sets	up	a	new	course

MyCourse.AddAssessment("Programming",	100)	#	adds	an	assignment

#	add	3	lessons

MyCourse.AddLesson("Problem	Solving",	60,	False)

MyCourse.AddLesson("Programming",	120,	True)

MyCourse.AddLesson("Theory",	60,	False)

#	check	it	all	works

MyCourse.OutputCourseDetails()

VB.NET	test	program
Dim	MyCourse	As	New	Course

MyCourse.Create("Computing",	10)	'	sets	up	a	new	course

MyCourse.AddAssessment("Programming",	100)	'	adds	an	assessment

'	add	3	lessons

MyCourse.AddLesson("Problem	Solving",	60,	False)

MyCourse.AddLesson("Programming",	120,	True)

MyCourse.AddLesson("Theory",	60,	False)

'check	it	all	works

MyCourse.OutputCourseDetails()

Console.ReadLine()

Java	test	program
Course	myCourse	=	new	Course("Computing",	10);	//	sets	up	a	new	course

myCourse.addAssessment("Programming",	100);	//	adds	an	assessment

//	add	3	lessons

myCourse.addLesson("Problem	Solving",	60,	false);

myCourse.addLesson("Programming",	120,	true);

myCourse.addLesson("Theory",	60,	false);

//	check	it	all	works

myCourse.outputCourseDetails();

TASK	27.08
Write	the	code	required	for	the	Lesson	and	Assessment	classes.	Add	the	code	for	the	Course	class	and
test	your	program	with	the	appropriate	simple	program	from	Worked	Example	27.03.

Reflection	Point:
Explain	why	a	class	can	be	regarded	as	a	use-defined	type.

Summary
A	class	has	attributes	(declared	as	private)	and	methods	(declared	as	public)	that	operate	on	the
attributes.	This	is	known	as	encapsulation.
Python	and	VB.NET	support	properties:	attributes	that	also	include	getters	and	setters.
A	class	is	a	blueprint	for	creating	objects.
An	object	is	an	instance	of	a	class.
A	constructor	is	a	method	that	instantiates	a	new	object.
A	class	and	its	attributes	and	methods	can	be	represented	by	a	class	diagram.
Classes	(subclasses)	can	inherit	from	another	class	(the	base	class	or	superclass).	This
relationship	between	a	base	class	and	its	subclasses	can	be	represented	using	an	inheritance
diagram.
A	subclass	has	all	the	attributes	and	methods	of	its	base	class.	It	also	has	additional	attributes
and/or	methods.
Polymorphism	describes	the	different	behaviour	of	a	subclass	method	with	the	same	name	as	the
base	class	method.
Containment	is	a	relationship	between	two	classes	where	one	class	has	a	component	that	is	of	the
other	class	type.	This	can	be	represented	using	a	containment	diagram.

■

■
■
■
■
■
■

■

■

■

Exam-style	Questions

[3]

[5]

[4]

[4]

[1]

[7]

A	program	is	to	be	written	using	an	object-oriented	programming	language.	A	bank	account	class	is
designed.	Two	subclasses	have	been	identified:

Personal	Account:	the	account	holder	pays	a	monthly	fee	and	may	overdraw	the	account	up	to
an	agreed	overdraft	limit.

Savings	Account:	the	account	holder	must	maintain	a	positive	balance	and	gets	paid	interest	on
the	balance	at	an	agreed	interest	rate.

Draw	an	inheritance	diagram	for	these	classes.

The	design	for	the	BankAccount	class	consists	of:

attributes:

AccountHolderName

IBAN:	International	Bank	Account	Number

methods:

CreateNewAccount

SetAccountHolderName

GetAccountHolderName

GetIBAN

Write	program	code	for	the	class	definition	of	the	superclass	BankAccount.

State	the	attributes	and/or	methods	required	for	the	subclass	PersonalAccount.

State	the	attributes	and/or	methods	required	for	the	subclass	SavingsAccount.

Identify	the	feature	of	object-oriented	program	design	that	combines	the	attributes	and
methods	into	a	class.

A	bus	company	in	a	town	has	two	types	of	season	ticket	for	their	regular	customers:	pay-as-you	go
and	contract.	All	season	ticket	holders	have	their	name	and	email	address	recorded.

A	pay-as-you-go	ticket	holder	pays	a	chosen	amount	into	their	account.	Each	time	the	ticket	holder
makes	a	journey	on	the	bus,	the	price	of	the	fare	is	deducted	from	the	amount	held	in	the	account.
They	can	top	up	the	amount	at	any	time.

A	contract	ticket	holder	pays	a	fixed	fee	per	month.	They	can	then	make	unlimited	journeys	on	the
bus.

The	bus	company	wants	a	program	to	process	the	season	ticket	data.	The	program	will	be	written
using	an	object-oriented	programming	language.

Complete	the	class	diagram	showing	the	appropriate	attributes	and	methods.

SeasonTicketHolder

PRIVATE

TicketHolderName:	STRING         

	
	

PUBLIC

Constructor	()

	
	

1

a

b

c i

ii

iii

2

a

[2]

[2]

[3]

[1]

[10]

	
	
	
	

Pay–As–You–Go–TicketHolder

	
	

	
	
	
	

 

ContractTicketHolder

	
	

Constructor	(Name:	STRING,

email	:	STRING,	Fee	:	CURRENCY)

	
	

Attributes	and	methods	can	be	declared	as	either	public	or	private.

Explain	why	the	SeasonTicketHolder	attributes	are	declared	as	private.

Explain	why	the	SeasonTicketHolder	methods	have	been	declared	as	public.

Write	program	code	to	create	a	new	instance	of	ContractTicketHolder	with:

Identifier:	NewCustomer

name:	A.	Smith

email	address:	xyz@abc.xx

monthly	fee:	$10

A	queue	abstract	data	type	(ADT)	is	to	be	implemented	using	object-oriented	programming.	Two
classes	have	been	identified:	Queue	and	Node.	The	class	diagrams	are	as	follows:

QueueClass

Queue	:	ARRAY[0	:	50]	OF	NodeClass

Head  :	INTEGER

Tail  :	INTEGER

Constructor()

JoinQueue(NewItem	:	NodeClass)

LeaveQueue()	:	STRING

     

NodeClass

Data    :	STRING

Pointer	:	INTEGER

Constructor()

SetData(d :	STRING)

SetPointer(x	:	INTEGER)   
GetData()    :	STRING

GetPointer()	:	INTEGER

State	the	relationship	between	these	two	classes.

The	NodeClass	constructor	is	to:

create	a	new	node

initialise	the	Data	attribute	to	the	empty	string

initialise	the	Pointer	attribute	to	-1.

Write	program	code	to	define	NodeClass,	including	the	get	and	set	methods.

The	QueueClass	constructor	is	to:

create	a	new	queue

initialise	the	Head	and	Tail	attributes	to	-1.

b

i

ii

c

3

a

b

c

[3]

[5]

Write	program	code	to	define	the	constructor	for	QueueClass.

The	JoinQueue	method	is	to:

create	a	new	object,	Node,	of	NodeClass

assign	the	value	passed	as	parameter	to	the	Data	attribute	of	Node

assign	Node	to	the	end	of	Queue.

Write	program	code	to	define	the	JoinQueue	method.

d

Chapter	28:
Low-level	programming

28.01	Processor	instruction	set
The	instruction	set	we	will	use	in	this	chapter	is	shown	in	Table	28.01.

Instruction Explanation

Label Op	code Operand

Data	movement	instructions

	 LDM #n Immediate	addressing.	Load	the	denary	number	n
to	ACC

	 LDD <address> Direct	addressing.	Load	the	contents	of	the
location	at	the	given	address	to	ACC

	 LDI <address> Indirect	addressing.	The	address	to	be	used	is	at
the	given	address.	Load	the	contents	of	this
second	address	to	ACC

	 LDX <address> Indexed	addressing.	Form	the	address	from
<address>	+	the	contents	of	the	index	register.	Copy
the	contents	of	this	calculated	address	to	ACC

	 LDR #n Immediate	addressing.	Load	the	denary	number	n
to	IX

	 MOV <register> Move	the	contents	of	ACC	to	the	given	register	(IX)

	 STO <address> Store	the	contents	of	ACC	at	the	given	address

	 STX <address> Indexed	addressing.	Form	the	address	from
<address>	+	the	contents	of	the	index	register.	Copy
the	contents	from	ACC	to	this	calculated	address*

	 STI <address> Indirect	addressing.	The	address	to	be	used	is	at
the	given	address.	Store	the	contents	of	ACC	at	this
second	address*

*Note:	The	STX	and	STI	instructions	are	not	given	as	part	of	the	instruction	set	in	the	syllabus	for
9618

Arithmetic	operations

	 ADD <address> Add	the	contents	of	the	given	address	to	the	ACC

	 ADD #n Add	the	denary	number	n	to	the	ACC

	 SUB <address> Subtract	the	contents	of	the	given	address	from
the	ACC

	 SUB #n Subtract	the	denary	number	n	from	the	ACC

	 INC <register> Add	1	to	the	contents	of	the	register	(ACC	or	IX)

	 DEC <register> Subtract	1	from	the	contents	of	the	register	(ACC	or
IX)

Comparison	and	jump	instructions

	 JMP <address> Jump	to	the	given	address

	 CMP <address> Compare	the	contents	of	ACC	with	the	contents	of
<address>

	 CMP #n Compare	the	contents	of	ACC	with	the	denary
number	n

	 CMI <address> Indirect	addressing.	The	address	to	be	used	is	at
the	given	address.	Compare	the	contents	of	ACC
with	the	contents	of	this	second	address

	 JPE <address> Following	a	compare	instruction,	jump	to	<address>
if	the	compare	was	True

	 JPN <address> Following	a	compare	instruction,	jump	to	<address>
if	the	compare	was	False

Input/output	instructions

	 IN 	 Key	in	a	character	and	store	its	ASCII	value	in	ACC

	 OUT 	 Output	to	the	screen	the	character	whose	ASCII
value	is	stored	in	ACC

Bit	manipulation	instructions

	 AND #n Bitwise	AND	operation	of	the	contents	of	ACC	with
the	operand

	 AND <address> Bitwise	AND	operation	of	the	contents	of	ACC	with
the	contents	of	<address>

	 XOR #n Bitwise	XOR	operation	of	the	contents	of	ACC	with
the	operand

	 XOR <address> Bitwise	XOR	operation	of	the	contents	of	ACC	with
the	contents	of	<address>

	 OR #n Bitwise	OR	operation	of	the	contents	of	ACC	with	the
operand

	 OR <address> Bitwise	OR	operation	of	the	contents	of	ACC	with	the
contents	of	<address>

	 LSL #n Bits	in	ACC	are	shifted	logically	n	places	to	the	left.
Zeros	are	introduced	on	the	right-hand	end

	 LSR #n Bits	in	ACC	are	shifted	logically	n	places	to	the
right.	Zeros	are	introduced	on	the	left-hand	end

Other

	 END 	 Return	control	to	the	operating	system

<label>: <opcode> <operand> Labels	an	instruction

<label>: <data> Gives	a	symbolic	address	<label>	to	the	memory
location	with	contents	<data>

Table	28.01	Processor	instruction	set

In	the	assembly	code	in	this	chapter:

ACC	denotes	the	Accumulator

IX	denotes	the	Index	Register

#	denotes	immediate	addressing

B	denotes	a	binary	number,	e.g.	B01001010

&	denotes	a	hexadecimal	number,	e.g.	&4A

<address>	can	be	an	absolute	address	or	a	symbolic	address.

An	instruction	set	was	introduced	in	Chapter	6.

28.02	Symbolic	addresses
A	label	is	a	symbolic	name	for	the	memory	location	that	it	represents.	You	can	treat	it	like	a	variable
name.	When	writing	low-level	programs,	we	can	give	absolute	addresses	of	memory	locations.	This	is
very	restrictive,	especially	if	we	want	to	change	the	program	by	adding	extra	instructions.	Writing	low-
level	instructions	using	symbolic	addresses	(labels),	allows	us	to	think	at	a	higher	level.	The	assembler
will	allocate	absolute	addresses	during	the	assembly	process	(see	Chapter	6,	Section	6.03).

28.03	Problem-solving	and	assembly-language	programs
When	writing	a	solution	to	a	problem	using	low-level	programming,	we	need	to	break	down	the	problem
into	simple	steps	that	can	be	programmed	using	the	instruction	set	available.

One	approach	is	to	think	in	terms	of	the	basic	constructs	we	discussed	for	high-level	languages.	You	can
use	the	following	examples	as	design	patterns.

Assignment
Table	28.02	shows	some	examples	of	assembly	language	assignments	that	match	the	pseudocode.

Pseudocode
examples

Assembly	code
examples

Explanation

A	←	34     LDM	#34

    STO	A

To	store	a	value	in	a	memory	location,	the	value	must	first	be
generated	in	the	accumulator

B	←	B	+	1     LDD	B

    INC	ACC

    STO	B

To	increment	the	value	stored	at	a	memory	location:	first
load	the	value	into	the	accumulator,	increment	the	value	and
then	store	the	contents	of	the	accumulator	back	to	the
memory	location

B	←	B	+	A     LDD	B

    ADD	A

    STO	B

To	calculate	a	value:	load	the	first	value	from	a	memory
location	into	the	accumulator,	then	add	the	value	stored	at
the	second	memory	location	to	the	accumulator	and	then
store	the	contents	of	the	accumulator	to	the	required
memory	location

A	←	-A     LDD	A

    XOR	#&FF

    INC	ACC

    STO	A

Alternative	method:
    LDM	#0

    SUB	A

    STO	A

Load	the	value	(assuming	eight	bits),
XOR	with	11111111	to	produce	the	one’s	complement.	Add	1	to
get	the	two’s	complement.
Alternatively,	set	the	ACC	to	zero	and	then	subtract	the	value
from	the	ACC	and	store	it	back	in	the	original	address

Table	28.02	Using	assignment	instructions

TASK	28.01
Write	assembly	code	instructions	for	this	sequence	of	pseudocode	statements:

A	←	2

B	←	10

C	←	A	+	B

D	←	A	-	B

Selection
Table	28.03	shows	some	examples	of	assembly	language	selections	that	match	the	pseudocode.

Pseudocode	examples Assembly	code	examples Explanation

IF	A	=	0

		THEN

				B	←	B	+	1

						LDD	A

						CMP	#0

						JPN	ENDIF

Load	the	contents	of	the	memory	location	to
be	tested.	Compare	it	with	the	required	value
(in	this	example	0).	If	the	comparison	result

ENDIF THEN:	LDD	B

						INC	ACC

						STO	B

ENDIF:	...

is	false	(A	does	not	equal	0),	a	jump	over	the
THEN	part	is	required;	if	the	comparison	result
is	true	(A	=	0)	then	the	following	instructions
are	executed.	For	ease	of	understanding,	the
labels	THEN	and	ENDIF	are	used.

IF	A	=	B

		THEN

						OUTPUT	"Y"

		ELSE

						OUTPUT	"N"

ENDIF

						LDD	A

						SUB	B

						CMP	#0

						JPN	ELSE

THEN:	LDM	#89

						OUT

						JMP	ENDIF

ELSE:	LDM	#78

						OUT

ENDIF:	...

Load	the	contents	of	A.
Subtract	B.
If	the	result	is	zero,	A	=	B.
If	the	comparison	result	is	false	(A	does	not
equal	B),	jump	to	the	ELSE	part;	if	the
comparison	result	is	true
(A	=	B)	the	instructions	following	the	THEN
label	are	executed.
Note	that	a	jump	over	the	ELSE	part	is
required.

Table	28.03	Using	selection	instructions

TASK	28.02
Write	assembly	code	instructions	for	this	sequence	of	pseudocode	statements:

IF	A	<>	0

		THEN

				B	←	A

		ELSE

				B	←	B	-	1

Repetition
Table	28.04	shows	an	example	of	repetition	in	assembly	language	that	matches	the	pseudocode.

Pseudocode
example

Assembly	code
example

Explanation

A	=	0

REPEAT

				OUTPUT	"*"

				A	←	A	+	1

UNTIL	A	=	5

						LDM	#0

						STO	A

LOOP:	LDM	#42

						OUT

						LDD	A

						INC	ACC

						STO	A

						CMP	#5

						JPN	LOOP

	
Store	the	initial	value	of	the	counter	in	A.
Generate	the	ASCII	code	for	the	character	"*"	and	output
it.
Load	the	counter	value,
increment	the	counter,
save	it,
test	for	final	value.
If	final	value	has	not	been	reached,	jump	back	to
beginning	of	loop.

Table	28.04	Using	repetition	instructions

TASK	28.03
Write	assembly	code	instructions	for	this	sequence	of	pseudocode	statements:

Number	←	1

Total	←	0

Max	←	5

REPEAT

				Total	←	Total	+	Number

				Number	←	Number	+	1

UNTIL	Number	=	Max

Input/output
Table	28.05	shows	some	examples	of	input	and	output	in	assembly	language	that	match
the	pseudocode.

Pseudocode
examples

Assembly	code
examples

Explanation

INPUT	A 						IN

						STO	A

Store	a	character	input	from	the	keyboard	at	memory	location	A.

OUTPUT	B 						LDM	#-1

						MOV	IX

LOOP:	INC	IX

						LDX	B

						OUT

						CMP	#13

						JPN	LOOP

To	output	a	string	of	characters	stored	in	consecutive	locations,
starting	at	location	labelled	B,	a	loop	and	indexed	addressing	are
used.
The	first	time	round	the	loop	the	index	register	is	0	and	the
character	in	memory	location	B	will	be	loaded	into	the	accumulator
and	output	to	the	screen.	Then	a	check	is	made	for	the	end	of	the
string	(the	carriage	return	character	with	ASCII	code	13).	If	it	is	not
the	end	of	the	string,	jump	back	to	the	beginning	of	the	loop.
To	output	a	number,	the	number	must	first	be	changed	into	its
equivalent	string	and	stored	in	consecutive	memory	locations.	Then
the	above	method	can	be	used.

INPUT	A 						LDM	#-1

						MOV	IX

LOOP:	INC	IX

						IN

						STX	A

						CMP	#13

						JPN	LOOP

Store	a	string	of	characters	input	from	the	keyboard	into
consecutive	memory	locations	starting	from	A.
Note:	The	STX	instruction	is	not	given	as	part	of	the	instruction	set
in	the	syllabus	for	9618	(from	now	on	referred	to	as	the	9618
instruction	set).	This	means	a	string	can	not	be	saved	with	the	9618
instruction	set.

Table	28.05	Using	input	and	output	instructions

TASK	28.04
Write	assembly	code	instructions	for	this	sequence	of	pseudocode	statements:

Count	←	0

REPEAT

				Count	←	Count	+	1

				INPUT	Character

UNTIL	Character	=	"N"

TASK	28.05
Modify	your	assembly	code	instructions	from	Task	28.04	to	implement	this	sequence	of
pseudocode	statements:

Count	←	0

REPEAT

				Count	←	Count	+	1

				INPUT	Character

UNTIL	Character	=	"N"

OUTPUT	Count

28.04	Absolute	and	relative	addressing
An	absolute	address	is	the	numeric	address	of	a	memory	location.	A	program	using	absolute	addresses
cannot	be	loaded	anywhere	else	in	memory.	Some	assemblers	produce	relative	addresses,	so	that	the
program	can	be	loaded	anywhere	in	memory.

Relative	addresses	are	addresses	relative	to	a	base	address,	for	example	the	first	instruction	of	the
program.	When	the	program	is	loaded	into	memory	the	base	address	is	stored	in	a	base	register	BR.
Instructions	that	refer	to	addresses	then	use	the	value	in	the	base	register,	modified	by	the	offset.	For
example,	STO	[BR]	+	10	will	store	the	contents	of	the	accumulator	at	the	address	calculated	from
(contents	of	the	base	register)	+	10.

Table	28.06	shows	an	example	of	instructions	using	symbolic,	relative	and	absolute	addressing.

Symbolic
addressing

Offset	from	base
(START)

Relative	addressing	(base	
address	stored	in	base
register)

Absolute
addressing

START:	LDM	#0

							STO	A

LOOP:		LDM	#42

							OUT

							LDD	A

							INC	ACC

							STO	A

							CMP	#5

							JPN	LOOP

							END

A:					0

0

1

2

3

4

5

6

7

8

9

10

LDM	#0

STO	[BR]	+	10

LDM	#42

OUT

LDD	[BR]	+	10

INC	ACC

STO	[BR]	+	10

CMP	#5

JPN	[BR]	+	2

END

0

100	LDM	#0

201	STO	210

202	LDM	#42

203	OUT

204	LDD	210

205	INC	ACC

206	STO	210

207	CMP	#5

208	JPN	202

209	END

210	0

Table	28.06	Symbolic,	relative	and	absolute	addressing

It	is	very	important	that,	at	the	end	of	the	program,	control	is	passed	back	to	the	operating	system.
Otherwise	the	binary	pattern	held	in	the	next	memory	location	will	be	interpreted	as	an	instruction.	If
the	content	of	that	memory	location	does	not	correspond	to	a	valid	instruction,	the	processor	will	crash.
The	instruction	END	signals	the	end	of	the	program	instructions.

Note:	the	9618	instruction	set	does	not	include	relative	(base	register)	addressing.

28.05	Indirect	addressing
Indirect	addressing	is	useful	if	the	memory	address	to	be	used	in	an	instruction	is	changed	during	the
execution	of	the	program.

One	example	is	when	programming	subroutines	to	which	parameters	are	passed	by	reference	(this	is
beyond	the	scope	of	this	book).

Another	use	of	indirect	addressing	is	for	a	pointer	variable.

WORKED	EXAMPLE	28.01

Writing	a	program	for	a	simple	queue

At	the	top	level,	we	can	write	the	problem	using	structured	English:

Add	a	character	to	the	queue:

pointed	to	by	the	tail	pointer.

Remove	a	character	from	the	queue:

Table	28.07	shows	an	example	of	instructions	that	implement	the	above	queue-processing
algorithms.

Instruction Explanation

Label Op	code Operand

JOINQ: STI TAILPTR Store	contents	of	ACC	in	the	memory	location	pointed	to	by
the	tail	pointer

	 LDD TAILPTR Increment	the	tail	pointer

	 INC ACC

	 STO TAILPTR

	 JMP ENDQ

LEAVEQ: LDI HEADPTR Load	contents	of	memory	location	at	the	head	of	the	queue

	 OUT 	 Output	the	character

	 LDD HEADPTR Increment	the	head	pointer

	 INC ACC

	 STO HEADPTR

	 JMP ENDQ 	

ENDQ: 	 	 	

	 	 	 	

HEADPTR: QSTART 	 Pointer	to	start	of	queue

TAILPTR: QSTART 	 Pointer	to	next	free	location	in	queue

QSTART: "" 	 Start	of	memory	reserved	for	queue,	currently	empty

Table	28.07	Queue	processing

Note	that	the	value	shown	in	Table	28.07	at	the	memory	locations	labelled	HEADPTR	and	TAILPTR	is	the
address	of	the	start	of	the	memory	locations	reserved	for	the	queue.	As	values	are	added	to	the

Store	the	contents	of	the	accumulator	in	the	memory	location1

Increment	the	tail	pointer.2

Load	contents	of	the	memory	location	at	the	head	of	the	queue.
Increment	the	head	pointer.

1
2

queue,	the	TAILPTR	value	will	increase	to	point	to	the	memory	location	at	the	end	of	the	queue	data.
When	a	value	is	taken	from	the	queue,	the	HEADPTR	value	will	increase	to	point	to	the	memory
location	at	the	head	of	the	queue	data.

Note:	the	9618	instruction	set	does	not	include	the	STI	opcode	and	a	character	can	not	be	added	to
the	queue	using	the	9618	instruction	set.

TASK	28.06
Write	instructions	to	reverse	a	word	entered	at	the	keyboard.	This	requires	access	to	an	area	of
memory	treated	as	a	stack.

Reflection	Point:
Here	are	the	addressing	modes	you	should	be	able	to	use	when	writing	low-level	code:

Immediate 	

Direct 	

Indirect 	

Indexed 	

Relative 	

Tick	the	box	next	to	each	addressing	mode	you	can	use	easily	and	place	a	cross	in	the	boxes	next	to	the
addressing	modes	you	have	difficulty	with.

Summary
A	problem	to	be	solved	must	be	broken	down	into	simple	steps	that	can	be	programmed	using	the
processor’s	given	instruction	set.
A	value	must	be	copied	into	the	accumulator	before	it	can	be	processed.
Processing	includes:

arithmetic:	adding,	incrementing,	decrementing

comparison:	equal	or	not	equal

bitwise	operations:	AND,	OR,	XOR,	shifting

output	to	screen.

To	set	a	value	in	the	accumulator	it	can	be:

input	from	the	keyboard

created	using	immediate	addressing

loaded	from	a	memory	location	using	direct,	relative,	indirect	or	indexed	addressing.

An	address	can	be	absolute	(a	number)	or	symbolic	(a	label).

■

■
■

■

■

Exam-style	Questions

[1]

[1]

[7]

The	instruction	set	of	a	processor	with	one	general-purpose	register,	the	accumulator,	includes	the
following	instructions.

Instruction Explanation

Label Op	code Operand
	 LDD <address> Direct	addressing.	Load	the	contents	of	the	given	address	to

ACC

	 STO <address> Store	the	contents	of	ACC	at	the	given	address

	 ADD <address> Add	the	contents	of	the	given	address	to	the	ACC

	 IN 	 Key	in	a	character	and	store	its	ASCII	value	in	ACC

	 AND <address> Bitwise	AND	operation	of	the	contents	of	ACC	with	the	contents
of	<address>

	 LSL #n Bits	in	ACC	are	shifted	logically	n	places	to	the	left.	Zeros	are
introduced	on	the	right-hand	end

	 END 	 Return	control	to	the	operating	system

<label>: <data> Gives	a	symbolic	address	<label>	to	the	memory	location
with	contents	<data>

Key	to	the	above	table:

ACC	denotes	the	Accumulator.

#	denotes	immediate	addressing.

&	denotes	a	hexadecimal	number,	e.g.	&4A.

<address>	can	be	an	absolute	address	or	a	symbolic	address.

Explain	the	operation	of	the	AND	instruction.

The	ASCII	code	for	‘0’	is	the	binary	value	00110000.	The	ASCII	code	for	‘1’	is	the	binary	value
00110001.

Write	an	AND	instruction	to	convert	any	numeric	digit	stored	in	ACC	in	the	form	of	an	ASCII	code	to
its	eight-bit	binary	integer	equivalent.

Write	the	assembly	code	instructions	to	convert	a	two-digit	number	keyed	in	at	the	keyboard	to	its
BCD	representation.	Store	the	result	in	the	memory	location	labelled	Result.

Instruction Explanation
Label Op	code Operand
	 	 	 Input	first	digit
	 	 	 Convert	from	ASCII	to	its	digit	value
	 	 	 Move	to	upper	nibble
	 	 	 Store	in	location	Result
	 	 	 Input	second	digit
	 	 	 Convert	from	ASCII	to	its	digit	value
	 	 	 Combine	the	two	values
	 	 	 Store	result
	 	 	 End	of	program
Mask: 	 	 Mask	to	convert	from	ASCII	to	digit

equivalent

Result: &00 	 Memory	location	for	result

1

a

b

c

Result: &00 	 Memory	location	for	result

A	given	processor	has	one	general-purpose	register,	the	accumulator	ACC,	and	one	index	register,	IX.
Part	of	the	instruction	set	for	this	processor	is	as	follows.

Instruction Explanation

Label Op	code Operand
	 LDM #n Immediate	addressing.	Load	the	number	n

to	ACC

	 LDD <address> Direct	addressing.	Load	the	contents	of	the
given	address	to	ACC

	 LDX <address> Indexed	addressing.	Form	the	address	from
<address>	+	the	contents	of	the	Index
Register.	Copy	the	contents	of	this
calculated	address	to	ACC

	 LDR #n Immediate	addressing.	Load	the	denary
number	n	to	IX

	 STO <address> Store	the	contents	of	ACC	at	the	given
address

	 STX <address> Indexed	addressing.	Form	the	address	from
<address>	+	the	contents	of	the	index
register.	Copy	the	contents	from	ACC	to	this
calculated	address

	 ADD <address> Add	the	contents	of	the	given	address	to	the
ACC

	 INC <register> Add	1	to	the	contents	of	the	register	(ACC	or
IX)

	 JMP <address> Jump	to	the	given	address

	 CMP <address> Compare	the	contents	of	ACC	with	the
contents	of	<address>

	 CMP #n Compare	the	contents	of	ACC	with	the
denary	number	n

	 JPE <address> Following	a	compare	instruction,	jump	to
<address>	if	the	compare	was	True

	 JPN <address> Following	a	compare	instruction,	jump	to
<address>	if	the	compare	was	False

	 IN 	 Key	in	a	character	and	store	its	ASCII	value
in	ACC

	 END 	 Return	control	to	the	operating	system

<label>: <op	code> <operand> Labels	an	instruction

<label>: <data> Gives	a	symbolic	address	<label>	to	the
memory	location	with	contents	<data>

Key	to	the	above	table:

#	denotes	immediate	addressing.

<address>	can	be	an	absolute	address	or	a	symbolic	address.

Write	an	assembly	language	program	that	outputs	a	sequence	of	characters	stored	in	successive

2

[8]

72

69

76

80

33

locations,	starting	at	the	location	labelled:	STRING.	Output	ends	when	the	character	in	ACC	is	‘!’
(ASCII	code	33).

Instruction Explanation

Label Op	code Operand
	 	 	 Set	index	register	to	zero
	 	 	 Load	ACC	with	character	stored	at	STRING	(modified	by

index	register)
	 	 	 Increment	index	register
	 	 	 Output	character
	 	 	 Is	this	character	the	!	key?
	 	 	 No	–	jump	to	beginning	of	loop
	 	 	 End	of	program

STRING: String	stored	from	here	onwards

	 	

	 	

	 	

	 	

Chapter	29:
Declarative	programming

29.01	Declarative	programming	languages
Declarative	languages	include	database	query	languages	(such	as	SQL,	see	Chapter	11,	Section	11.07),
regular	expressions,	logic	programming	and	functional	programming.

Prolog	is	a	logic	programming	language	widely	used	for	artificial	intelligence	and	expert	systems.

The	Prolog	programs	in	this	chapter	have	been	prepared	using	the	SWI-Prolog	environment	shown	in
Figure	29.01	(see	SWI-Prolog	for	a	free	download).

Figure	29.01	SWI-Prolog	environment

29.02	Prolog	basics
There	are	three	basic	constructs	in	Prolog:	facts,	rules	and	queries.

The	program	logic	is	expressed	using	clauses	(facts	and	rules).	Problems	are	solved	by	running	a	query
(goal).

A	collection	of	clauses	is	called	a	‘knowledge	base’.	Writing	a	Prolog	program	means	writing	a
knowledge	base	as	a	collection	of	clauses.	We	use	the	program	by	writing	queries.

A	clause	is	of	the	form:
		Head	:-	Body.

Note	that	a	clause	always	terminates	with	a	full	stop	(.)

Prolog	has	a	single	data	type,	called	a	‘term’.	A	term	can	be:

an	atom,	a	general-purpose	name	with	no	inherent	meaning	that	always	starts	with	a	lower	case
letter

a	number,	integer	or	float	(real)

a	variable,	denoted	by	an	identifier	that	starts	with	a	capital	letter	or	an	underscore	(_)

a	compound	term,	a	predicate,	consisting	of	an	atom	and	a	number	of	arguments	in	parentheses	().

The	arguments	themselves	can	be	compound	terms.	A	predicate	has	an	arity	(that	is,	the	number	of
arguments	in	parentheses).

Prolog	is	case	sensitive.

29.03	Facts	in	Prolog
A	clause	without	a	body	is	a	fact,	for	example:

01		capitalCity(paris).

02		capitalCity(berlin).

03		capitalCity(cairo).

The	meaning	of	clause	01	is:	Paris	is	a	capital	city.
capitalCity(paris)	is	a	compound	term.	Both	capitalCity	and	paris	are	atoms.
capitalCity	is	called	a	predicate	and	paris	is	the	argument.

capitalCity	has	arity	1,	as	it	has	just	one	argument.	This	can	be	written	as	capitalCity/1,	the	/1	showing
that	it	takes	one	argument.

TASK	29.01
Launch	the	editor	(File,	New	...)	from	the	SWI-Prolog	environment.	Enter	the	three	clauses,	as
shown	in	Figure	29.02.	Then	save	the	file	(File,	Save	buffer)	as	Ex1.

Figure	29.02	Example	facts	in	SWI-Prolog	editor

Clauses	01	to	03	are	a	knowledge	base.	We	can	run	a	query	on	this	knowledge	base.

To	ask	the	question	whether	Paris	is	a	capital	city,	we	write:
capitalCity(paris).

Prolog	answers	true.

This	means:	yes,	Paris	is	a	capital	city.

To	ask	the	question	whether	London	is	a	capital	city,	we	write:
capitalCity(london).

Prolog	answers	false.

This	means:	no,	London	is	not	a	capital	city.

This	is	because	the	fact	that	London	is	a	capital	city	has	not	been	included	in	our	knowledge	base.

TASK	29.02
Run	your	own	queries.	You	first	need	to	consult	the	knowledge	base	(File,	Consult	...)	from	within
the	Prolog	environment.	Note	that	SWI-Prolog	uses	the	prompt	?-	(see	Figure	29.03).

Figure	29.03	Example	queries	in	SWI-Prolog

If	your	query	does	not	get	a	response,	check	that	you	have:

consulted	your	knowledge	base	(green	text	in	Figure	29.03)

used	lower-case	letters	appropriately

used	a	full	stop	at	the	end	of	your	query.

29.04	Prolog	variables
Let’s	add	some	more	facts	to	our	knowledge	base.	Comments	in	Prolog	are	enclosed	in	/*	and	*/.

04		cityInCountry(paris,	france).	/*	Paris	is	a	city	in	France	*/

05		cityInCountry(berlin,	germany).

06		cityInCountry(cairo,	egypt).

07		cityInCountry(munich,	germany).

To	find	out	which	country	Berlin	is	in,	we	can	run	the	query	(see	Figure	29.04):
cityInCountry(berlin,	Country).

Note	that	Country	is	a	variable	(it	starts	with	a	capital	letter).

To	find	out	which	cities	are	in	Germany,	we	can	run	the	query	(see	Figure	29.04):
cityInCountry(City,	germany).

Figure	29.04	Instantiations	of	a	variable

Note	how	Prolog	responds	when	running	a	query	that	includes	a	variable.	When	there	is	more	than	one
answer,	you	need	to	type	a	semicolon	after	the	first	answer	and	Prolog	will	give	the	second	answer.	The
semicolon	has	the	meaning	OR.	First	City	is	instantiated	to	berlin	and	then	City	is	instantiated	to	munich.

WORKED	EXAMPLE	29.01

Using	a	knowledge	base

Consider	the	following	knowledge	base:

01		vegetable(aubergine).	/*	aubergine	is	a	vegetable	*/

02		vegetable(potato).

03		vegetable(tomato).

04		meat(chicken).	/*	chicken	is	a	type	of	meat	*/

05		meat(beef).

06		meat(lamb).

07		ingredient(tagine,	aubergine,	250).	/*	tagine	contains	250g	aubergine	*/

08		ingredient(tagine,	tomato,	100).

09		ingredient(stew,	beef,	400).

10		ingredient(stew,	potato,	600).

We	can	check	the	ingredients	of	a	tagine	by	asking:
						ingredient(tagine,	Ingredient,	Amount).

Look	at	the	response	Prolog	gives	in	Figure	29.05.

Figure	29.05	Instantiation	of	variables

29.05	The	anonymous	variable
Consider	the	knowledge	base	from	Worked	Example	29.01.	If	we	are	not	interested	in	the	amount	of
each	ingredient,	we	can	use	the	anonymous	variable	(represented	by	the	underscore	character).	The
query	then	becomes

ingredient(tagine,	Ingredient,	_).

29.06	Rules	in	Prolog
Remember	a	clause	is	of	the	form	Head	:-	Body.

A	rule’s	body	consists	of	calls	to	predicates,	which	are	called	the	rule’s	goals.	A	predicate	is	either	true
or	false,	based	on	its	terms.	If	the	body	of	the	rule	is	true,	then	the	head	of	the	rule	is	true	too.

WORKED	EXAMPLE	29.02

Using	rules	in	a	knowledge	base

Consider	the	following	knowledge	base:

01		parent(fred,	jack).	/*	Fred	is	the	father	of	Jack	*/

02		parent(fred,	alia).

03		parent(fred,	paul).

04		parent(dave,	fred).

We	know	that	G	is	a	grandparent	of	S,	if	G	is	a	parent	of	P	and	P	is	a	parent	of	S.

We	could	write	this	as	a	rule:
grandparent(G,	S)	IF	parent(G,	P)	AND	parent(P,	S).

However,	in	Prolog	the	IF	is	replaced	by	:-	and	the	AND	is	replaced	with	a	comma:

grandparent(G,	S)	:-	parent(G,	P),	parent(P,	S).

A	person	has	a	sibling	(brother	or	sister)	if	they	have	the	same	parent.	We	can	write	this	as	the
Prolog	rule:

sibling(A,	B)	:-

			parent(P,	A),

			parent(P,	B).

If	we	run	the	query

sibling(jack,	X).

we	get	the	answers	we	expect,	but	we	also	get	the	answer	that	Jack	is	his	own	sibling.	To	avoid
this,	we	modify	the	query	to	ensure	that	A	is	not	equal	to	B:

sibling(A,	B)	:-

			parent(P,	A),

			parent(P,	B),

			not(A=B).

Question	29.01
What	answer	do	you	expect	to	get	from	Prolog	to	the	following	query?
sibling(dave,	X).

TASK	29.03
Write	a	knowledge	base	for	your	own	family.	You	can	include	more	predicates,	for	example:

Predicate Meaning
male(fred). Fred	is	male

female(alia). Alia	is	female

Write	a	rule	for	father.

Test	your	program.

WORKED	EXAMPLE	29.03

Adding	a	rule	to	a	knowledge	base

Using	the	knowledge	base	from	Worked	Example	29.01,	we	want	to	know	which	dishes	contain
meat.	We	are	not	interested	how	much	meat,	so	we	don’t	need	to	know	the	value	of	the	third
argument	of	the	predicate	ingredient/3.	We	can	write	the	rule:
containsMeat(X)	:-

			ingredient(X,	Meat,	_),

			meat(Meat).

The	query	containsMeat(X).	returns	X	=	stew.

29.07	Instantiation	and	backtracking
Prolog	responds	to	a	query	with	an	answer,	such	as	the	one	in	Worked	Example	29.03:
X	=	stew.

The	=	sign	is	not	an	assignment	as	in	imperative	programs.	The	=	sign	shows	instantiation.

How	does	Prolog	use	the	knowledge	base	to	arrive	at	the	answers?	One	way	to	see	exactly	what	Prolog
is	doing	is	to	use	the	graphical	debugger.

WORKED	EXAMPLE	29.04

Use	the	knowledge	base	from	Worked	Example	29.03.	After	consulting	the	knowledge	base,	start
the	debugger	(Debug,	Graphical	debugger)	from	the	Prolog	environment.	Then	type:	trace.	and
then	the	goal	as	shown	in	Figure	29.06.

Figure	29.06	Switching	on	the	trace	facility

The	graphical	debugger	window	opens	as	shown	in	Figure	29.07.

Figure	29.07	Graphical	debugger

Using	the	space	bar	you	can	step	through	the	program.	When	Prolog	gives	an	answer	in	the	Prolog
Environment	window,	remember	to	input	a	semicolon,	so	that	Prolog	will	go	and	check	for	another
possible	answer.

If	you	don’t	use	the	graphical	debugger	but	type	trace.	you	can	see	the	trace	in	the	SWI-Prolog
window,	as	shown	in	Figure	29.08.

Figure	29.08	SWI-Prolog	trace	of	goal	containsMeat(X)

The	following	terminology	is	used	when	discussing	a	trace:

Call	is	the	initial	entry	to	a	predicate

creep	indicates	that	Prolog	is	moving	to	the	next	predicate

Exit	is	a	successful	return

Redo	indicates	that	the	predicate	is	backed	into	for	another	answer

Fail	indicates	that	Prolog	can	find	no	more	solutions.

29.08	Recursion
Recursion	for	imperative	languages	is	covered	in	Chapter	24.	Recursion	for	declarative	languages	is
where	a	rule	is	defined	by	itself,	or	more	precisely,	a	rule	uses	itself	as	a	sub-goal.

Let	us	expand	the	Family	knowledge	base	from	Worked	Example	29.02.

We	want	a	rule	that	defines	whether	person	A	is	an	ancestor	of	person	B.	If	A	is	a	parent	of	B,	then	A	is
an	ancestor	of	B.	Similarly,	if	person	A	is	the	parent	of	P,	who	is	the	parent	of	B,	then	A	is	an	ancestor	of
B.	This	is	true	for	the	parent	of	a	parent	of	a	parent	of	B.	In	general,	if	A	is	a	parent	of	X	and	X	is	an
ancestor	of	B,	then	A	is	an	ancestor	of	B.	We	can	write	this	information	as	the	rules	shown	in	Figure
29.09.

Figure	29.09	Recursive	rules

Note	that	recursion	in	declarative	programming	must	follow	the	equivalent	rules	that	imperative
programming	must	follow.	A	recursive	rule	must:

have	a	base	case

have	a	general	case

reach	the	base	case	after	a	finite	number	of	calls	to	itself.

TASK	29.04
Add	the	ancestor	rules	to	the	Family	knowledge	base	and	check	that	the	following	query	gives	the
correct	results:
ancestor(A,	jack).

WORKED	EXAMPLE	29.05

Creating	the	factorial	function	in	Prolog

In	Chapter	24,	Worked	Example	24.01,	we	programmed	the	factorial	function	using	recursion	with
imperative	programming.	We	can	also	program	this	function	using	recursion	in	Prolog.

factorial(0,	1). /*	base	case:	0!	=	1 			*/
factorial(N,	Result)	:- /*	Result	=	N!  			   	 */
			M	is	N	-	1, /*	assign	N-1	to	M   	  */
			factorial(M,	PartResult), /*	PartResult		=	(N-1)!	*/
			Result	is	PartResult	*	N. /*	Result	=	N	*	(N-1)! 	*/

TASK	29.05
Enter	the	code	from	Worked	Example	29.05	into	the	Prolog	editor.	Save	it	and	consult	it.	Then
pose	the	following	query:
factorial(5,	Answer).

Do	you	get	the	correct	answer?

29.09	Lists
A	list	is	an	ordered	collection	of	terms.	It	is	denoted	by	square	brackets	with	the	terms	separated	by
commas	or	in	the	case	of	the	empty	list,	[].	For	example	[1,	2,	3]	or	[red,	green,	blue].	An	element	can
be	any	type	of	Prolog	object.	Different	types	can	be	mixed	within	one	list.	Lists	are	used	in	Prolog
where	arrays	may	be	used	in	procedural	languages.

Any	non-empty	list	can	be	thought	of	as	consisting	of	two	parts:	the	head	and	the	tail.	The	head	is	the
first	item	in	the	list;	the	tail	is	the	list	that	remains	when	we	take	the	first	element	away.	This	means
that	the	tail	of	a	list	is	always	a	list.

Lists	are	manipulated	by	separating	the	head	from	the	tail.	The	separator	used	is	a	vertical	line	(a	bar):|

If	Prolog	tries	to	match	[H|T]	to	[car,	lorry,	boat,	ship],	it	will	instantiate	H	to	car	and	T	to	[lorry,	boat,
ship].

The	clause	definition	showHeadAndTail([H|T],	H,	T).	can	be	used	to	pose	the	query:
showHeadAndTail([fred,	jack,	emma],	Head,	Tail).

Prolog	responds	with:
Head	=	fred,
Tail	=	[jack,	emma].

The	clause	definition	myList([1,2,3]).	can	be	used	to	pose	the	query:

myList([H|T]).

Prolog	responds	with:
H	=	1,
T	=	[2,	3].

The	clause	definition	emptyList(A)	:-	A	=	[].	can	be	used	to	pose	the	query:

emptyList([1]).

Prolog	responds	with:

false.

List-processing	predicate:	append
The	built-in	predicate	append(A,	B,	C)	joins	list	A	and	list	B	and	produces	list	C.

append([a,	b],	[c,	d],	MyList).

produces	MyList	=	[a,	b,	c,	d].

append(FirstList,	[c,	d],	[a,	b,	c,	d]).

produces	FirstList	=	[a,	b].

List-processing	predicate:	member
The	built-in	predicate	member(A,	B)	returns	true	if	item	A	is	in	list	B.

member(c,	[a,	b,	c,	d,	e]).

produces:

true.

And

member(X,[a,	b,	c,	d]).

produces:
X	=	a	;
X	=	b	;
X	=	c	;

X	=	d.

List-processing	predicates:	write	and	read
The	built-in	predicate	write(A)	outputs	A	to	the	screen.

write('message:	').	outputs	message:	.

write(X).	outputs	the	value	currently	instantiated	with	the	variable	X.

The	built-in	predicate	read(A)	reads	a	value	from	the	keyboard	into	variable	A.

read(Name).	waits	for	an	atom	to	be	input	from	the	keyboard	and	instantiates	the	variable	Name	with	that
value.

Note	that	the	input	must	start	with	a	lower	case	letter	and	not	have	spaces	or	be	enclosed	in	quotes.

nl	moves	the	output	to	a	new	line.

We	can	write	user-friendly	programs	using	the	read	and	write	predicates.

WORKED	EXAMPLE	29.06

Using	the	read	and	write	predicates

Note	how	the	interface	with	the	user	in	the	code	below	is	written	as	a	rule	with	the	separate	steps
separated	by	commas	(representing	AND).

assert/1	adds	the	clause	given	as	the	argument	to	the	knowledge	base.

retractall/1	takes	the	given	clause	out	of	the	knowledge	base,	so	the	next	time	the	program	is	run,
the	new	facts	will	be	added	and	used	in	the	goal.

/*	Weather	knowledge	base	*/
weather(good):-
			temp(high),
			humidity(dry),
			sky(sunny).
weather(bad):-
			(humidity(wet);
			temp(low);
			sky(cloudy)).
/*	interface	*/
go:-
			write('Is	the	temperature	high	or	low?	'),
			read(Temp),	nl,
			write('Is	the	sky	sunny	or	cloudy?	'),
			read(Sky),	nl,

			write('Is	the	humidity	dry	or	wet?	'),
			read(Humidity),	nl,
			assert(temp(Temp)),
			assert(sky(Sky)),
			assert(humidity(Humidity)),
			weather(Weather),
			write('The	weather	is	'),	write(Weather),
			retractall(temp(_)),
			retractall(sky(_)),
			retractall(humidity(_)).

To	run	the	program,	type	go.

TASK	29.06
Test	the	recursively	defined	rule	writelist/1	to	output	the	elements	of	a	list.
writeList([]).
writeList([H|T]):-write(H),	nl,	writeList(T).

Reflection	Point:
Can	you	explain	the	difference	between	a	fact	and	a	rule?

Summary
Imperative	programs	reflect	the	steps	of	how	to	solve	a	problem.
Declarative	programs	reflect	what	the	problem	is.
A	knowledge	base	consists	of	two	types	of	clause:	facts	and	rules.
Clauses	are	sometimes	referred	to	as	predicates.
The	arity	of	a	predicate	shows	how	many	arguments	it	takes.
To	solve	a	problem,	the	user	of	the	knowledge	base	poses	a	query.
A	recursive	rule	is	defined	in	terms	of	itself.
In	logic	programming,	a	list	is	manipulated	by	separating	the	head	from	the	tail	([H	T]).

■
■
■
■
■
■
■
■

Exam-style	Questions

[1]

[1]

[2]

[3]

A	logic	programming	language	is	used	to	represent,	as	a	set	of	facts	and	rules,	details	of	cities	of	the
world.	The	set	of	facts	and	rules	are	shown	below	in	clauses	labelled	1	to	17.
01		capital(vienna).
02		capital(london).
03		capital(santiago).
04		capital(caracas).
05		capital(tokyo).
06		cityIn(vienna,	austria).
07		cityIn(santiago,	chile).
08		cityIn(salzburg,	austria).
09		cityIn(maracaibo,	venezuela).
10		continent(austria,	europe).
11		continent(chile,	southAmerica).
12		continent(uk,	europe).
13		continent(argentina,	southAmerica).
14		iVisited(vienna).
15		iVisited(tokyo).
16		capitalOf(City,	Country)
						IF	capital(City)	AND	cityIn(City,	Country).
17		europeanCity(City)
							IF	cityIn(City,	Country)	AND	continent(Country,	europe).

These	clauses	have	the	following	meanings:

Clause Meaning
01 Vienna	is	a	capital.
06 Vienna	is	in	Austria.
10 Austria	is	in	the	continent	of	Europe.
14 I	visited	the	city	of	Vienna.

16 City	is	the	capital	of	Country	if
City	is	a	capital	and	it	is	in	Country.

17 City	is	a	city	in	Europe	if	City	is	in	Country	and	Country	is	in	Europe.

Write	down	the	extra	clauses	needed	to	express	the	following	facts:

London	is	in	the	UK.

I	visited	the	city	of	Strasbourg.

The	clause	cityIn(City,	austria)	would	return	the	result:	vienna,	salzburg.

Write	down	the	result	returned	by	the	clause:

continent(Country,	southAmerica).

Complete	the	rule	to	list	countries	that	I	have	visited

countriesIVisited(Country)	IF	...

In	a	particular	country,	to	become	a	qualified	driver	you	must:

have	a	licence:	there	is	a	minimum	age	at	which	a	person	can	be	issued	with	a	licence	and	it	is
different	for	cars	and	trucks

pass	a	theory	test:	it	is	the	same	test	for	cars	and	trucks

pass	a	driving	test	for	a	specific	vehicle	(car	or	truck).

A	declarative	programming	language	is	to	be	used	to	represent	the	knowledge	base	shown	below:
01		minimumAge(car,	18).
02		minimumAge(truck,	21).
03		age(fred,	19).
04		age(jack,	22).
05		age(mike,	17).
06		age(jhon,	20).

1

a

i

ii

b

c

2

[1]

[1]

[1]

[1]

[1]

[2]

[3]

[5]

07		age(emma,	22).
08		age(sheena,	19).
09		hasLicence(fred).
10		hasLicence(jack).
11		hasLicence(mike).
12		hasLicence(jhon).
13		hasLicence(emma).
14		hasLicence(sheena).
15		allowedToDrive(X,	V)
							IF	hasLicence(X)	AND	minimumAge(V,	L)
										AND	age(X,	A)
										AND	A	>=	L.
16		passedTheoryTest(jack).
17		passedTheoryTest(emma).
18		passedTheoryTest(jhon).
19		passedTheoryTest(fred).
20		passedDrivingTest(jhon,	car).
21		passedDrivingTest(fred,	car).
22		passedDrivingTest(jack,	car).
23		passedDrivingTest(jack,	truck).
24		passedDrivingTest(sheena,	car).
25		qualifiedDriver(X,	V)
							IF	allowedToDrive(X,	V)
										AND	passedTheoryTest(X)
										AND	passedDrivingTest(X,	V).

These	clauses	have	the	following	meanings:

Clause Meaning
01 The	minimum	age	for	a	car	licence	is	18.
03 Fred	is	aged	19.
09 Fred	has	a	licence.

15 Person	X	is	able	to	drive	vehicle	V	if	person	X	has	a	licence	and	the	age	A	of	person	X	is
greater	than	or	equal	to	the	minimum	age	L	to	drive	vehicle	V.

Give	one	example	of	a	fact	in	this	knowledge	base.

Give	one	example	of	a	rule	in	this	knowledge	base.

State	the	output	produced	from	these	clauses:

passedDrivingTest(Who,	truck).

allowedToDrive(mike,	car).

NOT(hasLicence(sheena)).

Write	a	clause	to	output:

all	qualified	car	drivers

all	drivers	who	have	passed	the	theory	test	but	not	a	driving	test.

To	produce	the	output	from	a	clause,	the	inference	engine	uses	a	process	called	backtracking.

Consider	the	clause:
AllowedToDrive(mike,	car).

Identify	the	order	in	which	clauses	are	used	to	produce	the	output.	For	each	clause,	describe	the
result	that	it	returns.

a i

ii

b

i

ii

iii

c

i

ii

d

Acknowledgements

The	authors	and	publishers	acknowledge	the	following	sources	of	copyright	material	and	are	grateful
for	the	permissions	granted.	While	every	effort	has	been	made,	it	has	not	always	been	possible	to
identify	the	sources	of	all	the	material	used,	or	to	trace	all	copyright	holders.	If	any	omissions	are
brought	to	our	notice,	we	will	be	happy	to	include	the	appropriate	acknowledgements	on	reprinting.

Cover	Photo:	Westend61/Getty	Images

Galushko	Sergey/Shutterstock;	Solomonkein/Shutterstock;	Pingingz/Shutterstock;	Photo	by	Frank
Wojechowski,	used	with	permission	of	Michael	McAlpine	and	Princeton	University;	Nikita
Veremcuks/EyeEm/Getty	Images;	ilbusca/Getty	Images;	digitalreflections/Shutterstock;

Chapter	Openers

polygraphus/Shutterstock;	dgbomb/Shutterstock;	Pingingz/Shutterstock;

agsandrew/Shutterstock;	Raimundas/Shutterstock;	Best	Backgrounds/Shutterstock;	Toria/Shutterstock;
deepadesigns/Shutterstock;

Gino	Santa	Maria/Shutterstock;	kubais/Shutterstock;	bluebay/Shutterstock;	Best
Backgrounds/Shutterstock;	Kheng	Guan	Toh/Shutterstock;

Best	Backgrounds/Shutterstock;	foxaon1987/Shutterstock;	Kheng	Guan	Toh/Shutterstock;
bluebay/Shutterstock;	James	Steidl/Shutterstock;	Lukas	Rs/Shutterstock;	kentoh/Shutterstock;
jijomathaidesigners/Shutterstock;

kentoh/Shutterstock;	mistery/Shutterstock;	kentoh/Shutterstock;

Titima	Ongkantong/Shutterstock;	Best	Backgrounds/Shutterstock;

Mike	McDonald/Shutterstock;	Tashatuvango/Shutterstock;

Best	Backgrounds/Shutterstock

University	Printing	House,	Cambridge	CB2	8BS,	United	Kingdom
One	Liberty	Plaza,	20th	Floor,	New	York,	NY	10006,	USA
477	Williamstown	Road,	Port	Melbourne,	VIC	3207,	Australia
314–321,	3rd	Floor,	Plot	3,	Splendor	Forum,	Jasola	District	Centre,	New	Delhi	–	110025,	India
79	Anson	Road,	#06	-04/06,	Singapore	079906

Cambridge	University	Press	is	part	of	the	University	of	Cambridge.
It	furthers	the	University’s	mission	by	disseminating	knowledge	in	the	pursuit	of	education,	learning
and	research	at	the	highest	international	levels	of	excellence.

www.cambridge.org
Information	on	this	title:	www.cambridge.org/9781108733755
©	Cambridge	University	Press	2019
This	publication	is	in	copyright.	Subject	to	statutory	exception	and	to	the	provisions	of	relevant
collective	licensing	agreements,	no	reproduction	of	any	part	may	take	place	without	the	written
permission	of	Cambridge	University	Press.
First	published	2015
Second	edition	2019
20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Printed	in	the	United	Kingdom	by	Latimer	Trend
A	catalogue	record	for	this	publication	is	available	from	the	British	Library
ISBN	978-1-108-73375-5	Paperback
ISBN	978-1-108-56832-6	Paperback	with	Cambridge	Elevate	edition	(2	years)
ISBN	978-1-108-70041-2	Cambridge	Elevate	edition	(2	years)
ISBN	978-1-108-70039-9	Digital	edition

Cambridge	University	Press	has	no	responsibility	for	the	persistence	or	accuracy	of	URLs	for	external
or	third-party	internet	websites	referred	to	in	this	publication,	and	does	not	guarantee	that	any	content
on	such	websites	is,	or	will	remain,	accurate	or	appropriate.	Information	regarding	prices,	travel
timetables,	and	other	factual	information	given	in	this	work	is	correct	at	the	time	of	first	printing	but
Cambridge	University	Press	does	not	guarantee	the	accuracy	of	such	information	thereafter.
All	exam-style	questions	and	sample	answers	in	this	title	were	written	by	the	authors.	In	examinations,
the	way	marks	are	awarded	may	be	different.
Past	exam	paper	questions	throughout	reproduced	by	permission	of	Cambridge	Assessment
International	Education.

NOTICE	TO	TEACHERS	IN	THE	UK

It	is	illegal	to	reproduce	any	part	of	this	work	in	material	form	(including	photocopying	and	electronic
storage)	except	under	the	following	circumstances:
(i) where	you	are	abiding	by	a	licence	granted	to	your	school	or	institution	by	the	Copyright	Licensing

Agency;
(ii) where	no	such	licence	exists,	or	where	you	wish	to	exceed	the	terms	of	a	licence,	and	you	have

gained	the	written	permission	of	Cambridge	University	Press;
(iii) where	you	are	allowed	to	reproduce	without	permission	under	the	provisions	of	Chapter	3	of	the

Copyright,	Designs	and	Patents	Act	1988,	which	covers,	for	example,	the	reproduction	of	short
passages	within	certain	types	of	educational	anthology	and	reproduction	for	the	purposes	of	setting
examination	questions.

